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Abstract

An argumentation framework is a pair made of a graph and a semantics. The nodes and the edges of the graph rep-
resent respectively arguments and relations (e.g., attacks, supports) between arguments while the semantics evaluates
the strength of each argument of the graph. This paper investigates gradual semantics dealing with weighted graphs, a
family of graphs where each argument has an initial weight and may be attacked by other arguments. It contains four
contributions. The first consists of laying the foundations of gradual semantics by proposing key principles on which
evaluation of argument strength may be based. Foundations are important not only for a better understanding of the
evaluation process in general, but also for clarifying the basic assumptions underlying semantics, for comparing different
(families of) semantics, and for identifying families of semantics that have not been explored yet. The second contri-
bution consists of providing a formal analysis and a comprehensive comparison of the semantics that have been defined
in the literature for evaluating arguments in weighted graphs. As a third contribution, the paper proposes three novel
semantics and shows which principles they satisfy. The last contribution is the implementation and empirical evaluation
of the three novel semantics. We show that the three semantics are very efficient in that they compute the strengths of
arguments in less than 20 iterations and in a very short time. This holds even for very large graphs, meaning that the
three semantics scale very well.

Keywords: Argumentation, Gradual Semantics, Axiomatic Foundations.

1. Introduction

Argumentation is a reasoning approach based on the justification of claims by arguments, which are reasons for
accepting claims. It has received great interest from the Artificial Intelligence community since late 1980s, mainly as
a unifying approach for nonmonotonic reasoning [1]. It was later used for solving other problems including reasoning
with inconsistent information [2], reasoning with defeasible information [3], decision making [4], classification [5], etc.
It was also used in various practical applications, namely in legal and medical domains [6].

Whatever the application, an argumentation-based model usually follows a four-step process: support claims by
arguments, identify relations (e.g. attack or support) between the generated arguments, evaluate the strength of each
argument, and define the output of the model (e.g. the set of formulas to be inferred from a knowledge base). Arguments
and their relations are represented by a graph called flat when arguments are not assigned initial (or basic) weights and
weighted otherwise. The initial weight of an argument may represent various issues like probability of believing the
argument [7, 8], certainty degree of the argument’s reasons [9], votes provided by users [10], importance degree of a
value promoted by the argument [11], trustworthiness of the argument’s source [12].

The last step of an argumentation process depends broadly on arguments’ strengths. For instance, a decision system
would recommend to users options that are supported by strong arguments. Consequently, a plethora of evaluation
methods, called semantics, have been proposed in the literature. There exist several approaches according to the nature
of their outcomes, such as extension semantics, labelling semantics, gradual semantics and ranking semantics. Extension
semantics have been introduced for the first time by Dung [13]. They look for arguments that can be accepted by a rational
agent, and more precisely those that can be jointly accepted. Examples of such semantics are stable and preferred from
[13], and those based on the SCC-recursive schema [14]. More generally, labelling semantics [15] are closely related to
extension semantics. Each labelling assigns three possible values to the elements of a graph: in, out and undecided, and
a set of arguments labelled in corresponds to an extension.

Gradual semantics, initiated by Cayrol and Lagasquie in [16], quantify argument strength. They are defined as
functions which assign a unique numerical or qualitative value to each argument. In [17], the author discussed how to
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identify acceptable arguments from the values of their strengths. For instance, one may accept any argument whose
value is beyond a given threshold. Examples of gradual semantics are Trust-based [12], social simple product [10], and
(Discontinuity-Free)-QuAD [18, 19].

Ranking semantics have been proposed by Amgoud and Ben-Naim in [20]. They return a (total or partial) preordering
on arguments, thus ranking them from the strongest to the weakest ones. Obviously, any gradual semantics may be
transformed into a ranking one, but the converse is not necessarily true. Indeed, pure ranking semantics may be defined
without assigning values to arguments. Examples of such semantics are Burden-based and Discussion-based from [20],
the propagation-based ones from [21, 22] and those based on subgraphs analysis [23]. It has been argued in [17] that the
choice of the family of semantics depends broadly on the problem to solve.

Given the importance of semantics in argumentation, it is important to have a good understanding of the rules that
control how evaluation of arguments is performed by a semantics, in other words a good understanding of the principles
underlying a semantics. In the argumentation literature, several works have been devoted to the definition of principles
for each of the families of semantics. A principle is a formal property that a semantics may satisfy. In [24], Baroni and
Giacomin proposed some principles that extension semantics should satisfy. The list was later extended in [25] and used
to theoretically analyse and compare the existing extension semantics that deal with flat graphs. Amgoud and Ben-Naim
proposed in [20] another set of principles for ranking semantics. Each principle expresses a property that a ranking
of arguments should satisfy. That set was used in [26] for comparing some existing gradual/ranking semantics among
those devoted to flat graphs. Regarding gradual semantics, some principles were proposed by Amgoud and Ben-Naim
in [27] for flat graphs and extended to weighted graphs in [28] and bipolar ones in [29, 30]. Each principle describes an
elementary property of argument strength.

Focusing on gradual semantics that deal with weighted graphs, this paper presents four contributions. The first
consists of simplifying the principles presented in [28] and proposing five novel ones. The principles describe very
elementary properties, which then serve as basic building blocks for proving higher-level ones. Some of them are
mandatory while others represent reasonable choices for some applications but not for others. Indeed, argumentation
is a rich theory that may be applied for solving a large variety of problems, thus the requirements may vary from one
application to another. The second contribution of the paper consists of providing the first theoretical analysis of each
of the ten semantics that were proposed in the literature for evaluating arguments in weighted graphs. We studied the
four semantics that follow the contraction-based approach for dealing with preferences between arguments [11, 31, 32],
the four semantics that follow the change-based approach [33], and the two gradual semantics proposed in [12, 34].
This study allowed the first thorough comparison of i) semantics of different families (extension vs gradual), ii) the two
approaches that deal with preferences in argumentation (contraction vs change), and iii) semantics of the same family,
e.g. Trust-based and Iterative Schema (IS). The results show that the ten semantics are different in that they made different
design choices. The study also revealed the kind of semantics that are missing in the literature. For instance, there is
no semantics that satisfies all the compatible principles, there is no semantics that privileges the quantity of attackers
over their quality when it faces a dilemma between the two criteria, and there is no semantics that favours the quality
criterion and at the same time satisfies all the remaining principles. The third contribution of the paper fills the previous
gaps by introducing three novel semantics, one for each of the three cases. The fourth contribution of the paper consists
of implementing algorithms for computing the strengths of arguments using the three novel semantics, and running
several experiments on a publicly available benchmark proposed in [35, 36]. The results show that our semantics are
very efficient as the strengths of arguments can be calculated quickly and in less than 20 iterations whatever the size and
typology of the graph.

The paper is organized as follows: Section 2 introduces some basic concepts. Section 3 discusses the notion of
argument strength. Section 4 introduces the list of principles whose properties are investigated in Section 5. Section 6
recalls existing semantics from the literature, and analyses them against the set of principles. Section 7 presents the three
novel semantics and investigates their formal properties, and Section 8 analyses them empirically. Section 9 discusses
related work, and the last section concludes and presents some perspectives.

Remark: The paper extensively develops the content of the conference paper [28]. It simplifies some principles presented
in [28], proposes five novel ones, presents a more detailed analysis and comparison of existing semantics, and presents
for the first time an experimental analysis of the performances of the three new semantics.

2. Background

Throughout the paper, a weighted argumentation graph (WAG) is a graph whose nodes are arguments and edges
represent attacks between them. Each argument has an initial or basic weight (called basic score in [19]) from the
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interval [0, 1]. The smaller the weight of an argument, the weaker the argument. The basic weight of an argument may
represent different issues like certainty degree of its premises [9], degree of trust in its source [12], an aggregation of
votes provided by users [10], etc. For the sake of generality, the origin of weights and arguments is left unspecified.
Similarly, arguments and attacks are considered as abstract notions. Before formally introducing WAGs, let us define the
useful notion of weighting.

Definition 1 (Weighting). A weighting on a set X is a function from X to the interval [0, 1].

Weighted argumentation graphs (or weighted graphs for short) are defined as follows.

Definition 2 (WAG). A weighted argumentation graph is a triple G = 〈A, w,R〉, where A is a non-empty finite set of
arguments, w is a weighting on A, andR ⊆ A×A. We denote by WAG the class of all weighted argumentation graphs.

Intuitively, for G = 〈A, w,R〉 ∈ WAG, a, b ∈ A, w(a) represents the basic weight of argument a, and (a, b) ∈ R (or
equivalently aRb) means argument a attacks argument b. Let 〈a0, . . . , a2n+1〉 be a non-empty sequence of arguments of
A such that n ∈ N, for every 0 ≤ j < 2n+ 1, ajRaj+1, a0 = a, and a2n+1 = b. If n = 0, then a is a direct attacker of
b; it is an indirect attacker of b if n ≥ 1.

Definition 3 (Isomorphism). Let G = 〈A, w,R〉,G′ = 〈A′, w′,R′〉 ∈ WAG. An isomorphism from G to G′ is a
bijective function f from A to A′ such that:

• ∀ a ∈ A, w(a) = w′(f(a)),

• ∀ a, b ∈ A, aRb iff f(a)R′f(b).

Let us recall the notion of path between two nodes in a graph.

Definition 4 (Path). Let G = 〈A, w,R〉 ∈ WAG, and a, b ∈ A. A path from b to a is a finite non-empty sequence
〈x1, . . . , xn〉 such that x1 = b, xn = a, and ∀1 ≤ i < n, xiRxi+1.

Note that, according to the previous definition, a sequence of length one is also considered to be a path. We present next
the list of all notations used in the paper.

Notations: Let G = 〈A, w,R〉 ∈ WAG and a ∈ A. We denote by AttG(a) the set of all attackers of a in G, i.e.,
AttG(a) = {b ∈ A | bRa}. Let G′ = 〈A′, w′,R′〉 ∈ WAG such that A ∩ A′ = ∅. We denote by G ⊕G′ the element
〈A ∪ A′, w′′,R∪R′〉 of WAG such that for any x ∈ A (resp. x ∈ A′), w′′(x) = w(x) (resp. w′′(x) = w′(x)).

3. Strength of Arguments

In most approaches in the literature [37, 38, 39, 40], an argument is a set of premises that serve as reasons for
accepting a claim1. However, unlike a mathematical demonstration, it does not necessarily guarantee the truth of the
claim. Its strength may range from very weak to strong depending on the plausibility of the premises, the strength of the
link between the premises and the claim and its interaction with other arguments.

In the literature, evaluation of arguments is conducted by formal methods, called semantics. Their key idea is to pre-
dict whether an argument can be accepted by a rational agent so that its claim can safely be used for drawing conclusions,
making decisions, etc. The very first semantics, proposed by Dung in his seminal paper [13], focused on extensions. For
a given argument graph, each of Dung’s semantics returns several extensions, where each extension is a set of arguments
representing an individually reasonable position. In this setting, acceptability status of an argument in a graph is de-
fined as follows [14, 16, 42, 38, 43]: an argument is sceptically accepted if it belongs to all extensions, it is credulously
accepted it belongs to some but not all extensions, and it is rejected if it does not belong to any extension.

Gradual semantics [10, 12, 16, 18, 19, 44] take a view from another perspective. Instead of calculating possible co-
herent points of view (i.e. extensions) they assign a unique numerical or qualitative value to each argument, representing
its strength in a graph. Indeed, having more than three acceptability statuses (skeptically / credulously accepted and
rejected) might be beneficial in some applications. Take, for instance, multiple criteria decision making (MCD), where
the main objective is to define mathematical models that are able to compare different alternatives on the basis of how
they perform regarding a set of criteria. The more discriminating a model between alternatives, the more efficient it is. In
argument-based MCD models, an argument in favour of an alternative expresses how the latter satisfies a criterion (see

1There are some approaches where an argument contains more components, e.g. the Toulmin’s model of argument [41].
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[45, 46]). Thus, it is not sufficient to identify sceptically/credulously acceptable arguments (as alternatives may all be
supported by acceptable arguments), arguments strengths are crucial for fine-grained comparisons of alternatives.

In this paper, we focus on argument strength. We start the analysis with reference to some basic questions:

• Does an argument have a unique strength?

• What is the form of argument strength?

• What are the factors that may impact argument strength?

• Is there a unique way of evaluating argument strength?

• What is a good evaluation method of argument strength?

Concerning the first question, in this paper we focus on a single-status notion of strength. As pointed out by Leite
and Martins [10], even if assigning multiple strength values may be interesting from a theoretical point of view, most
users (for instance, in the domain of e-democracy / on-line debates) would be turned away by a system which is based
on such a semantics.

