A New Class of Classical Logic Instantiations of Dung’s
Abstract Argumentation Theory*

Srdjan Vesic Leendert van der Torre

Computer Science and Communication
University of Luxembourg
srdjan.vesic@uni.lu, leon.vandertorre@uni.lu

Abstract. The question whether Dung’s abstract argumentation theanybe
instantiated with classical propositional logic has draaveoonsiderable amount
of attention among scientists in recent years. It was shoy@dyrol in 1995
that if direct undercutis used, then stable extensions of an argumentation system
correspond exactly to maximal (for set inclusion) consisseibsets of the knowl-
edge base from which the argumentation system was coreticudntil now, no
other correspondences were found between the extensiars afgjumentation
framework and its knowledge base (except if preferenceslaegiven at the
input of the system). This paper’s contribution is twofokdrst, we show that
it is possible to instantiate Dung’s abstract argumentatieeory with classical
propositional logic and obtain a meaningful result whicleslaot correspond to
the maximal consistent subsets of the knowledge base usetristructing ar-
guments. Indeed, we define a whole class of instantiaticmisréturn different
results. Furthermore, we show that these instantiatioassaund in the sense
that they satisfy the postulates from argumentation liteea(e.g. consistency,
closure). In order to illustrate our results, we present gemgicular instantiation
from this class, which is based on cardinalities of minimabinsistent sets a for-
mula belongs to. Second, we identify a set of intuitive ctods describing a
class of attack relations returning extensions correspgnekactly to the maxi-
mal (for set inclusion) consistent subsets of the knowlduige.

1 Introduction

The question how to reason in presence of inconsistencyas thre keywords of logic
and artificial intelligence. A notable example are paratsiest logics [13] where one
is able to draw some (but not all) conclusions from an incstesit set of formulae. As
another example take belief revision, belief merging oingf10]. Generally speaking,
an inference relation is a way to go from a (possibly incdesig knowledge base to a
set of subsets of that knowledge base. For example, giveowl&dge basgy, —p A
¥}, aninference relation could return two s€ftgi} and{—¢ A ¢'}. One of the simplest
inference relations is a function returning the set of allimmal (for set inclusion)
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consistent subsets of a knowledge base. It has been showhaf8he result obtained
by this inference relation can be also obtained by an inisitdort of Dung’s abstract

argumentation theory [9]. Namely, whelirect undercuis used as attack relation on
the set of all the arguments built from a knowledge base, statnle extensions of the
resulting argumentation framework correspond exactii¢osiet of maximal consistent
subsets of the knowledge base. This is the first result wiiotvs that Dung’s abstract
argumentation theory can be instantiated in a way to capiuirference relation.

An important question is whether Dung’s theory can be usedg@meral framework
for nonmonotonic logic, and if so, which class of inferenetations can be studied
as instances of Dung’s theory. Indeed, only a very smallnfiggt of logics has been
represented in such a way. This may also not be very surgriginen the richness of
the logic literature and the strong constraints imposed inyd™ theory. This raises two
important questions for the community. First, which clagbgics can be captured by
Dung’s theory? Second, how to generalize Dung’s theoryRitngaper we address the
first question, whereas the second question is a part of agrterm research agenda.

The starting point of our work is to note that since the firsute[8] showing how
to capture an inference relation in Dung’s theory, not mudtkwhas been done in
this direction. Indeed, no “reasonable” logic-based imsa&tions of Dung’s abstract
theory were found that capture another inference relaByrfreasonable”, we mean
that they satisfy at least some basic postulates proposéustantiated argumentation
frameworks [7] like consistency, closure, and so on.

The challenges of this paper are: First, how to define a clbattack relations in
terms of the knowledge base such that the stable extensighe obtained argumen-
tation framework do not correspond to exactly to the maxiforket inclusion con-
sistent subsets of the knowledge base? Second, how to g¢hatithose instantiations
of Dung’s theory still return a reasonable result? Thirdt {gossible to define condi-
tions that precisely characterize the circumstances wiesdmantics return maximal
consistent subsets under subset relation.

The layout of this paper is as follows: After introducing thetions of argumen-
tation framework and formally defining its logic-based amfations (Section 2), we
present new ways to instantiate Dung’s abstract argunientditeory in Section 3 and
a class of attack relations returning extensions corredipgrto maximal consistent
subsets of a knowledge base in Section 4. The last sectiauctas and reviews ques-
tions left for future work.

