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Abstract. The question whether Dung’s abstract argumentation theorycan be
instantiated with classical propositional logic has drawna considerable amount
of attention among scientists in recent years. It was shown by Cayrol in 1995
that if direct undercutis used, then stable extensions of an argumentation system
correspond exactly to maximal (for set inclusion) consistent subsets of the knowl-
edge base from which the argumentation system was constructed. Until now, no
other correspondences were found between the extensions ofan argumentation
framework and its knowledge base (except if preferences arealso given at the
input of the system). This paper’s contribution is twofold.First, we show that
it is possible to instantiate Dung’s abstract argumentation theory with classical
propositional logic and obtain a meaningful result which does not correspond to
the maximal consistent subsets of the knowledge base used for constructing ar-
guments. Indeed, we define a whole class of instantiations that return different
results. Furthermore, we show that these instantiations are sound in the sense
that they satisfy the postulates from argumentation literature (e.g. consistency,
closure). In order to illustrate our results, we present oneparticular instantiation
from this class, which is based on cardinalities of minimal inconsistent sets a for-
mula belongs to. Second, we identify a set of intuitive conditions describing a
class of attack relations returning extensions corresponding exactly to the maxi-
mal (for set inclusion) consistent subsets of the knowledgebase.

1 Introduction

The question how to reason in presence of inconsistency is onof the keywords of logic
and artificial intelligence. A notable example are paraconsistent logics [13] where one
is able to draw some (but not all) conclusions from an inconsistent set of formulae. As
another example take belief revision, belief merging or voting [10]. Generally speaking,
an inference relation is a way to go from a (possibly inconsistent) knowledge base to a
set of subsets of that knowledge base. For example, given a knowledge base{ϕ,¬ϕ ∧
ψ}, an inference relation could return two sets:{ϕ} and{¬ϕ∧ψ}. One of the simplest
inference relations is a function returning the set of all maximal (for set inclusion)
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consistent subsets of a knowledge base. It has been shown [8]that the result obtained
by this inference relation can be also obtained by an instantiation of Dung’s abstract
argumentation theory [9]. Namely, whendirect undercutis used as attack relation on
the set of all the arguments built from a knowledge base, thenstable extensions of the
resulting argumentation framework correspond exactly to the set of maximal consistent
subsets of the knowledge base. This is the first result which shows that Dung’s abstract
argumentation theory can be instantiated in a way to capturean inference relation.

An important question is whether Dung’s theory can be used asa general framework
for nonmonotonic logic, and if so, which class of inference relations can be studied
as instances of Dung’s theory. Indeed, only a very small fragment of logics has been
represented in such a way. This may also not be very surprising, given the richness of
the logic literature and the strong constraints imposed by Dung’s theory. This raises two
important questions for the community. First, which class of logics can be captured by
Dung’s theory? Second, how to generalize Dung’s theory? In this paper we address the
first question, whereas the second question is a part of our long term research agenda.

The starting point of our work is to note that since the first result [8] showing how
to capture an inference relation in Dung’s theory, not much work has been done in
this direction. Indeed, no “reasonable” logic-based instantiations of Dung’s abstract
theory were found that capture another inference relation.By “reasonable”, we mean
that they satisfy at least some basic postulates proposed for instantiated argumentation
frameworks [7] like consistency, closure, and so on.

The challenges of this paper are: First, how to define a class of attack relations in
terms of the knowledge base such that the stable extensions of the obtained argumen-
tation framework do not correspond to exactly to the maximalfor set inclusion con-
sistent subsets of the knowledge base? Second, how to ensurethat those instantiations
of Dung’s theory still return a reasonable result? Third, isit possible to define condi-
tions that precisely characterize the circumstances when the semantics return maximal
consistent subsets under subset relation.

The layout of this paper is as follows: After introducing thenotions of argumen-
tation framework and formally defining its logic-based instantiations (Section 2), we
present new ways to instantiate Dung’s abstract argumentation theory in Section 3 and
a class of attack relations returning extensions corresponding to maximal consistent
subsets of a knowledge base in Section 4. The last section concludes and reviews ques-
tions left for future work.

2 Dung’s Abstract Argumentation Theory and its Instantiation
with Classical Propositional Logic

In this section, we present the most common way of instantiating Dung’s abstract ar-
gumentation theory [9] with classical propositional logic. L denotes the set of well-
formed formulae,⊢ stands for classical entailment, and≡ for logical equivalence. We
denote byΣ a finite set of classical propositional formulae from which arguments are
constructed. We use the notationMC(Σ) for the set of all maximal (for set inclusion)
consistent subsets ofΣ, andMinConf(Σ) for the set of minimal (for set inclusion) in-
consistent subsets ofΣ. A formulaϕ is called a free formula of a knowledge baseΣ if



and only ifϕ does not belong to any minimal (for set inclusion) inconsistent subset of
Σ. A logical argument is defined as a pair(support, conclusion).