Concerning the second question, argument strength may take two forms, as absolute value or relative one compared
to other arguments. Obviously, a ranking of arguments can be constructed from absolute argument strengths. However,
the converse is not always true. In the argumentation literature, gradual semantics initiated in [16] assign a qualitative or
numerical value to each argument, while ranking semantics introduced in [20] rank-order arguments from the strongest to
the weakest ones without necessarily computing the exact strength of arguments. Given that gradual semantics can also be
used to induce a ranking of arguments, both classes of semantics are suitable when a comparison of arguments is needed.
This is particularly the case in decision problems where the goal is to rank-order different alternatives (e.g. candidates
for a research position) on the basis of the strength of their supporting arguments. In addition, gradual semantics are also
able to go beyond qualitative comparison, namely they can say to what extent one argument is stronger than another one.

Regarding the third question, argument strength depends on two main elements: i) the (typology of the) weighted
argumentation graph to which the argument belongs, and ii) the application that gave birth to the weighted argumentation
graph. The strength of the same argument may change from one graph to another due to the following key factors
influencing it within a fixed graph:

• Basic weights of arguments

• Quantity of attackers

• Strengths of attackers

Besides, argumentation theory has a very broad and diversified range of practical applications (e.g. critical debate, com-
mittees, trial) and theoretical ones (e.g. inconsistency handling in knowledge bases [39], defeasible reasoning [3], de-
cision making [4], classification [5], negotiation [47]). All these disparate applications may require different types of
arguments (deductive, abductive, analogical, etc), each of which may impose particular constraints on the evaluation
of argument strength. Some of them may concern the use of the previous factors. For example, assume an application
where arguments may be analogical in nature, i.e., their reasoning is based on perceived similarities between two objects.
Dissimilarities between objects might decrease the strength of the analogy [48, 49, 50, 51]. In the framework discussed
by Amgoud [52], every attack raises a novel case of dissimilarity between the two objects. Hence, in such a setting, the
more an analogical argument is attacked, the weaker it may be. This means that the quantity of attackers of an argument
is important. However, this factor may be less desirable when handling inconsistency in logical knowledge bases, since
a single attack is generally lethal for its target. Hence, the above factors may be considered in some applications and not
in others, and semantics need not capture all of them. Applications may require other constraints, which are not related
to the above factors. An example of such a constraint is the impact of worthless attackers on their targets. A worthless
attacker is an argument whose strength is extremely weak (say 0 when argument strength is evaluated on a scale [0,1]).
In a scientific debate about the safety of a recently developed vaccine, such arguments should not have any impact on
their targets. However, it is argued that worthless arguments may have an impact in political debates [53].

From the above discussion, it follows that there is no unique way of evaluating arguments, which answers the fourth
question. A reasonable semantics is one that takes into account the factors that are suitable for the application under
study, and the peculiarities of the application.
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4. Foundational Principles for Semantics

Throughout the paper, we focus on semantics that evaluate argument strength in the context of weighted argumenta-
tion graphs. We are particularly interested in gradual semantics, which ascribe to each argument a single absolute value
taken from a totally ordered scale with the convention that the greater the value, the stronger the argument. The choice
of the exact scale is not crucial for the definition of principles, the only requirement is that it should have minimum Vmin
and maximum Vmax values. The former specifies worthless arguments and the latter refers to perfect ones. For the sake
of illustration, in this paper we consider the unit interval [0, 1], and call a non-worthless argument alive.

Definition 5 (Semantics). A semantics is a function S transforming any weighted argumentation graph G = 〈A, w,R〉 ∈
WAG into a weighting DegSG on A (i.e., DegSG : A → [0, 1]). For any a ∈ A, DegSG(a) represents the strength of a.

The previous definition introduces the notion of semantics in general terms, without specifying whether and how
it depends on the two main elements analyzed in the previous section: the (typology of the) weighted argumentation
graph, and the application that gave birth to the graph. In this paper, we abstract away from applications, and investigate
evaluations of arguments exclusively on the basis of a weighted argumentation graph. For that purpose, we propose a set
of 21 principles that describe basic properties of semantics and factors that may be taken into account in the evaluation
of strength. These principles will play three roles:

1. clarifying foundations of argument evaluation,
2. theoretically analysing each existing semantics. This would clarify the choices made by those semantics,
3. theoretically comparing the plethora of semantics that exist in the literature.

The principles are elementary properties that are free of implicit assumptions. Each of them describes a unique idea,
some of their combinations lead to higher-level properties like those proposed in [20], and four principles follow from
the others. We considered them in the paper for an in-depth analysis of certain existing semantics. Finally, it is worth
mentioning that some principles extend properties proposed by Amgoud and Ben-Naim in [27] for flat graphs. The new
versions take into account basic weights of arguments. Other principles are simplified versions of those proposed in
[28]. Five properties (Weakening, Reinforcement, Proportionality, Invariance and Strict Invariance) are novel and have
no counterparts in [27, 28]. Let us now introduce the principles.

The first principle, called anonymity, states that arguments should not be evaluated on the basis of their names exactly
as the evaluation of students’ work should not depend on their identity. This property can be found in many axiomatic
studies including those in the domain of cooperative games [54]. In the argumentation literature, it is called Anonymity
in [27], abstraction in [20], and language independence in [24]. This principle expresses some rationality of a semantics,
it is thus mandatory and any semantics should satisfy it.

Principle 1 (Anonymity). A semantics S satisfies anonymity iff, for all G = 〈A, w,R〉, G′ = 〈A′, w′,R′〉 ∈ WAG, for
any isomorphism f from G to G′, the following property holds:

∀ a ∈ A, DegSG(a) = DegSG′(f(a)).

The second principle, called independence, is about the essence of strength which expresses to what extent an argu-
ment is robust against attacks. It states that the strength of an argument should be independent of any argument that is not
connected to it by a path. It delimits thus the sub-graph of a weighted argumentation graph that may have an impact on
the strength of an argument. This principle is crucial to avoid strength being biased by irrelevant information. Consider
the argumentation graph depicted in Figure 1 below and which is extracted from an online debate platform.

a:0.01 b:0.90 c:0.25

Figure 1: Weighted graph G1

a: Señor Taco is the best restaurant in Toulouse, since they have very good guacamole,

b: School meals are generally not healthy,
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c: Schools should provide breakfast to pupils at the start of each day because schools are the best place to ensure good
nutrition.

Obviously, the strength of c should not depend on that of a since their topics are completely unrelated. Finally, it is worth
mentioning that this principle generalizes the independence axiom from [27].

Principle 2 (Independence). A semantics S satisfies independence iff, for all G = 〈A, w,R〉 ∈ WAG, G′ = 〈A′, w′,R′〉 ∈
WAG such that A ∩A′ = ∅, the following property holds:

∀ a ∈ A, DegSG(a) = DegSG⊕G′(a).

Example 1. Consider the weighted argumentation graph G1 depicted in Figure 1, where the numerical values represent
basic weights. The strength of a should be independent from that of c since there is no path from c to a.

The third principle, called directionality, states that an attacker may influence the strength of its target but the converse
is not allowed. In other words, attacking other arguments cannot be beneficial or harmful for an attacker. Recall that
argument strength expresses the plausibility of premises, prior acceptance of the argument’s claim and the solidity of
the link. These three parameters can only be affected by incoming attacks showing their weaknesses, the fact that an
argument attacks another argument does neither improve nor worsen their strength. Like the two previous principles, we
regard Directionality as mandatory for each semantics. Formally, Directionality states that if one adds an attack from an
argument a to another argument b in a given graph, then this additional attack may impact the strength of b, but not that of
any other argument c which is not related to b by a path. This definition is more general than the Circumscription axiom
presented in [27] even when the arguments have the same basic weights. Indeed, the formal definition of Circumscription
assumes the addition of an attack towards an argument b which does not attack any argument while in our case this
constraint is relaxed. The principle was also considered in [24] but at the level of extensions of flat argumentation
graphs.

Principle 3 (Directionality). A semantics S satisfies directionality iff, for any G = 〈A, w,R〉 ∈ WAG, for all a, b ∈ A,
for any G′ = 〈A′, w′,R′〉 ∈ WAG such that A′ = A, w′ = w, and R′ = R ∪ {(a, b)}, the following holds: for any
x ∈ A, if there is no path from b to x, then DegSG(x) = DegSG′(x).

Example 1 (Cont) Let G′1 be the graph G1 augmented with a self-attack on c (i.e., c attacks itself in G′1). The strength
of b should be the same in the two graphs G1 and G′1 .

Remark 1. Example 1 shows some difference between Independence and Directionality. The former is defined at the
level of two or more graphs (the two strongly connected components of G1) while the latter is at the level of one graph
(G′1). It is worth noticing that Independence is silent about whether b should have the same strength in G1 and G′1.

Any argument in a weighted graph has a basic weight. Hence, an argument should not be considered strong just
because it is not attacked; its strength should also depend on its basic weight. A non-attacked argument can be deemed
as weak if its basic weight is low, otherwise the argument is overvalued. Consider the weighted argumentation graph
〈{A,B}, w,R = ∅〉 where A,B are as follows:

Most people are right-handed. Therefore, Pat is right-handed. (A)
All people have DNA. Therefore, Pat has DNA. (B)

In possibilistic logic [55], the premises of A and B are encoded in propositional logic as implications X → Y and
X → Z, where X , Y , Z stand respectively for “being a person”, “being right-handed” and “having DNA”. Since the
rule X → Y has exceptions, it is ascribed a necessity or certainty degree [55] from the scale [0, 1] that is less than the
maximal value 1. The second rule X → Z is certain, thus it is ascribed value 1. Consequently, in [9] a basic weight is
assigned to each argument. It is the certainty degree of the least certain premise of an argument. Note that both A and
B have the hidden certain premise: Pat is a person. Thus, w(A) < 1 and w(B) = 1. Unlike B, the argument A does
not guarantee its conclusion since it is based on uncertain premises. Hence, even if both arguments are not attacked,
B can be deemed stronger than A. For an accurate evaluation of arguments and since the scales of basic weight and
strength are commensurate (both are the interval [0, 1]), our next principle, called Maximality, states that the strength of
a non-attacked argument is equal to the basic weight of the argument (w(A) < 1 for A and w(B) = 1 for B). In [27],
all the arguments of an argumentation graph are assumed to have a basic weight equal to 1; that is why non-attacked
arguments get value 1.
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Principle 4 (Maximality). A semantics S satisfies maximality iff, for any G = 〈A, w,R〉 ∈ WAG, for any a ∈ A, if
AttG(a) = ∅, then DegSG(a) = w(a).

Example 1 (Cont) Consider again the weighted argumentation graph G1. Maximality principle ensures that DegSG1
(a) =

0.01 and DegSG1
(b) = 0.90. Note that b is stronger than a even if both arguments are unattacked.

The next two principles, Weakening and Strict Weakening, are about the role of attacks. The latter being negative
relations that highlight arguments’ weaknesses (e.g. , false premises/claim, inapplicable rules), they have negative impact
on targets’ strengths. Hence, Weakening states that attacks may weaken, but never strengthen, an argument when they
come from alive arguments. This principle leaves room for ineffective attacks that may exist in applications, namely
in the legal domain. Consider the case of a judge who decides to ignore a given argument during a trial. Even if the
argument is alive (for instance it has some basic weight and is not attacked), it has no effect on the arguments it attacks.
Strict Weakening is more demanding as it ensures that argument strength should decrease when the argument has at least
one alive attacker. This principle is desirable for normative systems, where evaluation of arguments is done objectively
on the basis of weighted graphs only. Any semantics should satisfy at least Weakening since it defines the role of attacks
without being too demanding. Note that the Trust-based semantics [12] satisfies Weakening but violates its strict version.
It is worth mentioning that in [27, 28], we only defined the strict version of weakening, and called it Weakening. In what
follows, we call Weakening the non-strict version and Strict Weakening the strict one.

Principle 5 (Weakening). A semantics S satisfies weakening iff, for any G = 〈A, w,R〉 ∈ WAG, for any a ∈ A, if
∃b ∈ AttG(a) such that DegSG(b) > 0, then DegSG(a) ≤ w(a).

In addition to existence of alive attackers, Strict Weakening checks whether an argument can lose weight.

Principle 6 (Strict Weakening). A semantics S satisfies strict weakening iff, for any G = 〈A, w,R〉 ∈ WAG, for any
a ∈ A, if

• w(a) > 0,

• ∃b ∈ AttG(a) such that DegSG(b) > 0,

then DegSG(a) < w(a).