2 Dung’s Abstract Argumentation Theory and its Instantiation
with Classical Propositional Logic

In this section, we present the most common way of instangjaddung’s abstract ar-
gumentation theory [9] with classical propositional lagit denotes the set of well-
formed formulael- stands for classical entailment, asdfor logical equivalence. We
denote byX a finite set of classical propositional formulae from whichuanents are
constructed. We use the notatina(X’) for the set of all maximal (for set inclusion)
consistent subsets d&f, andMinConf (X) for the set of minimal (for set inclusion) in-
consistent subsets &f. A formulay is called a free formula of a knowledge basef



and only ifo does not belong to any minimal (for set inclusion) incomsissubset of
Y. A'logical argument is defined as a péitupport, conclusion).

Definition 1 (Argument). Let £ be a classical propositional language withits asso-
ciated logical consequence, |& C £ anda € £. An argument is a paif®, ) such
that® C X' is a minimal (for set inclusion) consistent set of formulaetsthatd - «.

Example 1.Let ¥ = {p, 0 — ¢, w}. ({v,0 = ¥}, ¢), ({¢ — ¢}, -9V ¢¥) and
({p, ¥}, ¢ < ) are some of the arguments that can be constructed fom

For an argument = (&, «), we write Supp(a) = ¢ to denote its support and
Conc(a) = arto denote its conclusion. For a set of arguméhtse denote bgoncs(&)
the set of conclusions of all the arguments frénhn other wordsConcs(£) = {Conc(a)
| @ € £}. Foragiven set of formulag C £, we denote byrg(S) the set of arguments
constructed front. Formally, Arg(S) = {a | a is an argument anflupp(a) C S}.
Let Arg(L) denote the set of all arguments that could be made from pitigee logic
formulae. For a given set of argumestswe denotease(&) = (J,. Supp(a). Now
we provide a definition of argumentation framework.

Definition 2 (Argumentation framework). An argumentation framework is a pair
(A, R) where A C Arg(L) is a set of arguments arl®@ C A x A a binary rela-
tion. For each pair(a, b) € R, we say that attacksh. We also sometimes use notation
aRb instead of(a, b) € R.

In the rest of the paper, we suppose that all the argumentsff@re constructed,
i.e. thatA = Arg(X). We now introduce the notions of conflict-freeness and defen
used to define different semantics.

Definition 3 (Conflict-free, defence).Let F = (A, R) be an argumentation frame-
work,& C Aanda € A.

— & isconflict-freeif and only if there exists no two argumentd € £ s.t.(a,b) € R
— & defends: if and only if for everyb € A we have that ib R a then there exists
¢ € £ such thate R b.

Let us now define the most commonly used acceptability saosant

Definition 4 (Acceptability semantics).Let 7 = (A, R) be an argumentation frame-
work andB C A. We say that a sdf is admissiblgf and only if it is conflict-free and
defends all its elements.

— B is acompleteextension if and only i defends all its arguments and contains
all the arguments it defends.

— Bis apreferredextension if and only if it is a maximal (with respect to setuision)
admissible set.

— B is astableextension if and only iB is conflict-free and for alb € A\ B, there
existsb € B such thab R a.

— Bis asemi-stablextension if and only i is a complete extension and the union of
the set3 and the set of all arguments attacked®ys maximal (for set inclusion).



— Bis agrounded extensioifiand only if B is a minimal (for set inclusion) complete
extension.

— B is anidealextension if and only iB is a maximal (for set inclusion) admissible
set contained in every preferred extension.

For an argumentation framework = (A, R) we denote byExt,(F); or, by a
slight abuse of notation, Bkt (A, R) the set of its extensions with respect to seman-
tics z. We use abbreviations p, s, ss, g and: for respectively complete, preferred,
stable, semi-stable, grounded and ideal semantics. Fon@geExt,(F) denotes the
set of preferred extensions argumentation framewrk

Example 2.Let F = (A, R) be an argumentation framework with= {a, b, ¢, d} and
R ={(b,¢),(c,b),(b,d), (c,d)}. The graph is visualised below.
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There are three complete extensiofs:b}, {a, ¢} and{a}, and two preferred/ sta-
ble / semi-stable extensionsz, b} and{a, c}. The grounded extension of this frame-
work coincides with its ideal extension, which is the &e}.

We now introduce the most common ways in which attack raiatire defined in
terms of (i.e. as a function of) the knowledge base in arguatiem literature [11].