Definition 1 (Argument). LetL be a classical propositional language with⊢ its asso-
ciated logical consequence, letΣ ⊆ L andα ∈ L. An argument is a pair(Φ, α) such
thatΦ ⊆ Σ is a minimal (for set inclusion) consistent set of formulae such thatΦ ⊢ α.

Example 1.Let Σ = {ϕ,ϕ → ψ, ω}. ({ϕ,ϕ → ψ}, ψ), ({ϕ → ψ},¬ϕ ∨ ψ) and
({ϕ, ψ}, ϕ↔ ψ) are some of the arguments that can be constructed fromΣ.

For an argumenta = (Φ, α), we write Supp(a) = Φ to denote its support and
Conc(a) = α to denote its conclusion. For a set of argumentsE , we denote byConcs(E)
the set of conclusions of all the arguments fromE . In other words,Concs(E) = {Conc(a)
| a ∈ E}. For a given set of formulaeS ⊆ L, we denote byArg(S) the set of arguments
constructed fromS. Formally,Arg(S) = {a | a is an argument andSupp(a) ⊆ S}.
Let Arg(L) denote the set of all arguments that could be made from propositional logic
formulae. For a given set of argumentsE , we denoteBase(E) =

⋃
a∈E Supp(a). Now

we provide a definition of argumentation framework.

Definition 2 (Argumentation framework). An argumentation framework is a pair
(A,R) whereA ⊆ Arg(L) is a set of arguments andR ⊆ A × A a binary rela-
tion. For each pair(a, b) ∈ R, we say thata attacksb. We also sometimes use notation
aRb instead of(a, b) ∈ R.

In the rest of the paper, we suppose that all the arguments fromΣ are constructed,
i.e. thatA = Arg(Σ). We now introduce the notions of conflict-freeness and defence
used to define different semantics.

Definition 3 (Conflict-free, defence).Let F = (A,R) be an argumentation frame-
work,E ⊆ A anda ∈ A.

– E is conflict-freeif and only if there exists no two argumentsa, b ∈ E s.t.(a, b) ∈ R
– E defendsa if and only if for everyb ∈ A we have that ifb R a then there exists
c ∈ E such thatcR b.

Let us now define the most commonly used acceptability semantics.

Definition 4 (Acceptability semantics).LetF = (A,R) be an argumentation frame-
work andB ⊆ A. We say that a setB is admissibleif and only if it is conflict-free and
defends all its elements.

– B is a completeextension if and only ifB defends all its arguments and contains
all the arguments it defends.

– B is apreferredextension if and only if it is a maximal (with respect to set inclusion)
admissible set.

– B is a stableextension if and only ifB is conflict-free and for alla ∈ A \ B, there
existsb ∈ B such thatb R a.

– B is asemi-stableextension if and only ifB is a complete extension and the union of
the setB and the set of all arguments attacked byB is maximal (for set inclusion).



– B is agrounded extensionif and only ifB is a minimal (for set inclusion) complete
extension.

– B is an idealextension if and only ifB is a maximal (for set inclusion) admissible
set contained in every preferred extension.

For an argumentation frameworkF = (A,R) we denote byExtx(F); or, by a
slight abuse of notation, byExtx(A,R) the set of its extensions with respect to seman-
tics x. We use abbreviationsc, p, s, ss, g andi for respectively complete, preferred,
stable, semi-stable, grounded and ideal semantics. For example,Extp(F) denotes the
set of preferred extensions argumentation frameworkF .

Example 2.LetF = (A,R) be an argumentation framework withA = {a, b, c, d} and
R = {(b, c), (c, b), (b, d), (c, d)}. The graph is visualised below.

c d

a b

There are three complete extensions:{a, b}, {a, c} and{a}, and two preferred / sta-
ble / semi-stable extensions:{a, b} and{a, c}. The grounded extension of this frame-
work coincides with its ideal extension, which is the set{a}.

We now introduce the most common ways in which attack relations are defined in
terms of (i.e. as a function of) the knowledge base in argumentation literature [11].

Definition 5. For a set of formulaeΦ = {ϕ1, . . . , ϕk}, let
∧
Φ denoteϕ1 ∧ . . . ∧ ϕk.

Leta, b ∈ Arg(L). We define the following attack relations:

– defeat: aRdb if and only ifConc(a) ⊢ ¬
∧
Supp(b)

– direct defeat: aRddb if and only if there existsϕ ∈ Supp(b) s.t.Conc(a) ⊢ ¬ϕ
– undercut: aRub if and only if there existsΦ ⊆ Supp(b) such thatConc(a) ≡ ¬

∧
Φ

– direct undercut: aRdub if and only if there existsϕ ∈ Supp(b) s.t.Conc(a) ≡ ¬ϕ
– canonical undercut: aRcub if and only ifConc(a) ≡ ¬

∧
Supp(b)

– rebut: aRrb if and only ifConc(a) ≡ ¬Conc(b)
– defeating rebut: aRdrb if and only ifConc(a) ⊢ ¬Conc(b)

Note that all the attack relations from the previous definition are defined onArg(L)×
Arg(L). For a givenΣ, one can just use the restriction of the relation fromArg(L) ×
Arg(L) to Arg(Σ) × Arg(Σ). This is not the case with the class of attack relations we
introduce in the next section. Namely, for those attack relations, there exist arguments
a, b ∈ Arg(L), such that whethera attacksb or not depends also on the knowledge base
Σ. Formally, the more general case is when an attack relation is defined by specifying
its behaviour on anyArg(Σ) for any finiteΣ ⊆ L. In the rest of the paper, when we



use the term “attack relation”, we refer to the more general case. Formally, one should
write (a, b,Σ) ∈ R. However, since it is always clear to whichΣ we refer to, there
is no danger of confusion and in order to simplify the notation we write(a, b) ∈ R or
aRb throughout the paper.