Example 1 (Cont) If a given semantics S satisfies Maximality, then DegSG1
(b) = 0.90. If in addition S satisfies Weak-

ening, then DegSG1
(c) ≤ 0.25 while if it satisfies Strict Weakening, then DegSG1

(c) < 0.25.

Remark 2. It is important to underline that Strict Weakening does not formally imply Weakening. Namely, the strict
variant does not impose any constraint on a target whose initial weight is zero. More generally, we will present three
more pairs of principles which have “strict” and “non-strict” versions (Proportionality, Reinforcement and Invariance),
and it is essential to point out that the notion “strict” does not indicate that those versions imply “non-strict” versions.
The terminology originates from the type of inequality (strict / non strict) used in the conclusion of the principle.

In some approaches in the the argumentation literature, namely in [31, 32], if an attacker is weaker than its target, the
attack fails. In the context of weighted argumentation graphs, this means that if the basic weight of an attacker is weaker
than that of its target, the attack has no effect on the target. Note that this is no longer the case if the semantics satisfies
Strict Weakening. Indeed, each attack coming from an alive argument b weakens its target a whatever the values of basic
weights, i.e., regardless of whether w(a) > w(b).

The next principle, called Weakening Soundness, goes further than the two previous ones by ensuring that attacks are
the only source of strength loss. Indeed, if an argument loses weight, then it is certainly attacked by at least one alive
attacker. This principle is suitable when evaluation of strength is done solely on the basis of weighted argumentation
graphs, i.e., there is no extra information that is considered. The following definition simplifies the one from [28] by
removing the condition on basic weight, since it follows naturally from the remaining one.

Principle 7 (Weakening Soundness). A semantics S satisfies weakening soundness iff for any G = 〈A, w,R〉 ∈ WAG,
for any a ∈ A, if DegSG(a) < w(a), then ∃b ∈ AttG(a) such that DegSG(b) > 0.

We have seen that an alive attacker may weaken its target. An important question is: to what extent that attacker
may be harmful? More precisely, can it make the target lose its entire basic weight? Resilience principle answers this
question negatively. It states that an attack cannot make its targeted argument worthless. More formally, an argument
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whose basic weight is positive cannot get strength equal to 0 due to attacks. Considering this principle for a semantics
depends largely on the application at hand. Resilience makes perfect sense, for instance, in debates deprived of formal
rules, like those on societal issues (e.g. capital punishment, abortion) where people express their opinion. Assume the
following dialogue between Carla and Paul:

Carla Let us go to Señor Taco because it has the best Mexican food in Toulouse. (A)
Paul: I don’t agree that Señor Taco has the best Mexican food in the city. The food at La Sandia is better.

(B)

Assume that Carla knows La Sandia restaurant. The argument B attacks A since the conclusion of B contradicts the
premise of A. However, B does not make A worthless since it is simply based on Paul’s personal opinion. Resilience
is, however, not suitable for reasoning with inconsistent propositional knowledge bases (e.g. [39, 56]). In this case,
an argument is deductive in nature, and it is valid if its premises are true. Note that when the premises are true, the
conclusion of the argument is also true. An attack amounts to showing that one or more premises of an argument are
false. Thus, it is lethal for the validity of the targeted argument. Note that Resilience generalizes the Resilience axiom
from [27]. Furthermore, it was shown in [27] that in the case of flat argumentation graphs, Resilience is one of the main
principles that distinguishes extension semantics [13] from those proposed in [20, 39]. Indeed, the former violate the
principle while the latter satisfy it.

Principle 8 (Resilience). A semantics S satisfies resilience iff, for any G = 〈A, w,R〉 ∈ WAG, for any a ∈ A, if
w(a) > 0, then DegSG(a) > 0.

Example 1 (Cont) Consider the graph G1. If a semantics S satisfies Resilience, then DegSG1
(c) > 0.

The two following principles concern the impact of basic weights on strengths of arguments. Proportionality states
that if the basic weight of an argument increases, then its strength might increase as well, but it surely cannot decrease.
Similarly, Strict Proportionality ensures that increasing the basic weight of an argument necessarily leads to an increase
of the strength of that argument. Trust-based semantics [12] satisfies the non-strict version but violates the strict one.
The non-strict variant of the principle (which we simply call Proportionality) is more suitable in applications where
basic weights do not play an important role. Consider an application where the goal is to analyse whether users of an
online debate platform evaluate arguments in a rational way. For that purpose, the application evaluates arguments using
some semantics solely based on attacks, and then compares the results with votes provided by users. In this case, basic
weights of arguments were not used by the semantics. In another application like decision making [19], basic weights
are important and thus one may need Strict Proportionality. Note that in [28], we introduced only the strict version and
called it Proportionality. For the sake of coherence, in what follows, this word will refer to the non-strict version.

Principle 9 (Proportionality). A semantics S satisfies proportionality iff, for any G = 〈A, w,R〉 ∈ WAG, for all a, b ∈
A such that

• w(a) ≥ w(b),

• AttG(a) = AttG(b),

then DegSG(a) ≥ DegSG(b).

The strict version of Proportionality is given below.

Principle 10 (Strict Proportionality). A semantics S satisfies strict proportionality iff, for any G = 〈A, w,R〉 ∈ WAG,
for all a, b ∈ A, if

• w(a) > w(b),

• AttG(a) = AttG(b),

• DegSG(a) > 0,

then DegSG(a) > DegSG(b).

Example 2. Let G2 be the weighted argumentation graph depicted in Figure 2. If a semantics S satisfies Proportionality,
then DegSG2

(a) ≥ DegSG2
(b). Assume that S satisfies Resilience. Then, DegSG2

(a) > 0. If S satisfies Strict Proportion-
ality, then DegSG2

(a) > DegSG2
(b). Note that Strict Proportionality is compatible with non-Resilience. Assume that S

violates Resilience, and that, like extension semantics, an attack may make its target worthless. Hence, it is possible to
have DegSG2

(a) = DegSG2
(b) = 0. In this case, Principle 10 is not applicable since its third condition is not fulfilled.
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a:0.5 c:0.6 b:0.2

Figure 2: Weighted graph G2

The next principle, called Monotony, concerns the quantity of attackers of an argument. It states that the more an
argument is attacked, the weaker it may be. This principle is desirable in various applications, such as decision making
and analogical reasoning. For instance, it has been shown recently in [52], that the number of attackers plays a crucial
role in the evaluation of analogical arguments. The latter are inductive arguments that rely on analogies for drawing
conclusions. They cite accepted similarities between two items in support of the conclusion that some further similarity
exists between the items. Attacks amount at highlighting dissimilarities between the items. The more dissimilarities
are pointed out, the weaker the analogy and thus the weaker the analogical argument. This principle extends the one
proposed in [27] by accounting for basic weights.

Principle 11 (Monotony). A semantics S satisfies monotony iff, for any G = 〈A, w,R〉 ∈ WAG, for all a, b ∈ A, if

• w(a) = w(b),

• AttG(a) ⊆ AttG(b),

then DegSG(a) ≥ DegSG(b).

The next three principles concern the strength of individual attackers. Neutrality states that any worthless attacker
(attacker whose strength is 0) has no impact on its target. In other words, being attacked by such an attacker is similar
to not being attacked at all. This principle was initially proposed in [27] for flat argumentation graphs, then generalized
for weighted graphs in [28]. Both versions make two implicit assumptions: symmetry and independence. Symmetry
states that a set of attackers has the same effect on arguments having the same basic weight. The second assumption
states that the attackers of an argument are independent from each other. We propose below an elementary version of
Neutrality which does not implicitly suppose those assumptions. Regarding the suitability of Neutrality, in [53], the
authors discussed some specificities of political debates and argued that in such debates worthless attackers may have
an impact on their targets. In other applications like scientific debates, Neutrality is certainly suitable since arguments
should only be rejected based on substantial grounds.

Principle 12 (Neutrality). A semantics S satisfies neutrality iff, for any G = 〈A, w,R〉 ∈ WAG, for all a, b, x ∈ A, if

• w(a) = w(b),

• AttG(a) = ∅,

• AttG(b) = {x} with DegSG(x) = 0,

then DegSG(a) = DegSG(b).

The two principles Reinforcement and Strict Reinforcement ensure that the strength of alive attackers is taken into
account in the evaluation of argument strength. They respectively state that increasing the strength of an alive attacker
may lead to a decrease in the strength of its target. In other words, the stronger an attacker, the more harmful it may be.

Under the name Reinforcement, the Strict Reinforcement property was proposed in [27] for flat graphs and extended
in [28] for weighted ones. Furthermore, in both papers the formal definition of the property makes implicitly the two
previous assumptions of symmetry and independence. In what follows, we simplify the principle from [28], call it Strict
Reinforcement, and propose its non-strict version, called here Reinforcement. Both (strict and non-strict) versions are
elementary in that they do not make the two assumptions. We will see later that the old versions of Reinforcement (from
[27, 28]) follow from our Strict Reinforcement principle together with some other principles. The non-strict version of
Reinforcement may be suitable for neglecting small differences in strengths of attackers. In the literature, Trust-based
semantics [12] satisfies the non-strict version of the above property and violates its strict version.

Principle 13 (Reinforcement). A semantics S satisfies reinforcement iff, for any G = 〈A, w,R〉 ∈ WAG, for all
a, b, x, y ∈ A, if
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• w(a) = w(b),

• AttG(a) = {x},

• AttG(b) = {y},

• DegSG(y) ≥ DegSG(x),

then DegSG(a) ≥ DegSG(b).

The fourth condition excludes worthless attackers since the latter are treated by Neutrality principle.

Principle 14 (Strict Reinforcement). A semantics S satisfies strict reinforcement iff, for any G = 〈A, w,R〉 ∈ WAG,
for all a, b, x, y ∈ A, if

• w(a) = w(b),

• DegSG(a) > 0,

• AttG(a) = {x},

• AttG(b) = {y},

• DegSG(y) > DegSG(x),

then DegSG(a) > DegSG(b).

Example 3. Consider the weighted argumentation graph G3 depicted in Figure 3. Let S be a semantics which satisfies
Maximality. Thus, DegSG3

(a) = 0.5 and DegSG3
(c) = 0.9. Reinforcement ensures that DegSG3

(b) ≥ DegSG3
(d) since the

attacker of b is weaker than the attacker of d. If S satisfies Resilience, then DegSG3
(b) > 0 and thus, Strict Reinforcement

leads to DegSG3
(b) > DegSG3

(d).

a:0.50 b:0.25 c:0.90 d:0.25

Figure 3: Weighted graph G3

The next four principles, Symmetry, Equivalence, Invariance and Strict Invariance, are about the strength of groups
of attackers. They express the general idea that two equally strong groups of attackers should have the same impact on
an argument. The four versions (from the simplest to the richest one) were proposed for an accurate analysis of existing
semantics and a deeper comparison of pairs of them. For example, Dung’s semantics violate Invariance, but satisfy its
simplest form Symmetry. Trust-based semantics satisfies the three first versions but violates the strongest one (Strict
Invariance). This finer-grained analysis is important for a better understanding of those semantics and their foundations.

The simplest principle, called Symmetry, states that the same group of attackers should have the same impact on all
arguments having the same basic weights. It captures the symmetry assumption underlying the Neutrality and Reinforce-
ment principles in [28].

Principle 15 (Symmetry). A semantics S satisfies symmetry iff, for any G = 〈A, w,R〉 ∈ WAG, for all a, b ∈ A, if

• w(a) = w(b),

• AttG(a) = AttG(b),

then DegSG(a) = DegSG(b).

Equivalence is more demanding. It states that two groups of equally strong attackers should have the same impact on
arguments having the same basic weights. This means also that the strength of an argument depends only on the basic
weight of the argument and the strengths of its (direct and indirect) attackers.

Principle 16 (Equivalence). A semantics S satisfies equivalence iff, for any G = 〈A, w,R〉 ∈ WAG, for all a, b ∈ A, if
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• w(a) = w(b),

• there exists a bijective function f from AttG(a) to AttG(b) such that ∀x ∈ AttG(a), DegSG(x) = DegSG(f(x)),

then DegSG(a) = DegSG(b).

The next two principles are new and have no counterparts in [27, 28]. They capture the independence assumption that
was implicit in Neutrality and Reinforcement principles from [28]. Invariance states that the strength of a group cannot
decrease when a new attacker joins the group.