Definition 5. For a set of formula& = {¢1,..., ¢k}, let A @ denotep; A ... A k.
Leta,b € Arg(L). We define the following attack relations:

— defeat aR4b if and only ifConc(a) - — A Supp(b)

— direct defeataR 440 if and only if there exist® € Supp(b) s.t.Conc(a) - —¢
undercutaR,b if and only if there exist$ C Supp(b) such thaConc(a) =
direct undercutaR 4,0 if and only if there exist® € Supp(b) s.t.Conc(a)
canonical undercuttR .,.b if and only ifConc(a) = — A Supp(b)

rebut aR,.b if and only ifConc(a) = —Conc(b)

— defeating rebutaR 4,0 if and only ifConc(a) - ~Conc(b)

Note that all the attack relations from the previous definitire defined oArg(L) x
Arg(L). For a givenY, one can just use the restriction of the relation friorg(L£) x
Arg(L) to Arg(X) x Arg(X). This is not the case with the class of attack relations we
introduce in the next section. Namely, for those attackKiaia, there exist arguments
a,b € Arg(L), such that whether attacks or not depends also on the knowledge base
X.. Formally, the more general case is when an attack relaidefined by specifying
its behaviour on anyrg(X) for any finite X C L. In the rest of the paper, when we



use the term “attack relation”, we refer to the more geneaaécFormally, one should
write (a,b, ) € R. However, since it is always clear to which we refer to, there
is no danger of confusion and in order to simplify the notatie write (a,b) € R or
aRb throughout the paper.

Similar to the principles that can be satisfied by an accdfitedemantics [4], there
exist principles that an attack relation should satisfyJLAn important requirement is
that an attack relation should return consistent extesgainbreviatedE).

Definition 6 (CE). LetR be an attack relation. We say thRtreturns consistent exten-
sions under semantiasif and only if for every®X C L, for everyF = (Arg(X),R),
for every extensio& of 7 under semantics, it holds thatBase(£) is a consistent set.

It has been shown [11] th&;, andR 4, satisfyCE under stable, semi-stable, pre-
ferred, and complete semantics. It has also been showRthaR ..., R, R4 do not
satisfyCE under neither of those semantics.

Another requirement in logic-based argumentation is thatrgument should not
attack another one if the union of their supports is consisthis property of an attack
relation is called conflict-dependence [1] for what we useahbreviatiorgD.

Definition 7 (CD). LetR be an attack relation. We say th&t is conflict-dependent if
and only if for everyX C L, for everya,b € Arg(X), if (a,b) € R thenSupp(a) U
Supp(b) - L.

Example 3.Attack relationsR 44, Ru, Rau, Reu; Ry, Rar are conflict-dependent.

3 A New Class of Instantiations: Beyond Maximal Consistent &ts

In this section, we show that Dung’s abstract argumentdtieary can be instantiated
in a way to capture a result different from maximal consissersets of a knowledge
base by and at the same time: i) use only the information ftankhowledge base (i.e.
no external data about the preferences, values...), ifggiostulates (e.g. consistency,
closure).

In general, it is possible to go from a knowledge base to afsettensions in two
steps. First, we define a measure, attaching to each elefreekhowledge base a value;
second, we define a procedure using that measure to calentatgsions. First, one can
define different measures on the set of formulae of a prapasitknowledge base.
Second, once we have a measure, there are still many waysftorgaghe knowledge
base and the measure to the sets of extensions. We can fopkextayrio define an attack
relation such that an extension contains the elements gpavininimal sum of values.
In this paper, we use the approach inspired by the work of Ardgmnd Vesic [2]. The
idea is to construct an attack relation which makes extessiontain as much elements
having low values as possible, until a maximal consistebsstiof a knowledge base is
reached.



3.1 Shapley Inconsistency Value of a Formula

The main idea behind the class of instantiations we propoet the arguments made
from “less inconsistent” formulae have “more chance” toextensions. This means
that we need a tool for indicating how inconsistent a set @rmfilae is. In this paper,
we use Shapley Inconsistency Values, introduced by Humérkonieczny [12], to
obtain that measure. This concept for measuring incomsigtis inspired by a Shapley
Value, which was originally developed by Shapley in 1953 fp4 defining merits of
each individual of a coalition in a cooperative game theory.

The idea behind the class of instantiations we proposeisthser is free to choose
a basic inconsistency measure, under the condition thatigfies the four properties
we state in the following definition. The corresponding Sbgapnconsistency Value
can then be calculated automatically. Thus, differentdiasionsistency measures give
different Shapley Inconsistency Values.

Note that we present only the most important concepts linkdtie definition of
a Shapley Inconsistency Value, for more details the readezferred to the paper in
which they were introduced [12].

Definition 8 (Basic inconsistency measure [12]A basic inconsistency measurés
a function that for every finite set of formulae returns a reamber and satisfies the
following properties for all finite set&, X’ C £ and all formulaep, ¢ € L:

— I(¥) =0ifand only if Y is a consistent set (Consistency)
- I(XuX)>1(%) (Monotony)

— If pis afree formula o U ¢, thenI (X' U ¢) = I(X) (Free Formula Independ.)
—Ifpkyandpt/ L, thenI(X U {p}) > I(X U{¢}) (Dominance)

A basic inconsistency measure gives a number indicatingdumlicting a knowl-
edge base is. Let us give an example of a basic inconsisteeagure.