Similar to the principles that can be satisfied by an acceptability semantics [4], there
exist principles that an attack relation should satisfy [1,7]. An important requirement is
that an attack relation should return consistent extensions (abbreviatedCE).

Definition 6 (CE). LetR be an attack relation. We say thatR returns consistent exten-
sions under semanticsx if and only if for everyΣ ⊆ L, for everyF = (Arg(Σ),R),
for every extensionE ofF under semanticsx, it holds thatBase(E) is a consistent set.

It has been shown [11] thatRdu andRdd satisfyCE under stable, semi-stable, pre-
ferred, and complete semantics. It has also been shown thatRu,Rcu,Rr,Rdr do not
satisfyCE under neither of those semantics.

Another requirement in logic-based argumentation is that an argument should not
attack another one if the union of their supports is consistent. This property of an attack
relation is called conflict-dependence [1] for what we use the abbreviationCD.

Definition 7 (CD). LetR be an attack relation. We say thatR is conflict-dependent if
and only if for everyΣ ⊆ L, for everya, b ∈ Arg(Σ), if (a, b) ∈ R thenSupp(a) ∪
Supp(b) ⊢ ⊥.

Example 3.Attack relationsRdd,Ru,Rdu,Rcu,Rr,Rdr are conflict-dependent.

3 A New Class of Instantiations: Beyond Maximal Consistent Sets

In this section, we show that Dung’s abstract argumentationtheory can be instantiated
in a way to capture a result different from maximal consistent subsets of a knowledge
base by and at the same time: i) use only the information from the knowledge base (i.e.
no external data about the preferences, values...), ii) satisfy postulates (e.g. consistency,
closure).

In general, it is possible to go from a knowledge base to a set of extensions in two
steps. First, we define a measure, attaching to each element of a knowledge base a value;
second, we define a procedure using that measure to calculateextensions. First, one can
define different measures on the set of formulae of a propositional knowledge base.
Second, once we have a measure, there are still many ways to gofrom the knowledge
base and the measure to the sets of extensions. We can for example try to define an attack
relation such that an extension contains the elements having a minimal sum of values.
In this paper, we use the approach inspired by the work of Amgoud and Vesic [2]. The
idea is to construct an attack relation which makes extensions contain as much elements
having low values as possible, until a maximal consistent subset of a knowledge base is
reached.



3.1 Shapley Inconsistency Value of a Formula

The main idea behind the class of instantiations we propose is that the arguments made
from “less inconsistent” formulae have “more chance” to be in extensions. This means
that we need a tool for indicating how inconsistent a set or a formulae is. In this paper,
we use Shapley Inconsistency Values, introduced by Hunter and Konieczny [12], to
obtain that measure. This concept for measuring inconsistency is inspired by a Shapley
Value, which was originally developed by Shapley in 1953 [14] for defining merits of
each individual of a coalition in a cooperative game theory.

The idea behind the class of instantiations we propose is that a user is free to choose
a basic inconsistency measure, under the condition that it satisfies the four properties
we state in the following definition. The corresponding Shapley Inconsistency Value
can then be calculated automatically. Thus, different basic inconsistency measures give
different Shapley Inconsistency Values.

Note that we present only the most important concepts linkedto the definition of
a Shapley Inconsistency Value, for more details the reader is referred to the paper in
which they were introduced [12].

Definition 8 (Basic inconsistency measure [12]).A basic inconsistency measureI is
a function that for every finite set of formulae returns a realnumber and satisfies the
following properties for all finite setsΣ,Σ′ ⊆ L and all formulaeϕ, ψ ∈ L:

– I(Σ) = 0 if and only ifΣ is a consistent set (Consistency)
– I(Σ ∪Σ′) ≥ I(Σ) (Monotony)
– If ϕ is a free formula ofΣ ∪ ϕ, thenI(Σ ∪ ϕ) = I(Σ) (Free Formula Independ.)
– If ϕ ⊢ ψ andϕ 6⊢ ⊥, thenI(Σ ∪ {ϕ}) ≥ I(Σ ∪ {ψ}) (Dominance)

A basic inconsistency measure gives a number indicating howconflicting a knowl-
edge base is. Let us give an example of a basic inconsistency measure.

Definition 9 (MI inconsistency measure [12]).TheMI inconsistency measure is de-
fined as the number of minimal inconsistent subsets ofΣ, i.e.