Principle 17 (Invariance). A semantics S satisfies invariance iff, for any G = 〈A, w,R〉 ∈ WAG, for all a, b, a′, b′, x, y ∈
A such that

• w(a) = w(a′) = w(b) = w(b′),

• AttG(a′) = AttG(a) ∪ {x} with x /∈ AttG(a),

• AttG(b′) = AttG(b) ∪ {y} with y /∈ AttG(b),

• DegSG(x) = DegSG(y),

the following holds: if DegSG(a) ≥ DegSG(b), then DegSG(a′) ≥ DegSG(b′).

The next principle defines the strict version of Invariance. This property is strong since, as we will see in Section 5,
it enforces a semantics to consider all the attackers of an argument. In other words, it ensures that each alive attacker
will have an impact on its target. The principle is thus suitable in applications where each attacker matters like the case
of analogical arguments. Amgoud [52] proposed a framework for reasoning about analogical arguments. It is based on
perceived similarities between two objects for inferring some further similarity that has yet to be observed. Its attackers
point out cases of dissimilarity between the two objects. Hence, attackers are pairwise different and the greater the
number of attackers, the greater the dissimilarity between the objects - and the weaker the target argument. This is in
accordance with the claim of some philosophers [48, 49, 50, 51] that every distinct dissimilarity decreases the strength
of an analogy.

Principle 18 (Strict Invariance). A semantics S satisfies strict invariance iff, for any G = 〈A, w,R〉 ∈ WAG, for all
a, b, a′, b′, x, y ∈ A such that:

• w(a) = w(a′) = w(b) = w(b′),

• AttG(a′) = AttG(a) ∪ {x} with x /∈ AttG(a),

• AttG(b′) = AttG(b) ∪ {y} with y /∈ AttG(b),

• DegSG(x) = DegSG(y),

• DegSG(a′) > 0,

the following holds: if DegSG(a) > DegSG(b) then DegSG(a′) > DegSG(b′).

The three last principles have no counterparts in [27]. They concern possible strategies that a semantics may follow
when it faces a conflict between the strength and the quantity of attackers as shown by the following example.

Example 4. Consider the weighted argumentation graph G4 in Figure 4. The argument a has two weak attackers (each
attacker is attacked). The argument b has only one but strong attacker. The question is which of a and b is stronger?

The answer to the previous question depends on which of quantity and quality is more important. Cardinality prece-
dence states that a great number of attackers has more effect on an argument than just a few. This strategy makes sense
in some applications like debates, where the number of participants attacking a point of view is important.

Principle 19 (Cardinality Precedence). A semantics S satisfies cardinality precedence (CP) iff, for any G = 〈A, w,R〉 ∈
WAG, for all a, b ∈ A, if

• w(a) = w(b),

• DegSG(a) > 0,
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g:1.0 c:1.0

h:1.0 d:1.0 a:1.0 j:1.0 b:1.0

Figure 4: Weighted graph G4

• |{x ∈ AttG(a) | DegSG(x) > 0}| < |{y ∈ AttG(b) | DegSG(y) > 0}|,

then DegSG(a) > DegSG(b).

Quality precedence principle gives more importance to the strength of attackers2. This strategy is important, for
instance, in debates requiring expertise. If a Fields medalist says P , whilst three students say ¬P , we probably believe
P . It is worth mentioning that this principle is similar to the Pessimistic rule in decision making under uncertainty [57].

Principle 20 (Quality Precedence). A semantics S satisfies quality precedence (QP) iff, for any G = 〈A, w,R〉 ∈ WAG,
for all a, b ∈ A, if

• w(a) = w(b),

• DegSG(a) > 0,

• ∃y ∈ AttG(b) such that DegSG(y) > 0 and ∀x ∈ AttG(a), DegSG(y) > DegSG(x),

then DegSG(a) > DegSG(b).

Compensation says that several weak attackers might, in some situations, compensate one or more strong attackers.
For instance, in the graph G4, the two weak attackers of a may compensate the strong attacker of b, and a is declared as
strong as b. This strategy is very common in multiple criteria decision making where several weak criteria compensate a
strong one [58].

Principle 21 (Compensation). A semantics S satisfies compensation iff it violates both CP and QP.

Note how weak the compensation principle is. Namely, it is sufficient to find one argumentation graph that violates
CP and one that violates QP, in order to satisfy this principle.

Example 4 (Cont) Assume a semantics S which satisfies Resilience. Thus by definition, DegSG4
(x) > 0 for any x ∈

{a, b, c, d, g, h, j}. Assume also that S satisfies Maximality and Strict Weakening, then DegSG4
(j) = 1, DegSG4

(c) < 1,
and DegSG4

(d) < 1. Hence, DegSG4
(j) > DegSG4

(c), DegSG4
(d). If S satisfies (CP), then DegSG4

(a) < DegSG4
(b).

However, if S satisfies (QP), then DegSG4
(a) > DegSG4

(b).

It is worth mentioning that two axioms, similar to (CP) and (QP), were proposed for the first time by Amgoud and
Ben-Naim [20] for flat graphs and ranking semantics. Recall that the latter do not quantify strengths of arguments, but
rather define a preference relation between arguments. Thus, the equivalent axiom of (QP) uses that preference relation
while the one corresponding to (CP) simply counts the number of attackers, even the worthless ones. Our principles
are finer since they do not consider worthless attackers. The three previous principles (CP, QP, Compensation) were
also investigated by the same authors in [59] for support argumentation graphs, i.e., graphs where arguments may only
support each other.

At the end of this section, let us discuss our choice to use the interval [0, 1] as the co-domain of gradual semantics.
Note that all our principles are concerned with comparing arguments’ scores, without essentially using the fact that the
co-domain is equal to [0, 1]. They only use the ordering on the arguments’ strengths, so they are also applicable to

2We use the term quality exclusively to emphasise that the strength of an attacker influences the quality of the corresponding attack.
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semantics that use other total orders with a minimal value. In case of semantics that are defined on a co-domain without
a minimal value, Neutrality is non-applicable, and other principles can be easily modified by dropping the conditions
which require that the degrees of arguments are strictly positive. For example, if a semantics would take values from a
scale without a minimal value (e.g. (0, 1]), we could modify the principles as follows. For instance, Strict Reinforcement
would be changed by dropping the condition Deg(a) > 0 and simply transforming the condition Deg(y) > Deg(x) > 0
into Deg(y) > Deg(x). To take another example, Weakening would be changed by transforming the condition “there
exists an argument b attacking a such that Deg(b) > 0” into “there exists an argument b attacking a”.

Let us also note that almost all existing gradual/ranking semantics use either an abstract co-domain or the unit interval
[0, 1] (for an overview see [30]). A notable exception is α-BBS [44], whose co-domain is the interval [1,+∞). Under
this semantics, the value of an argument represents its burden (so the bigger the score the weaker the argument), but it
was recently noted by Amgoud and Doder [60] that α-BBS is equivalent to a generalisation of h-categorizer [39]. More
precisely, the function which assigns reciprocals of α-BBS values to arguments has the co-domain [0, 1] and satisfies the
principles.

5. Formal Properties

This section presents three kinds of formal properties. The first concerns compatibilities and links between principles.
The second concerns generalisations of the elementary principles. The third concerns features of semantics that satisfy
subsets of the proposed principles.

5.1. Links and Compatibility Results

The three principles (CP, QP, Compensation) are incompatible, that is there is no semantics that can satisfy more than
one of them. Any semantics should choose one of the three strategies for evaluating arguments in any graph, and thus
violates the principles corresponding to the two others. Quality Precedence is also incompatible with another subset of
principles.

Proposition 1. The two following properties hold.

1. Cardinality Precedence, Quality Precedence, Maximality and Resilience are incompatible.
2. Resilience, Strict Reinforcement, Maximality, Strict Weakening, Strict Invariance and Quality Precedence are in-

compatible.

The following result summarizes the various links that exist between the principles.

Proposition 2. Let S be a semantics.

• If S satisfies Equivalence, then S satisfies Symmetry.

• If S satisfies Independence, Directionality, Invariance, and Maximality, then:

– S satisfies Equivalence.

– If S satisfies Neutrality, then S satisfies Weakening Soundness.

– If S satisfies Weakening, then S satisfies Monotony.

Remark: Note that despite the fact that Weakening Soundness, Equivalence, Monotony, and Symmetry follow from
other subsets of principles, they belong to our set of principles since they allow to understand the behavior of some
existing semantics. As we will see in Section 6, some semantics may satisfy these basic properties while violating the
ones implying them. For instance, Stable semantics [13] violates Invariance but satisfies Symmetry. This shows that this
semantics does not violate all the cases covered by Invariance.

5.2. Generalizations of principles

The principles are presented in very basic forms for two reasons: i) such forms make them easy to grasp, and ii) their
general versions follow from subsets of principles. In what follows, we provide the subsets which lead to the general
versions of Directionality, Neutrality, Strict Reinforcement, Invariance and Strict Invariance.

Before presenting the generalization of Directionality, we start by introducing a new notion and a notation.
Given G = 〈A, w,R〉 ∈ WAG, a set U ⊆ A is unattacked in G if and only if for all a ∈ A\U and b ∈ U , (a, b) /∈ R.
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Notation: For a weighted argumentation graph G = 〈A, w,R〉 ∈ WAG and A′ ⊆ A, we denote by G|A′ the element of
WAG such that:

G|A′ = 〈A′, w|A′ ,R∩ (A′ ×A′)〉

where w|A′ is the restriction of the function w to the set A′.
The following result presents generalized Directionality. It is worth mentioning that it is an adaptation of the principle

with the same name from [24].

Proposition 3. If a semantics S satisfies Independence and Directionality, then for any G = 〈A, w,R〉 ∈ WAG and
U ⊆ A which is unattacked in G, for any a ∈ U , the following holds:

DegSG(a) = DegSG|U (a).

The following two results generalize respectively Proportionality and Strict proportionality.

Proposition 4. Let S be a semantics which satisfies Independence, Directionality, Equivalence and Proportionality. For
any G = 〈A, w,R〉 ∈ WAG, for all a, b ∈ A, if

• w(a) ≥ w(b),

• there exists a bijective function f from AttG(a) to AttG(b) such that ∀x ∈ AttG(a), DegSG(x) = DegSG(f(x)),

then DegSG(a) ≥ DegSG(b).

Proposition 5. Let S be a semantics which satisfies Independence, Directionality, Equivalence and Strict Proportional-
ity. For any G = 〈A, w,R〉 ∈ WAG, for all a, b ∈ A, if

• w(a) > w(b),

• there exists a bijective function f from AttG(a) to AttG(b) such that ∀x ∈ AttG(a), DegSG(x) = DegSG(f(x)),

• DegSG(a) > 0,

then DegSG(a) > DegSG(b).

Regarding Neutrality, the idea is that any worthless attacker will not have effect on its target. This is particularly the
case for semantics satisfying Independence, Directionality, Invariance, and Neutrality.

Proposition 6. Let S be a semantics which satisfies Independence, Directionality, Invariance, and Neutrality. For any
G = 〈A, w,R〉 ∈ WAG, for all a, b ∈ A, for any X ⊆ A \ AttG(a), if

• w(a) = w(b),

• AttG(b) = AttG(a) ∪X such that X 6= ∅ and for any x ∈ X , DegSG(x) = 0,

then DegSG(a) = DegSG(b).

The general version of Reinforcement follows from its basic form as well as Independence, Directionality, and
Invariance.

Proposition 7. Let S be a semantics which satisfies Independence, Directionality, Invariance, and Reinforcement. For
any G = 〈A, w,R〉 ∈ WAG, for all a, b ∈ A, If

• w(a) = w(b),

• AttG(a) \ AttG(b) = {x},

• AttG(b) \ AttG(a) = {y},

• DegSG(y) ≥ DegSG(x) > 0,

then DegSG(a) ≥ DegSG(b).

The general version of Strict Reinforcement as defined in [28] follows from its basic form as well as Independence,
Directionality, Maximality, Invariance, and Strict Invariance.
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Proposition 8. Let S be a semantics which satisfies Independence, Directionality, Maximality, Weakening, Invariance,
Strict Invariance and Strict Reinforcement. For any G = 〈A, w,R〉 ∈ WAG, for all a, b ∈ A, If

• w(a) = w(b),

• DegSG(a) > 0,

• AttG(a) \ AttG(b) = {x},

• AttG(b) \ AttG(a) = {y},

• DegSG(y) > DegSG(x) > 0,

then DegSG(a) > DegSG(b).

The generalized Invariance follows from its basic form as well as Independence and Directionality.