Definition 9 (Ml inconsistency measure [12]).TheMI inconsistency measure is de-
fined as the number of minimal inconsistent subsefs, afe.

Iy;(X) = | MinConf (X)) |

Example 4.Let X = {¢, ¢, ¢ — 1, ),w}. ThenMinConf(X) = {Cy,Cs}, with
C1 = {p,~p} andCy = {p, ¢ — ¥, p}. ThusMI(Y) = 2.

TheMI inconsistency measure is a basic inconsistency measure.

Originally, Shapley’s idea was to measure the merit of afividdal in a coalition.
Here, the idea is to use it to measure the “blame” of a formuddtfe inconsistency of
a knowledge base. To do that, the identical mathematicakssn from Shapley [14]
is used, but with different interpretation.

Definition 10 (Shapley Inconsistency Value [12])Let I be a basic inconsistency
measure. We define the corresponding Shapley Inconsist@teg (SIV), notedsy,



as the Shapley value of the coalitional game defined by thetium/, i.e. forp € X,
we define:

stz = 30 BRI 6 - s o)

pAL
SCx
wheren is the cardinality of2 andc is the cardinality ofS.

Beside the fact that this measure gives very sensible sgdiiias also been shown
that the previous formula is the only one which satisfies afattuitive axioms for
measuring inconsistency [12]. This SIV gives a value foihefacmula of the baser.
Thus, the previous definition allows us to define to what eddgiormula is concerned
with the inconsistencies. Note that for a formuyla SIV depends essentially on the
sum of differences of inconsistencies of all subset§'abgether and withoup. Those
values are then just multiplied with coefficients which deghenly on the cardinalities
of the corresponding sets. So, the main intuition can bemeslin: “How much does
inconsistency decrease wheris removed?”

It has been shown [12] that the SIV corresponding to basigrisistency measure
MI is:

Sh(x) = > ﬁ

Cemincont () Such thatrec

In other words, the inconsistency blame of a formglis obtained by summing up
the vaIuesl%| for all minimal conflictsC' such thatp € C.

Example 5 (Example 4 Cont.$IV values of the formulae front’ are as follows:

Shar(X) = 3, 8hur(X) = 3, S)M1,(X) = £, S11(X) = 4, andS[vr () = 0.

On the one hand, this measure takes into account the faca tleainula being in
more minimal inconsistent sets is more inconsistent (whah be justified by saying
that to obtain consistency, one has to remove at least onaufarfrom every minimal
conflict, thus by removing a formula which is in more minimahdlicts, one obtains
consistency “faster”). On the other hand, this measurestake account the intuition
that, for example, a formula is in a minimal inconsistent Is&ting 1000 formulae
makes it “less inconsistent” than if it were in a minimal imsistent sets having 2
formulae.

HoweverMI is just one possible basic inconsistency value, which wegired in
order to illustrate the idea. In the rest of the paper, we esgihat an arbitrary basic
inconsistency measure and the corresponding SIV are used.

3.2 Defining Instantiations

In this section, we use the method for measuring inconsigtefia formula to define an
instantiation of Dung’s abstract argumentation theorpise that we are given a basic
inconsistency measure. We can obtain the correspondin@8tMuse it to compare the
formulae of the knowledge base. We first define how to constrstratified version of
a knowledge base, where the least inconsistent formulaer@ag to a given measure)
are putinXy and the most inconsistent onesiihy.



Definition 11 (Inconsistency ordered version of a knowledgbase).Let I be a basic
inconsistency measure, asd the corresponding SIV. Leéf C £ be a knowledge base.
The inconsistency ordered version Bf(with respect tal) is a n-tuple(Xo, ..., X,)
such that

- JyUu...uXx, =%,
— foreveryi,j € {0,...,n},ifi # jthenX; N X; =0,
— for any two formulaep, ¢» € X' such thatp € X; andy € X;, we have

SL(E) > 8j (%) ifandonlyif i > j.

Example 6 (Example 5 ContJhe inconsistency ordered versionXdfwith respect to
MLis: Yo = {w}, 21 = {p — ¥, "}, To = {—p}, T3 = {4}

This order induces a preference éh which can be used to define a preference
relation onArg(XY). Let us first define a level of a formula and of an argument.