IMI(Σ) = | MinConf(Σ) |

Example 4.LetΣ = {ϕ,¬ϕ,ϕ → ψ,¬ψ, ω}. Then,MinConf(Σ) = {C1, C2}, with
C1 = {ϕ,¬ϕ} andC2 = {ϕ,ϕ→ ψ,¬ψ}. Thus,MI(Σ) = 2.

TheMI inconsistency measure is a basic inconsistency measure.
Originally, Shapley’s idea was to measure the merit of an individual in a coalition.

Here, the idea is to use it to measure the “blame” of a formula for the inconsistency of
a knowledge base. To do that, the identical mathematical expression from Shapley [14]
is used, but with different interpretation.

Definition 10 (Shapley Inconsistency Value [12]).Let I be a basic inconsistency
measure. We define the corresponding Shapley InconsistencyValue (SIV), notedSI ,



as the Shapley value of the coalitional game defined by the function I, i.e. forϕ ∈ Σ,
we define:

SIϕ(Σ) =
∑

S⊆Σ

(|S| − 1)!(|Σ| − |S|)!

|Σ|!
(I(S) − I(S \ {ϕ}))

wheren is the cardinality ofΣ andc is the cardinality ofS.

Beside the fact that this measure gives very sensible results, it has also been shown
that the previous formula is the only one which satisfies a setof intuitive axioms for
measuring inconsistency [12]. This SIV gives a value for each formula of the baseΣ.
Thus, the previous definition allows us to define to what extent a formula is concerned
with the inconsistencies. Note that for a formulaϕ, SIV depends essentially on the
sum of differences of inconsistencies of all subsets ofΣ together and withoutϕ. Those
values are then just multiplied with coefficients which depend only on the cardinalities
of the corresponding sets. So, the main intuition can be resumed in: “How much does
inconsistency decrease whenϕ is removed?”

It has been shown [12] that the SIV corresponding to basic inconsistency measure
MI is:

SIMI

ϕ (Σ) =
∑

C∈MinConf(Σ) such thatϕ∈C

1

|C|
.

In other words, the inconsistency blame of a formulaϕ is obtained by summing up
the values 1

|C| for all minimal conflictsC such thatϕ ∈ C.

Example 5 (Example 4 Cont.).SIV values of the formulae fromΣ are as follows:
SIMI

ϕ (Σ) = 5
6 , SIMI

¬ϕ (Σ) = 1
2 , SIMI

ϕ→ψ(Σ) = 1
3 , SIMI

¬ψ (Σ) = 1
3 , andSIMI

ω (Σ) = 0.

On the one hand, this measure takes into account the fact thata formula being in
more minimal inconsistent sets is more inconsistent (whichcan be justified by saying
that to obtain consistency, one has to remove at least one formula from every minimal
conflict, thus by removing a formula which is in more minimal conflicts, one obtains
consistency “faster”). On the other hand, this measure takes into account the intuition
that, for example, a formula is in a minimal inconsistent sethaving 1000 formulae
makes it “less inconsistent” than if it were in a minimal inconsistent sets having 2
formulae.

However,MI is just one possible basic inconsistency value, which we presented in
order to illustrate the idea. In the rest of the paper, we suppose that an arbitrary basic
inconsistency measure and the corresponding SIV are used.

3.2 Defining Instantiations

In this section, we use the method for measuring inconsistency of a formula to define an
instantiation of Dung’s abstract argumentation theory. Suppose that we are given a basic
inconsistency measure. We can obtain the corresponding SIV, and use it to compare the
formulae of the knowledge base. We first define how to construct a stratified version of
a knowledge base, where the least inconsistent formulae (according to a given measure)
are put inΣ0 and the most inconsistent ones inΣn.



Definition 11 (Inconsistency ordered version of a knowledgebase).LetI be a basic
inconsistency measure, andSI the corresponding SIV. LetΣ ⊆ L be a knowledge base.
The inconsistency ordered version ofΣ (with respect toI) is a n-tuple(Σ0, . . . , Σn)
such that

– Σ0 ∪ . . . ∪Σn = Σ,
– for everyi, j ∈ {0, . . . , n}, if i 6= j thenΣi ∩Σj = ∅,
– for any two formulaeϕ, ψ ∈ Σ such thatϕ ∈ Σi andψ ∈ Σj , we have

SIϕ(Σ) ≥ SIψ(Σ) if and only if i ≥ j.

Example 6 (Example 5 Cont.).The inconsistency ordered version ofΣ with respect to
MI is:Σ0 = {ω},Σ1 = {ϕ→ ψ,¬ψ},Σ2 = {¬ϕ},Σ3 = {ϕ}.

This order induces a preference onΣ, which can be used to define a preference
relation onArg(Σ). Let us first define a level of a formula and of an argument.

Definition 12 (Level of formulae and arguments).Let I be a basic inconsistency
measure,SI the corresponding SIV, letΣ ⊆ L be a knowledge base and(Σ0, . . . , Σn)
its inconsistency ordered version with respect toI. For a formulaϕ ∈ Σ,

level(ϕ) = i if and only ifϕ ∈ Σi.