Proposition 9. Let S be a semantics which satisfies Independence, Directionality, and Invariance. For any G =
〈A, w,R〉 ∈ WAG, for all a, b, a′, b′ ∈ A, for all X,Y ∈ P(A) \ ∅, if

• w(a) = w(a′),

• w(b) = w(b′),

• AttG(a′) = AttG(a) ∪X ,

• AttG(b′) = AttG(b) ∪ Y ,

• there exists a bijective function f from X to Y such that for any x ∈ X , DegSG(x) = DegSG(f(x))

then the following holds: if DegSG(a) ≥ DegSG(b) then DegSG(a′) ≥ DegSG(b′).

Similarly, the generalized Strict Invariance follows from its basic form as well as Independence and Directionality.

Proposition 10. Let S be a semantics which satisfies Independence, Directionality, and Strict Invariance. For any
G = 〈A, w,R〉 ∈ WAG, for all a, b, a′, b′ ∈ A, for all X,Y ∈ P(A) \ ∅, if

• w(a) = w(a′),

• w(b) = w(b′),

• AttG(a′) = AttG(a) ∪X ,

• AttG(b′) = AttG(b) ∪ Y ,

• there exists a bijective function f from X to Y such that for any x ∈ X , DegSG(x) = DegSG(f(x))

• DegSG(a′) > 0,

then the following holds: if DegSG(a) > DegSG(b) then DegSG(a′) > DegSG(b′).

5.3. Consequences of principles
This section investigates properties of semantics that satisfy some subsets of principles. The first result states that

under some principles, an argument that is attacked only by worthless attackers does not lose weight.

Proposition 11. If a semantics S satisfies Independence, Directionality, Invariance, Neutrality, and Maximality, then for
any G = 〈A, w,R〉 ∈ WAG, for any a ∈ A such that AttG(a) 6= ∅, if for every x ∈ AttG(a), DegSG(x) = 0, then
DegSG(a) = w(a).

In [27, 28], the strict version of Monotony, called Counting, is considered as a principle. It ensures that each attacker
impacts its target as soon as it has a strictly positive strength.

Definition 6 (Counting). A semantics S satisfies Counting iff for any G = 〈A, w,R〉 ∈ WAG, for all a, b, x ∈ A, if

• w(a) = w(b),
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• AttG(b) = AttG(a) ∪ {x} with x /∈ AttG(a) and DegSG(x) > 0,

• DegSG(a) > 0,

then DegSG(a) > DegSG(b).

Counting follows from more elementary principles, namely Independence, Directionality, Neutrality, Maximality,
Strict Weakening, Invariance, and Strict Invariance.

Proposition 12. If a semantics S satisfies Independence, Directionality, Neutrality, Maximality, Strict Weakening, In-
variance, and Strict Invariance, then it satisfies Counting.

We show next that, roughly speaking, an argument which loses its entire basic weight cannot become better off if it
is further attacked.

Proposition 13. If a semantics S satisfies Anonymity, Independence, Directionality, Neutrality, Monotony, Invariance,
and Reinforcement, then for any G = 〈A, w,R〉 ∈ WAG, for any a, b ∈ A such that

• w(a) = w(b),

• AttG(a) \ AttG(b) = {x},

• AttG(b) \ AttG(a) = {y},

• DegSG(y) ≥ DegSG(x),

if DegSG(a) = 0, then DegSG(b) = 0.

A semantics satisfying Independence, Directionality, Invariance, Neutrality, Maximality, and Weakening, assigns to
each argument a value between 0 and its basic weight.

Theorem 1. If a semantics S satisfies Independence, Directionality, Invariance, Neutrality, Maximality, and Weakening,
then for any G = 〈A, w,R〉 ∈ WAG, for any a ∈ A, DegSG(a) ∈ [0, w(a)].

The next result delimits the subset of arguments in a weighted argumentation graph which may impact the strength of
a given argument. Before introducing the formal result, let us first introduce the notion of attack structure of an argument.

Definition 7 (Attack Structure). For any G = 〈A, w,R〉 ∈ WAG, for any a ∈ A, the attack structure of a in G is
StrG(a) = {a} ∪ {x ∈ A | there is a path from x to a}.

Example 5. Consider the weighted argumentation graph G5 depicted below, where each argument has basic weight
equal to 1. The attack structure of a is StrG5

(a) = {a, d, h}.

g c a d h

Theorem 2. If a semantics S satisfies Independence and Directionality, then for any G = 〈A, w,R〉 ∈ WAG, for any
a ∈ A, the following holds:

DegSG(a) = DegSG|StrG(a)
(a).

Example 5 (Cont) The previous theorem ensures that only h and d are taken into account in the evaluation of a by any
semantics satisfying Independence and Directionality.

We also show that any pair of arguments which have similar attack structures get the same strengths.

Theorem 3. Let S be a semantics which satisfies Anonymity, Independence and Directionality. For any G = 〈A, w,R〉 ∈
WAG, for all a, b ∈ A, if there exists an isomorphism f : G|StrG(a) → G|StrG(b) such that f(a) = b, then

DegSG(a) = DegSG(b).

Another property which follows from a subset of principles is Counter-Transitivity, which was introduced in [20] for
ranking semantics in the case of non-weighted graphs. It states that: “if the attackers of an argument b are at least as
numerous and strong as those of an argument a, then a is at least as strong as b”.
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Theorem 4. If a semantics S satisfies Independence, Directionality, Invariance, Reinforcement, Maximality, Neutrality,
and Weakening, then for any G = 〈A, w,R〉 ∈ WAG and any a, b ∈ A, if

• w(a) = w(b),

• there exists an injective function f from AttG(a) to AttG(b) such that ∀x ∈ AttG(a), DegSG(x) ≤ DegSG(f(x)),

then DegSG(a) ≥ DegSG(b).

In case of flat argumentation graphs, it was shown in [27] that any semantics which satisfies Anonymity, assigns
the same strength to any argument of an elementary cycle. This result still holds in the case of weighted argumentation
graphs, namely when the arguments of the elementary cycle all have the same basic weights. Indeed, suppose that we are
given an elementary cycle a1, . . . , an and consider the bijection f such that f(a1) = a2, . . ., f(an−1) = an, f(an) = a1.
Observe that f is an isomorphism. Then from Anonymity, we obtain that for every i, j, DegSG(ai) = DegSG(aj).

6. Analysis of Some Existing Semantics

While semantics dealing with flat graphs have already been analysed in [21, 27], in this section we present the first
analysis and comparison of existing semantics devoted to weighted argumentation graphs. We focus on semantics that
can deal with graphs with cycles 3 and we present our results in Table 1.

We distinguish two families of semantics: The first family extends Dung’s semantics with preferences between argu-
ments (e.g. [11, 31, 32, 33, 61]), or with weights on attacks (e.g. [62, 63, 64]). In case of preferences, an argumentation
framework takes as input a finite set A of arguments, a binary attack relationR between them, and a preference relation
� between arguments. The relation � is a (partial or total) preorder, and � is its strict version. For two arguments a, b,
the notation a � b means that the argument a is at least as preferred as b. In [31, 32, 33], the preference relation is
abstract and may capture different issues like differences in certainty degrees of information involved in arguments, dif-
ferences in trustworthiness of arguments’ sources, etc. In [11], the preference relation captures differences of importance
of values promoted by arguments. Finally, in [61], it captures priorities between rules used in arguments. There are two
approaches for dealing with preferences: contraction-based and change-based.

The contraction-based approach is followed in [11, 31, 32] and its basic idea is shrinking attacks by getting rid of
those whose source is weaker than the target before computing extensions. Indeed, from an input 〈A,R,�〉, a new flat
argumentation graph 〈A,Rc〉 is computed as follows:

Rc = {(a, b) | (a, b) ∈ R and b 6� a}.

Change-based approach was introduced for the first time in [33], then used in [61], for solving a drawback of the
contraction-based approach. Indeed, when the original attack relation R is not symmetric, the extensions of the graph
〈A,Rc〉may be conflicting, which is incompatible with the essence of extensions. Amgoud and Vesic [33] then proposed
a set of axioms that an extension-based semantics should satisfy. They have then shown that such a semantics amounts
to reversing the direction of each attack whose target is stronger than the source. Thus, from an input 〈A,R,�〉, a new
flat argumentation graph 〈A,Rr〉 is computed as follows:

Rr = {(a, b) | (a, b) ∈ R and b 6� a} ∪ {(b, a)|(a, b) ∈ R and b � a}.

In both approaches, the classical semantics of Dung [13] are applied to the new graphs (〈A,Rc〉, 〈A,Rr〉). Those
semantics are based on two key concepts: conflict-freeness and defense. Let x ∈ {c, r}.

• E ⊆ A is conflict-free iff @a, b ∈ E such that (a, b) ∈ Rx.

• E ⊆ A defends a ∈ A iff ∀b ∈ A, if (b, a) ∈ Rx, then ∃c ∈ E such that (c, b) ∈ Rx.

The four semantics (grounded, complete, stable, preferred) we investigate in this paper are recalled below. Let E ⊆ A.

• E is an admissible extension iff it is conflict-free and defends all its elements.

• E is a complete extension iff it is admissible and contains all the arguments it defends.

3We also include Counting (introduced in Definition 6) in the table since it is considered to be a principle in several papers in the literature [27, 28].
The goal is to allow the reader to have a full overview in the same table.
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• E is a grounded extension iff it is the minimal (wrt set inclusion) complete extension.

• E is a preferred extension iff it is a maximal (wrt set inclusion) admissible extension.

• E is a stable extension iff it is conflict-free and ∀a ∈ A \ E , ∃b ∈ E such that (b, a) ∈ Rx.

Given a set of extensions, the most common way to assign a (qualitative) strength to an argument a ∈ A (see [14, 16, 42,
38, 43]) is as follows:

• a is sceptically accepted if it belongs to all extensions,

• a is credulously accepted if it belongs to some but not all extensions,

• a is rejected if it does not belong to any extension.

Let us now analyse how this approach works when the input consists of a weighted graph G = 〈A, w,R〉. The
question of how to define a preference relation � between arguments has already been answered in [31]. The idea is
simply to privilege arguments with the highest basic weight. Indeed, for a, b ∈ A, a is preferred to b (i.e., a � b) iff
w(a) ≥ w(b). A new flat graph 〈A,Rx〉 (with x ∈ {c, r}) is then generated as explained above and Dung’s semantics
are applied to 〈A,Rx〉. The last issue to solve is transforming the three-valued qualitative scale of strengths of arguments
into a numerical one. Amgoud and Ben-Naim [27] proposed the following translation: for any a ∈ A, if 〈A,Rx〉 has no
extensions, then DegSG(a) = 0.3. Otherwise,

• DegSG(a) = 1 iff a belongs to all extensions.

• DegSG(a) = 0.5 iff a is in some but not all extensions.

• DegSG(a) = 0.3 iff a does not belong to any extension and is not attacked by any extension.

• DegSG(a) = 0 iff a does not belong to any extension and is attacked by at least one extension.

Note that the above definition distinguishes between two types of rejected arguments: those that are attacked by at
least one extension, and those that are not attacked by any extension. We generalize the previous definition by replacing
the “magic numbers” 0.3 and 0.5 with β and α respectively such that 0 < β < α < 1. The results of our analysis (see
Table 1) are independent of the exact values of the two parameters.

So far, we have shown how strengths of arguments can be computed in weighted graphs with existing preference-
based argumentation frameworks. We are thus ready to analyse the proposed semantics against the set of principles
described in this paper. Table 1 summarizes the properties of grounded, complete, preferred and stable semantics.
It shows that most principles, including Strict Weakening, are violated by the four semantics. Remember that Strict
Weakening principle defines formally the role of attacks. It states that each attacked argument should lose weight. The
four semantics violate this principle, and an argument may not lose weight even when attacked by an alive attacker.
Maximality is also violated since those semantics manipulate the preference relation issued from basic weights rather
than the basic weights themselves. The table also shows that in the case of a dilemma between the quality and the quantity
of attackers, the four semantics allow compensation. Finally, while preferred and complete semantics satisfy and violate
the same principles, preferred and stable do not behave in the same way regarding Independence, Directionality and
Neutrality. The grounded semantics satisfies two more principles than preferred semantics: Neutrality and Weakening
Soundness.

In [62, 63, 64], the input is a finite setA of arguments, an attack relationR between arguments, and weights from the
unit interval [0, 1] assigned to attacks. It was shown in [63] that when all attacks are assigned weight 1, the framework
coincides with Dung’s one [13], namely a simple flat argumentation graph whose arguments are evaluated by extension
semantics. Furthermore, a flat argumentation graph can be seen as a weighted graph whose arguments are all assigned
a basic weight equal to 1. The properties of grounded, complete, stable, preferred semantics in the case of flat graphs
were already investigated in [27]. Obviously, every principle violated by a semantics in the flat case is also violated by
the same semantics in the weighted case and in the settings of [62, 63, 64]. Among the violated principles we mention
Independence by stable semantics, Equivalence and Weakening Soundness by complete, stable and preferred semantics,
Strict Proportionality and Resilience by the four semantics. It was shown in [27] that under the four semantics, attacks
either completely kill their targets (the targets get degree 0) or have no effect.