Definition 12 (Level of formulae and arguments).Let I be a basic inconsistency
measureS’ the corresponding SIV, Ief C £ be a knowledge base atidy, . .., X))
its inconsistency ordered version with respect téor a formulay € X,

level(p) =iifand onlyifp € X;.
For an argument: € Arg(X),
level(a) = Maz,csupp(a)level(y).
We can now define an attack relation taking into account thed l&f formulae.

Definition 13 (Direct undercut on the ordered knowledge bask Direct undercut on
the ordered knowledge baggy, ..., X, ) is arelationR 4, defined asaR 4,0 if and
only if (aR4,b andlevel(a) < level(d)) or (bR4ua andlevel(a) < level(h)).

As an illustration we consider again our running example.

Example 7 (Example 6 Contleta = ({—v, ¢ — ¥}, —¢), b = ({¢},¢), andc =
({—¢}, ). ThenaR4,b, Llevel(a) = 1 andlevel(b) = 3. Thus,aR 4.,b. However,
even ifbR 4,,¢c, we do not have thdtR 4,,c¢, sincelevel(b) = 3 andlevel(c) = 2.

Attack relationR 4,,, satisfieCD.

Proposition 1. For any basic inconsistency measurand the corresponding SI¥”,
Rduo IS CD.

We can also show that it returns consistent extensions wdrneltlosed fot- and
for sub-arguments

Proposition 2. LetI be a basic inconsistency measure @fdhe corresponding Shap-
ley inconsistency measure. LBtC £ be a knowledge base aridy, ..., Y),) its in-
consistency ordered version. L&be a stable extension ¢frg(X), Rguo). Then:

1 We suppose the definition of sub-argument by Gorogiannid-amder [11].



— Base(€) andConcs(€) are consistent sets

— Concs(€) is closed fort-, i.e. for everyp € L, if Concs(€) F ¢ thenyp €
Concs(&),

— Eisclosed for sub-arguments, i.eqite £ andb is an argument such th&upp(b) C
Supp(a), thenb € £.

Proof. It has been proved [2, Corollary 1] that the functiéng is a bijection be-
tween the set of preferred sub-theories [6] of a knowledgeeba = Xy U ... U
X, and the set of stable extensions of a preference-based engation framework
(Arg(X), Rau, >wip), Where>,,;, is the preference relation on the set of arguments
based on the weakest link principle [5]. Furthermore, themrsions of the preference-
based argumentation framewoikrg(X'), R4, >wip) are the same as the extensions
of (Arg(X), Rauo) [2, Theorem 11]. Moreover, any preferred sub-theory is aimak
consistent subset of. Thus, if £ is an extension ofArg(X), Rauo), then there ex-
ists a preferred sub-theoty of (X, ..., %) such thatf = Arg(S). Consequently,
Base(&) = S.

From the above consideratiddgse (&) is consistent. Sinc# is consistent, and for
anya € £ it holds thatS - Conc(a), then the set of conclusions 8fis also consistent.

FurthermoreConcs(Arg(S)) is exactly the set of all formulae which are logical
consequences (with respecttpof S. Thus,Concs(€) is closed fot-.

Leta € £ and letb € Arg(X) with Supp(b) C Supp(a). Then,Supp(b) € S. So,
b € Arg(.S). In other wordsp € £.

Note that by following the approach we describe in this sectone obtains a re-
finement of the approach returning extensions correspgrdithe maximal consistent
subsets of the knowledge base. Namely, if a basic inconsigtmeasure is used to
order the knowledge base, ai®j;,,, is then applied to calculate the extensions under
stable semantics, every extension corresponds to exastlynaximal consistent subset
of X, but there are some maximal consistent subsefs which do not correspond to
any extensions. Proposition 3 shows that for every extensigere exists a maximal
consistent subset of' corresponding to that extension. Example 8 illustratesdbe
that there can exist maximal consistent sets which do notegond to any extensions.

Proposition 3. Let I be a basic inconsistency measure &fdthe corresponding SIV.
Let X C £ be a knowledge base aridy, ..., Y),) its inconsistency ordered version.
Then:

Ext,((Arg(%), Ruuo)) C {Arg(S) | S € MC(X)}

Proof. By following the same reasoning as in the proof of Proposifpwe conclude
that for every stable extensighof (Arg(Y'), Rau.), there exists a preferred sub-theory
S of (Xo,...,2,), such thatf = Arg(S). Moreover, any preferred sub-theory is a
maximal consistent subset &f. Hence, for any stable extensiérof (Arg(X), Rauo),

we have that there exists a maximal consistent subset”’ such that = Arg(.S).

We have seen in the previous section that capturing othéonmthan maximal
consistent subsets of the knowledge base is impossibl@uwtitriolating at least one
condition from Proposition 6. From Propositions 1 and 2, eeatude thatR 4, falsi-
fiesMS. The following example illustrate that fact.