For an argumenta ∈ Arg(Σ),

level(a) = maxϕ∈Supp(a)level(ϕ).

We can now define an attack relation taking into account the level of formulae.

Definition 13 (Direct undercut on the ordered knowledge base). Direct undercut on
the ordered knowledge base(Σ0, . . . , Σn) is a relationRduo defined as:aRduob if and
only if (aRdub andlevel(a) ≤ level(b)) or (bRdua andlevel(a) < level(b)).

As an illustration we consider again our running example.

Example 7 (Example 6 Cont.).Let a = ({¬ψ, ϕ → ψ},¬ϕ), b = ({ϕ}, ϕ), andc =
({¬ϕ},¬ϕ). Then,aRdub, level(a) = 1 andlevel(b) = 3. Thus,aRduob. However,
even ifbRduc, we do not have thatbRduoc, sincelevel(b) = 3 andlevel(c) = 2.

Attack relationRduo satisfiesCD.

Proposition 1. For any basic inconsistency measureI and the corresponding SIVSI ,
Rduo is CD.

We can also show that it returns consistent extensions whichare closed for⊢ and
for sub-arguments1.

Proposition 2. LetI be a basic inconsistency measure andSI the corresponding Shap-
ley inconsistency measure. LetΣ ⊆ L be a knowledge base and(Σ0, . . . , Σn) its in-
consistency ordered version. LetE be a stable extension of(Arg(Σ),Rduo). Then:

1 We suppose the definition of sub-argument by Gorogiannis andHunter [11].



– Base(E) andConcs(E) are consistent sets
– Concs(E) is closed for⊢, i.e. for everyϕ ∈ L, if Concs(E) ⊢ ϕ then ϕ ∈
Concs(E),

– E is closed for sub-arguments, i.e. ifa ∈ E andb is an argument such thatSupp(b) ⊆
Supp(a), thenb ∈ E .

Proof. It has been proved [2, Corollary 1] that the functionArg is a bijection be-
tween the set of preferred sub-theories [6] of a knowledge baseΣ = Σ0 ∪ . . . ∪
Σn and the set of stable extensions of a preference-based argumentation framework
(Arg(Σ),Rdu,≥wlp), where≥wlp is the preference relation on the set of arguments
based on the weakest link principle [5]. Furthermore, the extensions of the preference-
based argumentation framework(Arg(Σ),Rdu,≥wlp) are the same as the extensions
of (Arg(Σ),Rduo) [2, Theorem 11]. Moreover, any preferred sub-theory is a maximal
consistent subset ofΣ. Thus, if E is an extension of(Arg(Σ),Rduo), then there ex-
ists a preferred sub-theoryS of (Σ0, . . . , Σn) such thatE = Arg(S). Consequently,
Base(E) = S.

From the above consideration,Base(E) is consistent. SinceS is consistent, and for
anya ∈ E it holds thatS ⊢ Conc(a), then the set of conclusions ofE is also consistent.

Furthermore,Concs(Arg(S)) is exactly the set of all formulae which are logical
consequences (with respect to⊢) of S. Thus,Concs(E) is closed for⊢.

Let a ∈ E and letb ∈ Arg(Σ) with Supp(b) ⊆ Supp(a). Then,Supp(b) ∈ S. So,
b ∈ Arg(S). In other words,b ∈ E .

Note that by following the approach we describe in this section, one obtains a re-
finement of the approach returning extensions corresponding to the maximal consistent
subsets of the knowledge base. Namely, if a basic inconsistency measure is used to
order the knowledge base, andRduo is then applied to calculate the extensions under
stable semantics, every extension corresponds to exactly one maximal consistent subset
of Σ, but there are some maximal consistent subsets ofΣ which do not correspond to
any extensions. Proposition 3 shows that for every extension, there exists a maximal
consistent subset ofΣ corresponding to that extension. Example 8 illustrates thefact
that there can exist maximal consistent sets which do note correspond to any extensions.

Proposition 3. Let I be a basic inconsistency measure andSI the corresponding SIV.
LetΣ ⊆ L be a knowledge base and(Σ0, . . . , Σn) its inconsistency ordered version.
Then:

Exts((Arg(Σ),Rduo)) ⊆ {Arg(S) | S ∈ MC(Σ)}

Proof. By following the same reasoning as in the proof of Proposition 2, we conclude
that for every stable extensionE of (Arg(Σ),Rduo), there exists a preferred sub-theory
S of (Σ0, . . . , Σn), such thatE = Arg(S). Moreover, any preferred sub-theory is a
maximal consistent subset ofΣ. Hence, for any stable extensionE of (Arg(Σ),Rduo),
we have that there exists a maximal consistent subsetS ⊆ Σ such thatE = Arg(S).

We have seen in the previous section that capturing other notions than maximal
consistent subsets of the knowledge base is impossible without violating at least one
condition from Proposition 6. From Propositions 1 and 2, we conclude thatRduo falsi-
fiesMS. The following example illustrate that fact.



