anti-sèche tuto argumentation kr18 srdjan vesic

Extension-based semantics:

S is conflict-free (CF) if there are no $a, b \in S$ such that $(a, b) \in R$.

S defends a if for each $b \in A$, if $(b, a) \in R$ then b is attacked by S.

S is *admissible* if it is CF and each argument of S is defended by S.

S is a *complete* extension if it is admissible and every argument defended by S belongs to S.

S is a *preferred* extension if it a is maximal (for \subseteq) admissible set.

S is a *stable* extension if it is CF and attacks all the arguments that do not belong to S.

S is a grounded extension if it is the min. (for \subseteq) complete extension.

Principles for ranking-based semantics:

S satisfies anonymity iff, for any two WAGs $G = \langle A, w, \mathcal{R} \rangle$ and $G' = \langle A', w', \mathcal{R}' \rangle$, for any isomorphism f from G to G', the following property holds: $\forall a \in \mathcal{A}, \mathsf{Deg}_{G}^{\mathsf{S}}(a) = \mathsf{Deg}_{\mathsf{G}'}^{\mathsf{S}}(f(a))$.

S satisfies *independence* iff, for any two WAGs $G = \langle \mathcal{A}, w, \mathcal{R} \rangle$ and $G' = \langle \mathcal{A}', w', \mathcal{R}' \rangle$ s.t. $\mathcal{A} \cap \mathcal{A}' = \emptyset$, the following holds: $\forall a \in \mathcal{A}, \ \mathsf{Deg}^{\mathsf{S}}_{\mathsf{G}}(a) = \mathsf{Deg}^{\mathsf{S}}_{\mathsf{G} \oplus \mathsf{G}'}(a)$.

S satisfies *directionality* iff, for any two WAGs $G = \langle \mathcal{A}, w, \mathcal{R} \rangle$, $G' = \langle \mathcal{A}, w, \mathcal{R}' \rangle$ s.t. $\mathcal{R}' = \mathcal{R} \cup \{(a, b)\}$, it holds that: $\forall x \in \mathcal{A}$, if there is no path from b to x, then $\mathsf{Deg}^{S}_{G}(x) = \mathsf{Deg}^{S}_{G'}(x)$.

S satisfies *neutrality* iff, for any WAG $G = \langle \mathcal{A}, w, \mathcal{R} \rangle, \forall a, b \in \mathcal{A}$, if i) w(a) = w(b), and ii) $\operatorname{Att}_{G}(b) = \operatorname{Att}_{G}(a) \cup \{x\}$ with $x \in \mathcal{A} \setminus \operatorname{Att}_{G}(a)$ and $\operatorname{Deg}_{G}^{S}(x) = 0$, then $\operatorname{Deg}_{G}^{S}(a) = \operatorname{Deg}_{G}^{S}(b)$. S satisfies *equivalence* iff, for any WAG $G = \langle \mathcal{A}, w, \mathcal{R} \rangle$, $\forall a, b \in \mathcal{A}$, if i) w(a) = w(b), and ii) there exists a bijective function f from $\operatorname{Att}_{G}(a)$ to $\operatorname{Att}_{G}(b)$ s.t. $\forall x \in \operatorname{Att}_{G}(a)$, $\operatorname{Deg}_{G}^{S}(x) = \operatorname{Deg}_{G}^{S}(f(x))$, then $\operatorname{Deg}_{G}^{S}(a) = \operatorname{Deg}_{G}^{S}(b)$.

S satisfies maximality iff, for any WAG $G = \langle \mathcal{A}, w, \mathcal{R} \rangle$, $\forall a \in \mathcal{A}$, if $Att_G(a) = \emptyset$, then $Deg_G^S(a) = w(a)$.

S satisfies weakening iff, for any WAG $G = \langle \mathcal{A}, w, \mathcal{R} \rangle$, $\forall a \in \mathcal{A}$, if i) w(a) > 0, and ii) $\exists b \in \operatorname{Att}_{G}(a)$ s.t. $\operatorname{Deg}_{G}^{S}(b) > 0$, then $\operatorname{Deg}_{G}^{S}(a) < w(a)$.