Example 8 (Example 7 ContJhe setS = {p,p — ,w} is a maximal consistent
subset ofX. Letd = ({—¢}, ). Itis clear thatd ¢ Arg(S). However, no argu-
ment fromArg(S) attacksd with respect toR4,,. There exists only one argument
e = ({e, ¢ — ¥}, ¢), such thak € Arg(S) andeR g, d, butlevel(e) > level(d),
thuse is more inconsistent thas and, according to the definition ®&,,,, does not
attackd.

4 Some Hypotheses Leading to Maximal Consistent Subsets biet
Knowledge Base

By carefully examining the attack relatid,,,,, one can note that it has two original
features. First, there exists a knowledge basand two arguments constructed from
it having the same support, but not being attacked by the smtseof arguments, as
illustrated by the following example.

Example 9.Let X = {—p, =(¢ A ), ¢ A1}, and let us use thel inconsistency mea-
sure and the corresponding Shapley Inconsistency \&le. Then, Xy = {—p, (A

¥)}andXy = {pA¢}. Leta = ({~p}, —¢), b = ({¢ v}, @), ande = ({ AY}, ).
Then,Supp(b) = Supp(c), but at the same tim&R 4..,b and—(aR guoC)-

More formally, R4,,, does not satisfy the following condition (we use abbreuiati
AS for “assumption attack”).

Definition 14 (AS).LetR be an attack relation. We say th&t satisfiesAs if and only
if for every X’ C L, for everya, b, c € Arg(XY), if Supp(b) = Supp(c) thenaRb if and
only if aRe.

Note thatAs is already present in argumentation literature [3, 11].

Example 10.Attack relationsR 44, R, R4n andR ., satisfyAs, whereask,., R4,- and
R duo do Not.

Second, by examining Example 7 one can observe that no arguatiacks argu-
mente = ({—¢}, ~p) in this example. However, one could argue that at least one
argument from the maximal consistent Set {y, ¢ — v, w} should be able to attack
C.

We formalise the consideration above in the next definiti¢a.call the resulting
conditionMs, which is an abbreviation telling that the intuition behiihds that any
maximal consistent set should be stable.

Definition 15 (MS).LetR be an attack relation. We say thRt satisfie21s if and only
if for everyX C L, for everyS € MC(Y), for everya’ € Arg(X) \ Arg(S), there exists
a € Arg(S) such that(a,a’) € R.

To the best of our knowledge, this property was not forma#yesd in this form until
now.

Example 11.Attack relationsR 44, R, Rau, Reu SatisfyMs.



ConditionsAS andMS seem as properties one would like an attack relation tofgatis
(at least in some contexts). Can we define a class of instimmisathat captures reason-
ing substantially different from the approach which retummaximal consistent subsets
and at the same satisfyg andVs. In this section, we show that this is not possible if
we want to use conflict-dependent attack relations and te hawonsistent result.

We first define a notion of non-redundancy of a set of formubddch is used to de-
scribe the extensions of attack relations satisfyisgThe idea is that no formula in a
set can be derived from other formulae of that set.

Definition 16 (Non-redundant set of formulae) A setS C £ is non-redundant if and
only if there exists no formula € S s.t.5\ {¢} F ¢.

Our first goal is to show that for the class of attack relatisatésfyingAs, conclu-
sion of an argument has no impact on its acceptability. leothords, the membership
to an extension is uniquely determined by argument’s supporprove this result, we
need the following lemma.

Lemma 1. Let R be an attack relation satisfyings, let X C £ be a knowledge base,
F = (Arg(X),R) and let€ C Arg(A) an admissible set. Let, b € Arg(X') be two
arguments such th&upp(a) = Supp(b), a € £ andb ¢ £. Then,& U {b} is also an
admissible set.

Proof. Let us first prove thatb, b) ¢ R. We prove this by reductio ad absurdum. Sup-
pose(b,b) € R. FromaAs, (b,a) € R. Sincef is admissible, there existse £ such
thatcRb. Then, fromAs, ¢Ra, which means thaf is not conflict-free. Contradiction
with the fact that is admissible. Thus, we proved thatb) ¢ R.

Let us now prove thaf U {b} is conflict-free. By again following the pattern of
reductio ad absurdum, suppose that {b} is not conflict-free. Sinc€ is conflict-free,
and{b} is conflict-free, it must be that there exists £ such thatRb or bRc.

— SupposeRb. FromASs, ¢Ra, contradiction.
— SupposéRec. Sincef is admissible, then there exists £ s.t.dRb. FromAS, we
obtain thatiRa, contradiction.