Example 8 (Example 7 Cont.).The setS = {ϕ,ϕ → ψ, ω} is a maximal consistent
subset ofΣ. Let d = ({¬ψ},¬ψ). It is clear thatd /∈ Arg(S). However, no argu-
ment fromArg(S) attacksd with respect toRduo. There exists only one argument
e = ({ϕ,ϕ → ψ}, ψ), such thate ∈ Arg(S) andeRdud, butlevel(e) > level(d),
thuse is more inconsistent thand and, according to the definition ofRduo, does not
attackd.

4 Some Hypotheses Leading to Maximal Consistent Subsets of the
Knowledge Base

By carefully examining the attack relationRduo, one can note that it has two original
features. First, there exists a knowledge baseΣ and two arguments constructed from
it having the same support, but not being attacked by the samesets of arguments, as
illustrated by the following example.

Example 9.LetΣ = {¬ϕ,¬(ϕ ∧ψ), ϕ∧ψ}, and let us use theMI inconsistency mea-
sure and the corresponding Shapley Inconsistency ValueSIMI . Then,Σ0 = {¬ϕ,¬(ϕ∧
ψ)} andΣ1 = {ϕ∧ψ}. Leta = ({¬ϕ},¬ϕ), b = ({ϕ∧ψ}, ϕ), andc = ({ϕ∧ψ}, ψ).
Then,Supp(b) = Supp(c), but at the same timeaRduob and¬(aRduoc).

More formally,Rduo does not satisfy the following condition (we use abbreviation
AS for “assumption attack”).

Definition 14 (AS).LetR be an attack relation. We say thatR satisfiesAS if and only
if for everyΣ ⊆ L, for everya, b, c ∈ Arg(Σ), if Supp(b) = Supp(c) thenaRb if and
only if aRc.

Note thatAS is already present in argumentation literature [3, 11].

Example 10.Attack relationsRdd,Ru,Rdu andRcu satisfyAS, whereasRr,Rdr and
Rduo do not.

Second, by examining Example 7 one can observe that no argument attacks argu-
ment c = ({¬ϕ},¬ϕ) in this example. However, one could argue that at least one
argument from the maximal consistent setS = {ϕ,ϕ→ ψ, ω} should be able to attack
c.

We formalise the consideration above in the next definition.We call the resulting
conditionMS, which is an abbreviation telling that the intuition behindit is that any
maximal consistent set should be stable.

Definition 15 (MS). LetR be an attack relation. We say thatR satisfiesMS if and only
if for everyΣ ⊆ L, for everyS ∈ MC(Σ), for everya′ ∈ Arg(Σ) \ Arg(S), there exists
a ∈ Arg(S) such that(a, a′) ∈ R.

To the best of our knowledge, this property was not formally stated in this form until
now.

Example 11.Attack relationsRdd,Ru,Rdu,Rcu satisfyMS.



ConditionsAS andMS seem as properties one would like an attack relation to satisfy
(at least in some contexts). Can we define a class of instantiations that captures reason-
ing substantially different from the approach which returns maximal consistent subsets
and at the same satisfyAS andMS. In this section, we show that this is not possible if
we want to use conflict-dependent attack relations and to have a consistent result.

We first define a notion of non-redundancy of a set of formulae,which is used to de-
scribe the extensions of attack relations satisfyingAS. The idea is that no formula in a
set can be derived from other formulae of that set.

Definition 16 (Non-redundant set of formulae).A setS ⊆ L is non-redundant if and
only if there exists no formulaϕ ∈ S s.t.S \ {ϕ} ⊢ ϕ.

Our first goal is to show that for the class of attack relationssatisfyingAS, conclu-
sion of an argument has no impact on its acceptability. In other words, the membership
to an extension is uniquely determined by argument’s support. To prove this result, we
need the following lemma.

Lemma 1. LetR be an attack relation satisfyingAS, letΣ ⊆ L be a knowledge base,
F = (Arg(Σ),R) and letE ⊆ Arg(A) an admissible set. Leta, b ∈ Arg(Σ) be two
arguments such thatSupp(a) = Supp(b), a ∈ E andb /∈ E . Then,E ∪ {b} is also an
admissible set.

Proof. Let us first prove that(b, b) /∈ R. We prove this by reductio ad absurdum. Sup-
pose(b, b) ∈ R. FromAS, (b, a) ∈ R. SinceE is admissible, there existsc ∈ E such
that cRb. Then, fromAS, cRa, which means thatE is not conflict-free. Contradiction
with the fact thatE is admissible. Thus, we proved that(b, b) /∈ R.

Let us now prove thatE ∪ {b} is conflict-free. By again following the pattern of
reductio ad absurdum, suppose thatE ∪{b} is not conflict-free. SinceE is conflict-free,
and{b} is conflict-free, it must be that there existsc ∈ E such thatcRb or bRc.

– SupposecRb. FromAS, cRa, contradiction.
– SupposebRc. SinceE is admissible, then there existsd ∈ E s.t.dRb. FromAS, we

obtain thatdRa, contradiction.