The second family of semantics deals with basic weights, defines functions assigning a numerical degree to each
argument, computes arguments’ degrees in an iterative way, and does not resort to the intermediate step of computing
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extensions. The first semantics of this family is Trust-based (TB) which has been proposed by Da Costa et al. [12]. TB
takes as input a weighted argumentation graph G = 〈A, w,R〉 where w(.) expresses the degree of trustworthiness of
argument’s source. It assigns to each argument a ∈ A a strength, which is the limit reached by the scoring function f
defined as follows:

DegTBG (a) = lim
i→+∞

fi(a), where

fi(a) =
1

2
fi−1(a) +

1

2
min[w(a), 1−max

bRa
fi−1(b)] (1)

It is worth mentioning that the strengths of arguments satisfy equation 1, namely

DegTBG (a) =
1

2
DegTBG (a) +

1

2
min[w(a), 1−max

bRa
DegTBG (b)],

hence

DegTBG (a) = min[w(a), 1−max
bRa

DegTBG (b)]. (2)

However, the equation (2) may have more than one solution meaning that it is not a characterization of TB. To illustrate,
consider the weighted argumentation graph below with both arguments having basic weight 1:

a b

TB returns a single value to each argument, namely DegTBG (a) = DegTBG (b) = 0.5. However, it is easy to check that
equation (2), simplified into DegTBG (a) = 1−max

bRa
DegTBG (b), has several solutions including:

• DegTBG (a) = DegTBG (b) = 0.5,

• DegTBG (a) = 1 and DegTBG (b) = 0,

• DegTBG (a) = 0 and DegTBG (b) = 1,

• . . .

Like extension semantics, Table 1 shows that TB follows the compensation strategy in the case of a dilemma between
quality and quantity of attackers. However, it satisfies more principles than the four previous semantics. It violates the
key principle of Strict Weakening meaning that an argument may not lose weight even if it is seriously attacked. Similarly,
it violates Strict Invariance showing that the number of attackers does not necessarily impact the strengths of arguments.
This is not surprising since TB extends the labelling approach of extension semantics with weights on arguments.

Gabbay and Rodrigues [34] developed a semantics, called Iterative Schema (IS), for evaluating arguments in weighted
argumentation graphs (G = 〈A, w,R〉), where basic weights of arguments may represent different issues. Like TB, this
semantics aims at extending the labelling approach of extension-based semantics by taking labels from the unit interval
[0, 1] rather than {in, out, und}. Like TB, IS returns a single labelling for every graph. In this labelling, the value of
each argument is the limit reached by iterative applications of a scoring function g. At the initial step, this function
assigns to each argument a its basic weight (w(a)), and at each step, it recomputes the value of a on the basis of its value
and those of its attackers at the previous step.

gi(a) = (1− gi−1(a))min{1
2
, 1−max

bRa
gi−1(b)}+ gi−1(a)max{1

2
, 1−max

bRa
gi−1(b)}

Once the single labelling is computed, IS returns a single extension which contains all the arguments that get value 1.
Table 1 shows that IS and Mbs (which will be introduced in the next section) are the only semantics that satisfy Quality
Precedence. However, IS violates key principles like Maximality, and thus may return counter-intuitive results. Assume
a graph made of a single argument a, which is not attacked and whose basic weight is 0. IS returns a single extension,
{a}, thus declaring a as accepted.

Another semantics of the second family is Simple Product (SP), which was proposed by Leite and Martins [10].
It takes as input a set of arguments, positive and/or negative votes on each argument, and an attack relation between
arguments. The basic weight w(.) can be seen as an aggregation of the votes on an argument. Like TB, the semantics
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uses a scoring function which assigns values to arguments in an iterative way. In their paper, Leite and Martins conjecture
that the function converges and assigns a single value to each argument. A counter-example was unfortunately found
recently in [65] showing that the semantics may assign more than one value to an argument. Hence, the semantics is not
compatible with Definition 5 and will not be investigated here. Table 1 summarizes the results concerning semantics that
deal with cyclic weighted argumentation graphs.

Theorem 5. The properties of Table 1 hold.

Baroni et al. [18] focused on bipolar acyclic graphs, i.e., graphs where arguments may be attacked and supported
but without forming cycles. Those graphs are weighted since each argument has a basic weight, which may represent
different issues. The authors developed a semantics called QuAD, which was later extended to DF-QuAD by Rago et
al. [19]. The two semantics coincide when the support relation is empty, i.e., in the case of weighted argumentation
graphs as studied in our paper. In what follows, we study the properties of DF-QuAD in the particular case of a weighted
argumentation graph G = 〈A, w,R〉. The strength of any a ∈ A is defined as follows:

Deg
DF−QuAD
G (a) = w(a)×

∏
bRa

(1− Deg
DF−QuAD
G (b)). (3)

If an argument a has no attackers, then Deg
DF−QuAD
G (b) = 0, and hence DegDF−QuADG (a) = w(a). It is worth noticing

that (DF-)QuAD is not applicable for graphs containing cycles since it does not guarantee uniqueness of strength for
each argument. Consider the previous two-length cycle. The degrees of the two arguments a and b are as follows:{

Deg
DF−QuAD
G (a) = 1− Deg

DF−QuAD
G (b)

Deg
DF−QuAD
G (b) = 1− Deg

DF−QuAD
G (a)

Solving the two equations amounts to solving DegDF−QuADG (a)+Deg
DF−QuAD
G (b) = 1. The latter has several solutions

including Deg
DF−QuAD
G (a) = 1, DegDF−QuADG (b) = 0 and Deg

DF−QuAD
G (a) = 0, DegDF−QuADG (b) = 1. The

following result summarizes the list of principles satisfied/violated by DF-QuAD.

Theorem 6. (DF-)QuAD violates Strict Invariance, Strict Proportionality, Resilience, QP and CP. It satisfies all the
remaining ones.

Like all the semantics reviewed so far, (DF-)QuAD follows the compensation strategy but it satisfies more principles.
Note also that with (DF-)QuAD, an argument may lose its entire strength (i.e., get strength 0).

7. Three Novel Semantics

We have previously seen that all existing semantics violate the resilience principle. This section introduces three
novel semantics that satisfy the principle: one for each of the three incompatible principles (QP, CP, Compensation).
Weighted max-based semantics satisfies Quality Precedence, Weighted cardinality-based semantics satisfies Cardinality
Precedence, and weighted h-Categorizer satisfies Compensation.

7.1. Weighted Max-Based Semantics (Mbs)
The first semantics satisfies quality precedence, thus it favors the quality of attackers over their cardinality. It is based

on a scoring function which follows a multiple step process. At each step, the function assigns a score to each argument.
In the initial step, the score of an argument is its basic weight. Then, in each step, the score is recomputed on the basis
of the basic weight as well as the score of the strongest attacker of the argument at the previous step.

Definition 8 (fm). Let G = 〈A, w,R〉 ∈ WAG. We define the weighted max-based function fm fromA to [0, 1] as follows:
for any argument a ∈ A, for i ∈ {0, 1, 2, . . .},

fim(a) =

 w(a) if i = 0
w(a)

1+ max
b∈AttG(a)

fi−1
m (b)

otherwise

By convention, max
b∈AttG(a)

fim(b) = 0 if AttG(a) = ∅.

The value fim(a) is the score of the argument a at step i. This value may change at each step, however, it converges to
a unique value as shown in the next theorem.
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Family of semantics Extension semantics Gradual semantics
Contraction-based Change-based

Grd Stb Prf Com Grd Stb Prf Com TB IS Mbs Cbs Hbs
Anonymity • • • • • • • • • • • • •
Independence • × • • • × • • • • • • •
Directionality • × • • × × × × • • • • •
Maximality × × × × × × × × • × • • •
Weakening × × × × × × × × • × • • •
Strict Weakening × × × × × × × × × × • • •
Weakening Soundness • × × × • × × × • • • • •
Resilience × × × × × × × × × × • • •
Proportionality • • • • × × × × • • • • •
Strict Proportionality × × × × × × × × × × • • •
Monotony • • • • × × × × × • • • •
Neutrality • • × × × × × × • • • • •
Reinforcement × × × × × × × × • • • • •
Strict Reinforcement × × × × • • × × × • • • •
Symmetry • • • • × × × × • • • • •
Equivalence × × × × × × × × • • • • •
Invariance × × × × × × × × • • • • •
Strict invariance × × × × × × × × × × × • •
Cardinality Precedence × × × × × × × × × × × • ×
Quality Precedence × × × × × × × × × • • × ×
Compensation • • • • • • • • • × × × •
Counting × × × × × × × × × × × • •

Table 1: The symbol • (resp. ×) stands for satisfied (resp. violated).



Theorem 7. The function fim converges as i approaches infinity.

Weighted max-based semantics is based on the previous scoring function. The strength of each argument is the limit
reached using the scoring function fm.

Definition 9 (Mbs). The weighted max-based semantics is a function Mbs transforming any G = 〈A, w,R〉 ∈ WAG into
a weighting DegMbsG on A such that for any a ∈ A, DegMbsG (a) = lim

i→+∞
fim(a).

In what follows, the values are rounded to two decimal places.

Example 1 (Cont) The strengths of the three arguments of the weighted argumentation graph G1 according to Mbs are
as follows: DegMbsG1

(a) = 0.01, DegMbsG1
(b) = 0.90, DegMbsG1

(c) = 0.13. Thus, DegMbsG1
(b) > DegMbsG1

(c) > DegMbsG1
(a). Note

that even if a is not attacked, it is weaker than c because of its weak basic weight.

Example 2 (Cont) The strengths of the three arguments of the weighted argumentation graph G2 according to Mbs are
as follows: DegMbsG2

(a) = 0.31, DegMbsG2
(b) = 0.12, DegMbsG2

(c) = 0.60.

Example 3 (Cont) The strengths of the four arguments of the weighted argumentation graph G3 according to Mbs are as
follows: DegMbsG3

(a) = 0.50, DegMbsG3
(b) = 0.17, DegMbsG3

(c) = 0.90, DegMbsG3
(d) = 0.13.

Example 4 (Cont) Consider the graph G4. Since the graph is acyclic, the strengths can be calculated in two steps as
follows:

i a b c d g h j
0 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1 0.50 0.50 0.50 0.50 1.00 1.00 1.00
2 0.67 0.50 0.50 0.50 1.00 1.00 1.00

The strengths of the seven arguments of the weighted argumentation graph G4 according to Mbs are as follows:
DegMbsG4

(g) = 1.00, DegMbsG4
(h) = 1.00, DegMbsG4

(c) = 0.50, DegMbsG4
(d) = 0.50, DegMbsG4

(a) = 0.67, DegMbsG4
(j) = 1.00,

DegMbsG4
(b) = 0.50. Note that DegMbsG4

(a) > DegMbsG4
(b).

We show next that the limit scores of arguments satisfy the equation of Definition 8.

Theorem 8. For any G = 〈A, w,R〉 ∈ WAG, for any a ∈ A,

DegMbsG (a) =
w(a)

1 + max
b∈AttG(a)

DegMbsG (b)
. (4)

The next result states that equation (4) is not just a property of weighted max-based semantics, but also its charac-
terization. Indeed, it is the only function satisfying the equation. Due to this characterization, equation (4) represents an
alternative definition of weighted max-based semantics (Definition 9).

Theorem 9. Let G = 〈A, w,R〉 ∈ WAG and D : A → [0, 1]. If D(a) = w(a)
1+ max

b∈AttG(a)
D(b) , for all a ∈ A, then

D ≡ DegMbsG .

Weighted max-based semantics satisfies Quality Precedence as well as all the principles which are compatible with
it. It violates Strict Invariance since by definition, this semantics focuses only on the strongest attacker of an argument,
and neglects the remaining ones.

Theorem 10. Weighted max-based semantics satisfies all the principles except Strict Invariance, CP and Compensation.
It also violates Counting.

From the previous result, weighted max-based semantics satisfies Resilience, thus an argument cannot lose its entire
basic strength. The next result goes further by showing that an argument cannot lose more than half of its basic weight
with this semantics.

Theorem 11. For any G = 〈A, w,R〉 ∈ WAG, for any a ∈ A, DegMbsG (a) ∈ [w(a)
2 , w(a)].