The hypothesis thaf U {b} is not conflict-free leads to a contradiction, thés, {b}
must be conflict-free.

Let us now prove thaf U {b} is admissible. Let € Arg(Y), d € £ U {b} and
cRd. If d € £ then there exists € £ such thakRc (sincef is admissible). Ifid = b,
thencRa (from AS). But sincef is admissible, then there existse £ s.t. fRec. Thus,
E U {b} is admissible.

We can now show that if two arguments have the same suppdrgraattack rela-
tion satisfyingAs is used, those two arguments are exactly in the same extensio

Proposition 4. Let R be an attack relation satisfyings, let X C £ be a knowledge
base,F = (Arg(X),R) and€ € Ext,(F) withx € {s,ss,p, g,i}. Leta,b € Arg(X)
andSupp(a) = Supp(b). Thena € £ ifand only ifb € £.



Proof. We prove this property by reductio ad absurdum. Without lafsgenerality,
suppose that € £ andb ¢ &£. We first show the result for stable, semi-stable and
preferred semantics, then for grounded semantics, ane atith for ideal semantics.

— Suppose stable, semi-stable or preferred semantics. Feonmia 1£ U {b} is an
admissible set. Contradiction, since no strict supersétazin be an admissible set.

— Suppose grounded semantics. Since the grounded exteagradtly the intersec-
tion of all complete extensions [9] then there exists a catepéxtensiof,. such
thata € &. andb ¢ &.. From Lemma 1£, U {b} is an admissible set. Sinck
is a complete extension, théh does not defendl. Thus, there exists an argument
¢ € Arg(X) such thatvRb and there is no argumedte &, such thadRe. From
AS, ¢Ra, and no argument froréi. attacksc. Thus,€ is not a complete extension.
Contradiction.

— Suppose ideal semantics. Since the ideal semantics is aissiblie set, then, by
Lemma 1, we conclude th&u {b} is also admissible. Sinc& is a maximal ad-
missible set contained in all preferred extensions, tfignis not contained in all
admissible extensions. L&}, be a preferred extension such that £,. Note that
a € &,. Butin the first part of the proof, we showed that this is ingbke, contra-
diction.

We can now show that for attack relations satisfyitj every extension can be
characterised by a collection of sets of formulae.

Proposition 5. Let R be an attack relation satisfyings, let ' C £ be a knowledge
base, F = (Arg(X),R) and€ € Ext,(F) withx € {s, ss,p, g,i}. Then: there exists
a unique collection of sets,, ..., S, C X' such that:

1. everysS; is consistent
2. everysS; is non-redundant
3. & ={a € Arg(L) | there existsS; such thatSupp(a) = S;}.

Proof. Let us prove that there exists a collection of s&ts.. ., S,, satisfying the four
above conditions. L&8(X) = {S; C X' | S, is consistent and non-redundarinceX
is finite, therS(X) is finite. It is also easy to see that for everg Arg(XY), Supp(a) €
S(X). From Proposition 4, we conclude that there efist. .., S,, € S(X) such that
€ = {a € Arg(L) | there existsS; such thatSupp(a) = S;}. It is easy to see that
S1, ..., Sy is the unique collection of sets satisfying those condgtion

The significance of the previous result lays in the fact tha & step forward to-
wards understanding the expressivity of attack relatiatisfgingAS. Namely, is shows
that every extension can be fully characterised by a uniglieation of consistent and
non-redundant sets. Roughly speaking, every attack oelattisfyingAs provides us
with no more or less information than a function which setega’ in a finite number
of collections of consistent and non-redundant sets.

We can now prove that if an attack relation is conflict-deargsatisfieasS andms,
and returns consistent extensions then its extensionsxaot\ethe sets of arguments
constructed from maximal consistent subsets of the knayeédse. In other words, for



any maximal consistent subsgtof X, the set of all arguments constructed fréhis
an extension, and for any extension, there exists a maxiomaistent sef C X' such
that& = Arg(S).

Proposition 6. Let R be an attack relation satisfyings, MS, CD and CE;. Then, for
everyX C L, extensions ofArg(X), R) under stable semantics are exacflyrg(S)
| SeMc(X)}.

Proof. The proof consists of two parts. We first prove that for &hg MC(X), Arg(S)
is an extension. In the second part, we prove th&t@ Arg(Y') is an extension, then
there exists5 € MC(X') such that = Arg(S).

1. LetS € MC(X) and€ = Arg(S). SinceR is conflict-dependent, thehis conflict-
free. Leta’ € Arg(X) \ €. FromMs, there exists an argumeate £ such that
(a,d') € R.