The hypothesis thatE ∪ {b} is not conflict-free leads to a contradiction, thus,E ∪ {b}
must be conflict-free.

Let us now prove thatE ∪ {b} is admissible. Letc ∈ Arg(Σ), d ∈ E ∪ {b} and
cRd. If d ∈ E then there existse ∈ E such thateRc (sinceE is admissible). Ifd = b,
thencRa (from AS). But sinceE is admissible, then there existsf ∈ E s.t.fRc. Thus,
E ∪ {b} is admissible.

We can now show that if two arguments have the same support, and an attack rela-
tion satisfyingAS is used, those two arguments are exactly in the same extensions.

Proposition 4. Let R be an attack relation satisfyingAS, letΣ ⊆ L be a knowledge
base,F = (Arg(Σ),R) andE ∈ Extx(F) with x ∈ {s, ss, p, g, i}. Leta, b ∈ Arg(Σ)
andSupp(a) = Supp(b). Then,a ∈ E if and only ifb ∈ E .



Proof. We prove this property by reductio ad absurdum. Without lossof generality,
suppose thata ∈ E and b /∈ E . We first show the result for stable, semi-stable and
preferred semantics, then for grounded semantics, and at the end for ideal semantics.

– Suppose stable, semi-stable or preferred semantics. From Lemma 1,E ∪ {b} is an
admissible set. Contradiction, since no strict superset ofE can be an admissible set.

– Suppose grounded semantics. Since the grounded extension is exactly the intersec-
tion of all complete extensions [9] then there exists a complete extensionEc such
thata ∈ Ec andb /∈ Ec. From Lemma 1,Ec ∪ {b} is an admissible set. SinceEc
is a complete extension, thenEc does not defendb. Thus, there exists an argument
c ∈ Arg(Σ) such thatcRb and there is no argumentd ∈ Ec such thatdRc. From
AS, cRa, and no argument fromEc attacksc. Thus,E is not a complete extension.
Contradiction.

– Suppose ideal semantics. Since the ideal semantics is an admissible set, then, by
Lemma 1, we conclude thatE ∪ {b} is also admissible. SinceE is a maximal ad-
missible set contained in all preferred extensions, then{b} is not contained in all
admissible extensions. LetEp be a preferred extension such thatb /∈ Ep. Note that
a ∈ Ep. But in the first part of the proof, we showed that this is impossible, contra-
diction.

We can now show that for attack relations satisfyingAS, every extension can be
characterised by a collection of sets of formulae.

Proposition 5. Let R be an attack relation satisfyingAS, letΣ ⊆ L be a knowledge
base,F = (Arg(Σ),R) andE ∈ Extx(F) with x ∈ {s, ss, p, g, i}. Then: there exists
a unique collection of setsS1, . . . , Sn ⊆ Σ such that:

1. everySi is consistent
2. everySi is non-redundant
3. E = {a ∈ Arg(L) | there existsSi such thatSupp(a) = Si}.

Proof. Let us prove that there exists a collection of setsS1, . . . , Sn satisfying the four
above conditions. LetS(Σ) = {Si ⊆ Σ | Si is consistent and non-redundant}. SinceΣ
is finite, thenS(Σ) is finite. It is also easy to see that for everya ∈ Arg(Σ), Supp(a) ∈
S(Σ). From Proposition 4, we conclude that there existS1, . . . , Sn ∈ S(Σ) such that
E = {a ∈ Arg(L) | there existsSi such thatSupp(a) = Si}. It is easy to see that
S1, . . . , Sn is the unique collection of sets satisfying those conditions.

The significance of the previous result lays in the fact that it is a step forward to-
wards understanding the expressivity of attack relations satisfyingAS. Namely, is shows
that every extension can be fully characterised by a unique collection of consistent and
non-redundant sets. Roughly speaking, every attack relation satisfyingAS provides us
with no more or less information than a function which separatesΣ in a finite number
of collections of consistent and non-redundant sets.

We can now prove that if an attack relation is conflict-dependent, satisfiesAS andMS,
and returns consistent extensions then its extensions are exactly the sets of arguments
constructed from maximal consistent subsets of the knowledge base. In other words, for



any maximal consistent subsetS of Σ, the set of all arguments constructed fromS is
an extension, and for any extension, there exists a maximal consistent setS ⊆ Σ such
thatE = Arg(S).

Proposition 6. Let R be an attack relation satisfyingAS, MS, CD and CEs. Then, for
everyΣ ⊆ L, extensions of(Arg(Σ),R) under stable semantics are exactly{Arg(S)
| S ∈ MC(Σ)}.

Proof. The proof consists of two parts. We first prove that for anyS ∈ MC(Σ), Arg(S)
is an extension. In the second part, we prove that ifE ⊆ Arg(Σ) is an extension, then
there existsS ∈ MC(Σ) such thatE = Arg(S).