From the previous result it follows that an argument gets value 0 iff its basic weight is already 0.

Corollary 1. Let G = 〈A, w,R〉 ∈ WAG and a ∈ A. For any a ∈ A, DegMbsG (a) = 0 iff w(a) = 0.
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7.2. Weighted Card-Based Semantics (Cbs)

The second semantics, called weighted card-based, favours the number of attackers over their strength. It considers
only founded arguments, i.e., arguments with a strictly positive basic weight. This restriction is based on the consideration
that unfounded arguments are worthless and their attacks are ineffective.

Definition 10 (Founded Argument). Let G = 〈A, w,R〉 ∈ WAG and a ∈ A. The argument a is founded iff w(a) > 0.
It is called unfounded otherwise. Let AttFG(a) denote the set of founded attackers of a.

Weighted card-based semantics is based on a recursive function fc, which assigns a score to each argument on the
basis of its basic weight, the number of its founded attackers, and their scores. The latter (i.e., scores) are considered in
order to ensure the Reinforcement principle, that is to take into account the strength of attackers when it is not in conflict
with their number.

Definition 11 (fc). Let G = 〈A, w,R〉 ∈ WAG. We define the weighted card-based function fc from A to [0, 1] as
follows: for any argument a ∈ A, for i ∈ {0, 1, 2, . . .},

fic(a) =


w(a) if i = 0,

w(a)

1 + |AttFG(a)| +

∑
b∈AttFG(a)

f
i−1
c (b)

|AttFG(a)|

otherwise.

By convention,
∑

b∈AttFG(a)

fi−1c (b) = 0 if AttFG(a) = ∅.

The value fic(a) is the score of the argument a at step i. This value converges to a unique value as i becomes high.

Theorem 12. The function fic converges as i approaches infinity.

The strength of each argument is the limit reached using the scoring function fc.

Definition 12 (Cbs). The weighted card-based semantics is a function Cbs transforming any G = 〈A, w,R〉 ∈ WAG into
a weighting DegCbsG on A such that for any a ∈ A, DegCbsG (a) = lim

i→+∞
fic(a).

Example 1 (Cont) Consider the weighted argumentation graph G1. The strengths of the three arguments according to
Cbs are as follows: DegCbsG1

(a) = 0.01, DegCbsG1
(b) = 0.90, DegCbsG1

(c) = 0.08.

Example 2 (Cont) Consider the weighted argumentation graph G2. The strengths of the three arguments according to
Cbs are as follows: DegCbsG2

(a) = 0.19, DegCbsG2
(b) = 0.07, DegCbsG2

(c) = 0.60. Note that DegCbsG2
(a) > DegCbsG2

(b) even if the
two arguments are attacked by the same argument. As we will show next, this semantics satisfies (Strict) Proportionality,
that is the intensity of an attack depends on the basic weight of the target. The stronger the target, the more resistant it is
to attacks.

Example 3 (Cont) Consider now the weighted argumentation graph G3. The strengths of the four arguments according
to Cbs are as follows: DegCbsG3

(a) = 0.50, DegCbsG3
(b) = 0.10, DegCbsG3

(c) = 0.90, DegCbsG3
(d) = 0.08. Note that b and d

have the same basic weight but d loses more weight since its attacker is stronger than the attacker of b. This shows, as
we will see, that the semantics satisfies (Strict) Reinforcement.

Example 4 (Cont) Consider the weighted argumentation graph G4. Since the graph is acyclic, the strengths can be
calculated in two steps as follows:

i a b c d g h j
0 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1 0.25 0.33 0.33 0.33 1.00 1.00 1.00
2 0.30 0.33 0.33 0.33 1.00 1.00 1.00

The strengths of the arguments according to Cbs are as follows: DegCbsG4
(g) = 1.00, DegCbsG4

(h) = 1.00, DegCbsG4
(c) =

0.33, DegCbsG4
(d) = 0.33, DegCbsG4

(a) = 0.30, DegCbsG4
(j) = 1.00, DegCbsG4

(b) = 0.33. Note that DegCbsG4
(b) > DegCbsG4

(a).

We show next that the limit scores of arguments satisfy the equation of Definition 11.
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Theorem 13. For any G = 〈A, w,R〉 ∈ WAG, for any a ∈ A,

DegCbsG (a) =
w(a)

1 + |AttFG(a)|+

∑
b∈AttFG(a)

DegCbsG (b)

|AttFG(a)|

. (5)

We also show that equation (5) represents an alternative definition of weighted card-based semantics, i.e., DegCbsG is
the only function which satisfies the equation (2).

Theorem 14. Let G = 〈A, w,R〉 be a finite WAG, and let D : A → [0, 1]. If

D(a) =
w(a)

1 + |AttFG(a)|+

∑
b∈AttFG(a)

D(b)

|AttFG(a)|

,

for all a ∈ A, then D ≡ DegCbsG .

As shown next, the weighted card-based semantics satisfies Cardinality Precedence as well as all the principles that
are compatible with it. Table 1 also shows that Cbs is the first semantics in the literature that satisfies CP and deals with
weighted argumentation graphs. In [20], two ranking semantics (Burden-based semantics (Bbs) and Discussion-based
semantics (Dbs)) that satisfy CP were proposed but for flat (i.e., non-weighted) graphs.

Theorem 15. Weighted card-based semantics satisfies all the principles except Quality Precedence and Compensation.

The next result follows from the two theorems 13 and 1. It shows the lower and upper bounds of the strength of an
argument, as obtained with Cbs.

Theorem 16. For any WAG G = 〈A, w,R〉, for any a ∈ A, DegCbsG (a) ∈ [ w(a)
2+|AttFG(a)| , w(a)].

As with the max-based semantics, an argument gets value 0 iff its basic weight is already 0.

Corollary 2. Let G = 〈A, w,R〉 ∈ WAG and a ∈ A. For any a ∈ A, DegCbsG (a) = 0 iff w(a) = 0.

7.3. Weighted h-Categorizer Semantics (Hbs)

Weighted h-Categorizer semantics is based on h-Categorizer, initially proposed by Besnard and Hunter [39] for non-
weighted and acyclic graphs. It extends the definition of h-Categorizer to account for varying degrees of basic weights,
and any graph structure. Like the two previous semantics (Mbs and Cbs), Hbs follows a multiple step process. In the
initial step, it assigns to every argument its basic weight. Then, in each step, all the scores are simultaneously recomputed
on the basis of the attackers’ scores in the previous step.

Definition 13 (fh). Let G = 〈A, w,R〉 ∈ WAG. We define the weighted h-Categorizer function fh from A to [0, 1] as
follows: for any a ∈ A, for i ∈ {0, 1, 2, . . .},

fih(a) =


w(a) if i = 0;

w(a)

1+
∑

b∈AttG(a)

fi−1
h (b)

otherwise.

By convention, if AttG(a) = ∅,
∑

b∈AttG(a)

fi−1h (b) = 0.

Like the two previous scoring functions, the function fih converges.

Theorem 17. The function fih converges as i approaches infinity.

According to weighted h-Categorizer, the strength of each argument in a weighted argumentation graph is the limit
reached using the function fh.

Definition 14 (Hbs). The weighted h-Categorizer semantics is a function Hbs transforming any G = 〈A, w,R〉 ∈ WAG

into a weighting DegHbsG on A such that for any a ∈ A, DegHbsG (a) = lim
i→+∞

fih(a).
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In weighted argumentation graphs where each argument is attacked by at most one argument, the two semantics Mbs
and Hbs coincide, that is they return the same values for the arguments.

Proposition 14. Let G = 〈A, w,R〉 ∈ WAG be a weighted argumentation graph such that for any a ∈ A, |AttG(a)| ≤ 1.
For any a ∈ A, DegHbsG (a) = DegMbsG (a).

From the previous result, it follows that Hbs assigns the same strengths as Mbs to the arguments of the three weighted
argumentation graphs G1,G2 and G3. However, the two semantics assign different values to argument a of the graph
G4.

Example 4 (Cont) Consider the weighted argumentation graph G4. Since the graph is acyclic, the strengths can be
calculated in two steps as follows:

i a b c d g h j
0 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1 0.33 0.50 0.50 0.50 1.00 1.00 1.00
2 0.50 0.50 0.50 0.50 1.00 1.00 1.00

The strengths of the arguments according to Hbs are as follows: DegHbsG4
(g) = 1.00, DegHbsG4

(h) = 1.00, DegHbsG4
(c) =

0.50, DegHbsG4
(d) = 0.50, DegHbsG4

(a) = 0.50, DegHbsG4
(j) = 1.00, DegHbsG4

(b) = 0.50. Note that DegHbsG4
(a) = DegHbsG4

(b),
thus Hbs follows a compensation strategy.

We now show that the limit scores of arguments (thus their strengths) satisfy the equation of Definition 13.

Theorem 18. For any G = 〈A, w,R〉 ∈ WAG, for any a ∈ A,

DegHbsG (a) =
w(a)

1 +
∑

b∈AttG(a)

DegHbsG (b)
. (6)

The following theorem states that equation (6) is a characterization of weighted h-Categorizer semantics, i.e., it is
the only function satisfying the equations (3) (one equation per argument).

Theorem 19. Let G = 〈A, w,R〉 ∈ WAG, and D : A → [0, 1]. If D(a) = w(a)
1+

∑
b∈AttG(a)

D(b) , for all a ∈ A, then

D ≡ DegHbsG .

The weighted h-Categorizer semantics satisfies compensation as well as all the principles that are compatible with it.
Table 1 shows that Hbs is the only semantics in the literature that satisfies all the principles compatible with compensation,
and for any structure of graphs. In the particular case of acyclic graphs, the (DF-)QuAD semantics satisfies the same
principles except Resilience. Indeed with DF-QuAD, an argument may lose its entire strength (i.e., get strength 0) while
this is not possible with Hbs unless the basic weight of the argument is 0.

Theorem 20. Weighted h-Categorizer semantics satisfies all the principles except CP and QP.

The lower and upper bounds of the strength of each argument are identified.

Theorem 21. Let G = 〈A, w,R〉 ∈ WAG. For any a ∈ A, DegHbsG (a) ∈ [ w(a)
1+|AttG(a)| , w(a)].

Like the two previous semantics, an argument gets value 0 with Hbs iff its basic weight is already 0.

Corollary 3. Let G = 〈A, w,R〉 ∈ WAG and a ∈ A. For any a ∈ A, DegHbsG (a) = 0 iff w(a) = 0.
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8. Experimental Analysis

In order to check the performance of the three novel semantics (Mbs, Cbs, Hbs), we experimentally investigated, for
each semantics, the number of iterations and the time needed to calculate the strengths of arguments. We used Algorithm
1 to calculate the result.

Input: a weighted graph, precision ε, maximal number of steps maxSteps
Result: the score of each argument
set the number of iterations to 0;
initialize the current scores of arguments by setting the score of each argument to its initial weight;
calculate new scores by using the corresponding formula (from equation 4, 5 or 6);
while there exists an argument ai s.t. the difference between the current and new score of ai is greater than ε do

number of iterations = number of iterations + 1;
current scores = new scores;
update new scores by using the corresponding formula (from equation 4, 5 or 6);
if the number of iterations is equal to maxSteps then

break;
end
if number of iterations < maxSteps then

we successfully calculated the scores with precision ε;
else

we reached the maximal number of iterations before reaching the desired precision;
end

Algorithm 1: Algorithm used to calculate arguments’ scores

An important step consists of choosing the set of benchmarks, i.e., the set of argumentation graphs on which the three
semantics will be applied. There exist two families of benchmarks in the argumentation literature. The first is used for
testing the performance of solvers on Dung’s semantics in the International Competition on Computational Models of
Argumentation [66]. The second family of benchmarks in [35] is used for testing the performance of gradual semantics.
In our work, we use the latter since our semantics are gradual. More precisely, we consider four datasets: Erdős-Rényi
dataset, Barabási-Albert dataset, Kleinberg dataset, and Sophia Antipolis dataset. The first three are well-known random
graph models with respectively 100 to 300 arguments, 30 to 20000 arguments, and 9 to 900 arguments. The concrete
graphs we used were generated by Bistarelli [36] and are freely downloadable4. The fourth dataset was generated by
Pereira et al. [35] by combining different argumentation patterns from the literature. It can also be found online5. Its
graphs contain between 5000 and 100000 arguments. A common feature of the graphs of the four datasets is that they
are flat, i.e., arguments do not have basic weights.