S satisfies *counting* iff, for any WAG $G = \langle \mathcal{A}, w, \mathcal{R} \rangle$, $\forall a, b \in \mathcal{A}$, if i) w(a) = w(b), ii) $\text{Deg}_{G}^{S}(a) > 0$, and iii) $\text{Att}_{G}(b) = \text{Att}_{G}(a) \cup \{y\}$ with $y \in \mathcal{A} \setminus \text{Att}_{G}(a)$ and $\text{Deg}_{G}^{S}(y) > 0$, then $\text{Deg}_{G}^{S}(a) > \text{Deg}_{G}^{S}(b)$.

S satisfies weakening soundness iff, for any WAG $G = \langle \mathcal{A}, w, \mathcal{R} \rangle, \forall a \in \mathcal{A} \text{ s.t. } w(a) > 0$, if $\text{Deg}_{G}^{S}(a) < w(a)$,

then $\exists b \in \operatorname{Att}_{\mathsf{G}}(a)$ s.t. $\operatorname{Deg}_{\mathsf{G}}^{\mathsf{S}}(b) > 0$.

S satisfies reinforcement iff, for any WAG $G = \langle \mathcal{A}, w, \mathcal{R} \rangle$, $\forall a, b \in \mathcal{A}$, if i) w(a) = w(b), ii) $\text{Deg}_{G}^{S}(a) > 0$ or $\text{Deg}_{G}^{S}(b) > 0$, iii) $\text{Att}_{G}(a) \setminus \text{Att}_{G}(b) = \{x\}$, iv) $\text{Att}_{G}(b) \setminus \text{Att}_{G}(a) = \{y\}$, and v) $\text{Deg}_{G}^{S}(y) > \text{Deg}_{G}^{S}(x)$, then $\text{Deg}_{G}^{S}(a) > \text{Deg}_{G}^{S}(b)$.

S satisfies resilience iff, for any WAG G = $\langle \mathcal{A}, w, \mathcal{R} \rangle$, $\forall a \in \mathcal{A}$, if w(a) > 0, then $\text{Deg}_{g}^{S}(a) > 0$.

S satisfies proportionality iff, for any WAG $G = \langle A, w, \mathcal{R} \rangle$, $\forall a, b \in \mathcal{A} \text{ s.t. } i) \operatorname{Att}_{G}(a) = \operatorname{Att}_{G}(b)$, ii) w(a) > w(b), and iii) $\operatorname{Deg}_{G}^{S}(a) > 0$ or $\operatorname{Deg}_{G}^{S}(b) > 0$, then $\operatorname{Deg}_{G}^{S}(a) > \operatorname{Deg}_{G}^{S}(b)$. Weighted *h*-categorizer:

$$\mathbf{f}_h^i(a) = \left\{ \begin{array}{ll} w(a) & \text{if } i = 0; \\ \frac{w(a)}{1 + \sum_{b_i \in \mathtt{Att}(a)} \mathbf{f}_h^{i-1}(b_i)} & \text{otherwise.} \end{array} \right.$$

TB semantics:

$$\begin{split} f_i^{TB}(a) &= \frac{1}{2} f_{i-1}^{TB}(a) + \frac{1}{2} \min[w(a), 1 - \max_{b \in \texttt{Att}(a)} f_{i-1}^{TB}(b)] \\ & \text{ with } f_0^{TB}(a) = w(a) \end{split}$$

Simple product semantics (SAF):

$$Deg(a)_{\mathsf{G}}^{SAF} = \tau(a) \cdot (1 - (Deg_{\mathsf{G}}^{SAF}(b_1) \curlyvee \dots \curlyvee Deg(b_n)_{\mathsf{G}}^{SAF}))$$

where, Att $(a) = \{b_1 \dots b_n\}$, and $x \curlyvee y = x + y - x \cdot y$
DF-QuaD:

$$\mathsf{Deg}(a) = w(a) \cdot \prod_{b \in \mathsf{Att}(a)} (1 - \mathsf{Deg}(b))$$

Translating an extension-based semantics into a ranking-based semantics: (1) $a \succeq b$ iff $w(a) \ge w(b)$. (2) Obtain a new attack relation \mathcal{R}' by deleting the attacks from a to b s.t. $b \succ a$. (3) Apply Dung's semantics on $\langle \mathcal{A}, \mathcal{R}' \rangle$. Then: if a belongs to all extensions, Deg(a) = 1; else, if a belongs to at least one extension, Deg(a) = 0.5; else, if a is not attacked by any extension, Deg(a) = 0.3; else, Deg(a) = 0.