1. LetS ∈ MC(Σ) andE = Arg(S). SinceR is conflict-dependent, thenE is conflict-
free. Leta′ ∈ Arg(Σ) \ E . FromMS, there exists an argumenta ∈ E such that
(a, a′) ∈ R.

2. Let E ⊆ Arg(Σ) be an extension. SinceR satisfiesAS, from Proposition 5, we
conclude that there exists a unique collection of consistent and non-redundant sets
S1, . . . , Sn such thatE = {a ∈ Arg(L) | there existsSi such thatSupp(a) = Si}.
Let S = S1 ∪ . . . ∪ Sn. We have thatS = Base(E). SinceR returns consistent
extensions under stable semantics, thenS is a consistent set.
We first prove by reductio ad absurdum thatS ∈ MC(Σ). Suppose thatS /∈ MC(Σ).
Then, there exists a setS′ ∈ MC(Σ) such thatS ( S′. Let E ′ = Arg(S′). Since
R is conflict-dependent, thenE ′ must be conflict-free. Contradiction, sinceE is a
stable extension, and there exists a strict superset ofE which is conflict-free. Thus,
S ∈ MC(Σ).
Let us now prove thatE = Arg(S). DenoteE ′ = Arg(S). SinceS = Base(E),
thenE ⊆ E ′. Suppose, aiming to a contradiction, that it is not the case thatE ′ = E .
Then,E ( E ′. SinceS is a consistent set andR is CD, thenE ′ is conflict-free.
Contradiction with the fact thatE is a stable extension. Thus, it must be thatE = E ′.
In other words,E = Arg(S).

The previous result shows that the attack relations satisfying AS, MS, CD andCEs
simply mimic the result obtained by selecting the maximal consistent subsets of the
knowledge base. We proved this proposition under stable semantics, but we believe that
similar results can be obtained for other acceptability semantics, which will be a part of
our future work.

5 Summary

This paper advances the state of the art in instantiating Dung’s abstract argumentation
theory in several ways. First, we show that it is possible to instantiate Dung’s abstract
argumentation theory with classical propositional logic and to obtain a result substan-
tially different from the extensions which correspond to maximal consistent subsets of
the knowledge base, without having external information such as preferences or values.
We use Shapley Inconsistency Values [12] to measure inconsistency of a particular for-
mula in the knowledge base and use that value to define attack relations which select



extensions made ofless inconsistentformulae. Second, we show that this whole class
of instantiations satisfies the usual rationality postulates: its extensions have consistent
bases, they are closed for sub-arguments, etc. Third, we study the difference between
the attack relations we use and the attack relations usuallyused in logic-based argumen-
tation. We identify four simple conditions describing a wide class of attack relations
based on attacking premises of an argument which return extensions corresponding to
exactly maximal consistent subsets of the propositional knowledge base.

We identified a new class of inference relations that can be captured in Dung’s the-
ory, which is a first step towards a better understanding of possibilities and constraints
imposed by this abstract theory. Our next goal is to characterise the class of all inference
relations that can be represented in such a way.

To capture different results from simply returning the extensions corresponding to
maximal consistent sets, we use an original attack relation, which has several features
deserving some comments. First, this attack relation is dependent on the knowledge
baseΣ. In other words, whether an argument attacks another one cannot be determined
without knowing what knowledge base they come from. This raises some conceptually
and technically interesting questions which will be part ofour future work. Second,
the procedure we use rank-orders arguments on the basis of some kind of preference
on the formulae in their supports. Our attack relation in some way “simulates” what is
done in preference-based argumentation [2], and protects less inconsistent arguments
from more inconsistent ones. An important difference is that in the present paper, we
do not suppose any preferences at the input of our system. If the proposed class of
instantiations selects some maximal consistent sets and not all of them, it comes from
the fact that they have different degrees of inconsistency.

Obviously, the result of our work depends on the acceptability semantics used for
evaluating arguments. Our main results were shown under stable semantics. We plan
to examine whether similar results can be obtained under other semantics, and more
generally, to determine the role played by a semantics when capturing different results
as instantiations of Dung’s abstract theory. Our goal is to study a large class of semantics
satisfying some minimal requirements [4] (e.g. conflict-freeness, syntax independence).

This paper shows that the class of attack relations satisfying AS, MS, CD andCE is
rather narrow, in the sense that they always return a result identical to that obtained from
maximal consistent sets of the knowledge base. Thus, if one wants to subsume richer
approaches, at least one of those four conditions has to be dropped. The current paper
uses attack relations satisfyingCD andCE and violatingAS andMS. First, note that we
present the first attack relation which violatesAS and returns sound results. Considering
violating MS, it does not seem surprising, since this condition basically says that every
maximal consistent set should yield a stable extension. Violating conflict-dependency
and keeping some good properties of the system looks like a difficult task, although we
do not claim that is impossible. However, it would be hard to justify attack relations
returning extensions with inconsistent bases. The only possible explanation for that
could be that argumentation is seen just as the first step of some longer process, and
it resolvessome(but not necessarily all) conflicts. Then, another mechanism is used to
reason with the set of obtained extensions.
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