2. Let€ C Arg(X) be an extension. SincR satisfiesAs, from Proposition 5, we
conclude that there exists a unique collection of consisted non-redundant sets
Si,...,S, suchthat = {a € Arg(L) | there existsS; such thaSupp(a) = S;}.
LetS = S; U...US,. We have thatS = Base(£). SinceR returns consistent
extensions under stable semantics, tSés a consistent set.

We first prove by reductio ad absurdum tisat MC(X'). Suppose thaf ¢ MC(X).
Then, there exists a s&t € MC(X) such thatS C &'. Let&’ = Arg(S’). Since
R is conflict-dependent, theff must be conflict-free. Contradiction, sinfes a
stable extension, and there exists a strict supersgtdfich is conflict-free. Thus,
S e Mc(X).

Let us now prove thaf = Arg(S). Denotef’ = Arg(S). SinceS = Base(E),
then& C £’. Suppose, aiming to a contradiction, that it is not the chagt = £.
Then,& C &’. SinceS is a consistent set ari@ is CD, then&’ is conflict-free.
Contradiction with the fact that is a stable extension. Thus, it must be at £’.
In other words€ = Arg(S).

The previous result shows that the attack relations satigfys, MS, CD and CE;
simply mimic the result obtained by selecting the maximaisistent subsets of the
knowledge base. We proved this proposition under stablastes, but we believe that
similar results can be obtained for other acceptabilityasins, which will be a part of
our future work.

5 Summary

This paper advances the state of the art in instantiatinggBuabstract argumentation
theory in several ways. First, we show that it is possiblengtantiate Dung’s abstract
argumentation theory with classical propositional logid &0 obtain a result substan-
tially different from the extensions which correspond toxinzal consistent subsets of
the knowledge base, without having external informatiarhsas preferences or values.
We use Shapley Inconsistency Values [12] to measure instemsiy of a particular for-

mula in the knowledge base and use that value to define attdations which select



extensions made déss inconsisterfbrmulae. Second, we show that this whole class
of instantiations satisfies the usual rationality posadaits extensions have consistent
bases, they are closed for sub-arguments, etc. Third, wiy ¢he difference between
the attack relations we use and the attack relations ususdigt in logic-based argumen-
tation. We identify four simple conditions describing a widlass of attack relations
based on attacking premises of an argument which returmsigtes corresponding to
exactly maximal consistent subsets of the propositionahkadge base.

We identified a new class of inference relations that can ptucad in Dung’s the-
ory, which is a first step towards a better understanding s$ipdities and constraints
imposed by this abstract theory. Our next goal is to charigetthe class of all inference
relations that can be represented in such a way.

To capture different results from simply returning the esiens corresponding to
maximal consistent sets, we use an original attack relatitich has several features
deserving some comments. First, this attack relation isdéent on the knowledge
baseX. In other words, whether an argument attacks another onmmthe determined
without knowing what knowledge base they come from. Thisegisome conceptually
and technically interesting questions which will be pariof future work. Second,
the procedure we use rank-orders arguments on the basisnef lsiod of preference
on the formulae in their supports. Our attack relation in samy “simulates” what is
done in preference-based argumentation [2], and protesssihconsistent arguments
from more inconsistent ones. An important difference ig thahe present paper, we
do not suppose any preferences at the input of our systerhe Iptoposed class of
instantiations selects some maximal consistent sets arallraf them, it comes from
the fact that they have different degrees of inconsistency.

Obviously, the result of our work depends on the acceptatsémantics used for
evaluating arguments. Our main results were shown undelessgmantics. We plan
to examine whether similar results can be obtained under attmantics, and more
generally, to determine the role played by a semantics whptudng different results
as instantiations of Dung’s abstract theory. Our goal isitdysa large class of semantics
satisfying some minimal requirements [4] (e.g. confli@einess, syntax independence).

This paper shows that the class of attack relations saig#$, MS, CD andCE is
rather narrow, in the sense that they always return a refaiitical to that obtained from
maximal consistent sets of the knowledge base. Thus, if amgsato subsume richer
approaches, at least one of those four conditions has todpped. The current paper
uses attack relations satisfyieg andCE and violatingAS andMsS. First, note that we
present the first attack relation which violatesand returns sound results. Considering
violating Ms, it does not seem surprising, since this condition basicalys that every
maximal consistent set should yield a stable extensiorlatfwy conflict-dependency
and keeping some good properties of the system looks lik&ieudlti task, although we
do not claim that is impossible. However, it would be hardustify attack relations
returning extensions with inconsistent bases. The onlgiptes explanation for that
could be that argumentation is seen just as the first steproé donger process, and
it resolvessome(but not necessarily all) conflicts. Then, another mechmargsused to
reason with the set of obtained extensions.
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