We implemented the three semantics in Java, and the solvers ran on a cluster of identical computers with two pro-
cessors Intel XEON E5-2643 - 4 cores - 3.3 GHz running CentOS 6.0 x86 64 with 32 GB of memory, using the tool
runsolver [67].

It is worth mentioning that our goal was not to produce the fastest possible solver but to check two aspects: the
average number of iterations needed to get the strengths of arguments, and the general tendency in time when the number
of arguments increases. For that purpose, we run the experiments twice: once we attributed random basic weights
to arguments, and once we attributed the basic weight 1 to all arguments. Furthermore, the iterative algorithms stop
when the difference in scores between two successive iterations is less than 0.001 for each argument. The results are
shown in Figures 5-16. Note that we used the following abbreviations: max (for weighted max-based semantics), card
(for weighted card-based semantics), h (for weighted h-Categorizer semantics), iter (for number of iterations needed to
calculate the scores), time (for time needed to calculate the scores), rand (for arguments are given random initial weights),
eq (for each argument’s basic weight is set to 1). For example, max-iter-rand stands for the number of iterations needed
to calculate the scores when using max-based semantics and when arguments are assigned random basic weights.

Considering the Erdős-Rényi dataset, Figure 5 shows that the number of iterations is limited to 18. The least number
of iterations is needed for card-based semantics, max-based semantics is in the middle and h-Categorizer semantics
needs the greatest number of iterations in order to calculate the scores. Using random basic weights results in slightly
smaller number of iterations. Figure 6 shows the time in milliseconds needed to calculate the result when arguments are

4http://www.dmi.unipg.it/conarg/dwl/networks.tgz
5https://goo.gl/pN1M9r
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Figure 5: Number of iterations on Erdős-Rényi dataset. The x axis shows the number of arguments. The y axis shows the number of iterations.

Figure 6: Time on Erdős-Rényi dataset when arguments are attributed random initial weights. The x axis shows the number of arguments. The y axis
shows the time in milliseconds.

attributed random initial weights. The fastest semantics is the card-based one, h-Categorizer is in the middle, whereas
the max-based semantics is the slowest one. Figure 7 shows the time in milliseconds needed to calculate the result when
arguments are attributed equal initial weights. Max-based and card-based semantics still show quasi linear behavior, but
there are six graphs with 150 arguments where h-Categorizer took more time than would be expected.

Considering the Barabási-Albert dataset, Figure 8 shows that the number of iterations is limited to 8. All three
semantics give similar results. Figures 9 and 10 show the time (in thousands of seconds) needed to calculate the result in
function of the number of arguments (in thousands). The three semantics have similar performances that do not change
a lot in function of the initial weights (random or equal).

Considering the Kleinberg dataset, Figure 11 shows that the number of iterations is limited to 18. The least number of
iterations is needed for card-based semantics, max-based semantics is in the middle and h-Categorizer semantics needs
the greatest number of iterations in order to calculate the scores. Using random initial weights results in slightly smaller
number of iterations. Figures 12 and 13 show the time in milliseconds needed to calculate the result. The convergence
is very fast. We see that h-Categorizer is clearly the slowest semantics in the case of equal initial weights, whereas this
cannot be said for the case with random initial weights. However, all the semantics converge very fast and we do not
think this difference is significant.

Considering the Sophia Antipolis dataset, Figure 14 shows that the number of iterations is limited to 12. The least
number of iterations is needed for card-based semantics, max-based semantics is in the middle and h-Categorizer se-
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Figure 7: Time on Erdős-Rényi dataset when arguments’ initial weights are set to 1. The x axis shows the number of arguments. The y axis shows the
time in milliseconds.

Figure 8: Number of iterations on Barabási-Albert dataset. The x axis shows the number of arguments in thousands. The y axis shows the number of
iterations.
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Figure 9: Time on Barabási-Albert dataset when arguments are attributed random initial weights. The x axis shows the number of arguments in
thousands. The y axis shows the time in thousands of seconds.

Figure 10: Time on Barabási-Albert dataset when arguments’ initial weights are set to 1. The x axis shows the number of arguments in thousands. The
y axis shows the time in thousands of seconds.
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Figure 11: Number of iterations on Kleinberg dataset. The x axis shows the number of arguments. The y axis shows the number of iterations.

Figure 12: Time on Kleinberg dataset when arguments are attributed random initial weights. The x axis shows the number of arguments. The y axis
shows the time in milliseconds.
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Figure 13: Time on Kleinberg dataset when arguments’ initial weights are set to 1. The x axis shows the number of arguments. The y axis shows the
time in milliseconds.

mantics needs the greatest number of iterations in order to calculate the scores. Using random initial weights results in
slightly smaller number of iterations. Figures 15 and 16 show the time (in thousands of seconds) needed to calculate the
result in function of number of arguments (in thousands). We see that h-Categorizer is clearly the slowest semantics in
both cases, whereas the card-based semantics is the fastest.

To sum up, the number of iterations is always less then 20, even for graphs with 100000 arguments. It seems that
the number of iterations is constant with respect to the graph size, which shows that our algorithms scale well. The time
needed is low, and what is especially important, all graph topologies are treatable even for big graph sizes. Namely, no
instances timed-out or crashed. Our algorithms always converge. The worst run time (i.e. h-Categorizer on the graphs
with 100000 arguments) was around 2250 seconds. There is a tendency for all three semantics to converge slightly faster
when initial weights are attributed in a random way. Note that the difference is not very big (around 10%).

9. Related Work

There are some notable works in the literature that have been concerned by the definition and/or analysis of principles.
Baroni et al. [30] discussed principles for weighted bipolar graphs. They focused on principles that were suggested in

different papers in the literature, namely in [27, 59, 28]. In those papers, we defined principles as elementary properties
that cannot be further decomposed into more elementary ones. Some of those principles were generalized in [30] for
dealing with other scales of argument strength, and others were grouped into meta-level properties. In the present paper,
we still prefer elementary principles to meta-level ones because they allow a clear understanding of the set of rules
underlying semantics, and a better comparison of semantics. Assume for instance a meta-level principle P which implies
two elementary ones P1 and P2. Assume also two semantics S1 and S2 that violate P but S1 satisfies P1 and S2 instead
satisfies P2. Note that the two semantics cannot be distinguished by P. However, the two elementary properties clarify
the rules underlying each semantics and specify the difference between S1 and S2. To summarize, while our paper is
more concerned with proposing concrete principles and studying whether they are satisfied by semantics, the goal in [30]
is not necessarily to define novel principles but rather to show how to represent in a compact way existing ones within a
generalized framework.

Bonzon et al. [68] introduced a novel principle for ranking semantics, which states that the longer a line of defence of
an argument, the less it has impact on the argument. They argued that this principle is suitable in persuasion dialogues.
In [21], they used the principles proposed in [20, 69, 70] for comparing existing pure ranking semantics, i.e., ranking
semantics that do not compute numerical/qualitative strengths of arguments. In our paper, we rather focused on gradual
semantics, i.e. those that compute strengths. The second main difference with [21] lies in the fact that most principles
considered in [21] are high-level properties. For instance, they use counter-transitivity (CT) from [20] which states that
the more an argument is attacked and the stronger its attackers, the weaker it is. We have shown that CT is a consequence
of a couple of elementary principles. As a third difference, in [21] the authors considered flat graphs, i.e., arguments do
not have basic weights while we focused on weighted graphs.
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Figure 14: Number of iterations on Sophia Antipolis dataset. The x axis shows the number of arguments in thousands. The y axis shows the number
of iterations.

Figure 15: Time on Sophia Antipolis dataset when arguments are attributed random basic weights. The x axis shows the number of arguments in
thousands. The y axis shows the time in thousands of seconds.
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Figure 16: Time on Sophia Antipolis dataset when arguments’ basic weights are set to 1. The x axis shows the number of arguments in thousands. The
y axis shows the time in thousands of seconds.

In [60], the authors extended the principles we presented in [28] for dealing with argumentation graphs whose argu-
ments and attacks are weighted. They also introduced a novel one that captures sensitivity of a semantics to weights of
attack relations. Finally, they extended in various ways our three novel semantics (Hbs, Mbs, Cbs).

More recently, the discussion around similarity in argumentation is gaining more and more interest (e.g. [71, 72,
73, 74]). This is mainly due to noteworthy presence of similar arguments in online debate platforms and also between
logical arguments [75]. Consequently, the authors in [76, 77] investigated gradual semantics that take as input a similarity
measure. They extended some of our principles (like Reinforcement and Monotony) and defined novel ones that are
specific to sensitivity to similarity. In our paper, we assume that arguments are pairwise independent.

In the last few years, there has been an increasing interest in probabilistic argumentation whose aim is handling
uncertainty in an argumentation context. Two approaches are distinguished in [7]: the constellation approach and the
epistemic one. The former handles uncertainty about the topology of an argumentation graph [78, 79]. For instance in
[79], the input is an argumentation graph and two functions assigning respectively for each argument and each attack the
likelihood of its existence. These probabilities are used for generating probabilities over sub-graphs of the initial graph
before computing its extensions (à la Dung [13]). When all arguments and all attacks have probability 1, we get the
original Dung’s framework. This work is different from what we investigated in this paper. Indeed, in our setting the
argumentation graph is fixed, and thus its arguments and attacks exist. The value w(.) expresses the intrinsic strength of
each argument and not the probability of its existence. Thus, our principles are not suitable in this probabilistic setting.

In the epistemic approach, Thimm [80] considered as input a flat argumentation graph, and then generalized Dung’s
semantics [13] with probabilities. The idea is to assign a probability to each possible extension, and consequently to
each argument. Thus, unlike our work, the strength of an argument is a probability of membership to extensions. The
motivation and spirit of this work are very similar to the equational approach by Gabbay [81], where the labelling of a
graph is made by more than the three classical values: in, out, und. Both works generalize Dung’s semantics, which
were already investigated in [27].

Hunter [7] discussed another epistemic approach for probabilistic argumentation. The input is a fixed weighted
argumentation graph G = 〈A, w,R〉, where w(.) expresses a probability of believing an argument. As argued in
[[7], page 7], this probability is seen as an extra meta-level information about the quality of an argument’s components
(premises, link). The functionw satisfies the following “rationality” condition: if an argument a attacks another argument
b and w(a) > 0.5, then w(b) ≤ 0.5. In terms of arguments’ evaluation, an epistemic extension E is built for each graph
such that E = {a ∈ A | w(a) > 0.5}. Finally, a two-valued qualitative status is assigned to each argument as follows:
an argument is accepted if it belongs to E and rejected otherwise. This approach is very different from ours. First,
basic weights of arguments depend on attacks, while in our approach the two are completely independent. Second, the
approach generalizes Dung’s semantics, in that if an argument is not attacked, then it is assigned probability 1 and thus
accepted. In our setting, such arguments get their basic weights.

More recently, Hunter and Thimm [82] presented a new probabilistic framework where they combined the ideas of
their two papers [7, 80]. The input is a fixed flat argumentation graph and they assign a probability to each argument
representing the degree of belief that the argument is acceptable. The authors presented some examples of what is an
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acceptable argument, and basically the idea is that the premises of the argument are true and its logical link is correct. The
probability of an argument captures the uncertainty inherent to the argument. In our paper, such information is captured
by the function w, i.e., the basic weight of the argument and not by the strength. Furthermore, in all the provided
examples, the probability is given as an extra information, thus it cannot be the output of a semantics.

10. Conclusion

The paper investigated the issue of evaluating arguments in weighted argumentation graphs, i.e., graphs where argu-
ments have initial weights. It proposed a set of principles that serve as guidelines for defining, theoretically analysing and
comparing semantics. Some principles like Anonymity are mandatory while others, like Strict Invariance and Resilience,
are optional as they are suitable in some applications and not in others. Finally, the last three principles (Quality Prece-
dence, Cardinality Precedence, Compensation) define three incompatible strategies that a semantics may follow when it
encounters a dilemma between the quality and the quantity of attackers.

The second contribution of the paper consists of using the principles for comparing ten semantics that were proposed
in the literature for evaluating arguments in weighted graphs. We studied 8 extension semantics and 2 gradual semantics.
We compared i) semantics of different families (extension vs gradual), ii) the two approaches that deal with preferences
in argumentation (contraction vs change), and iii) semantics of the same family (e.g. , Trust-based and Iterative Schema).
Table 1 summarizes the current landscape, and shows that the ten semantics are different in that they made different design
choices. It reveals also the kind of semantics that are missing in the literature. For instance, there is no semantics that
satisfies all the compatible principles as well as compensation, there is no semantics that satisfies Cardinality Precedence,
and there is no semantics that satisfies all the principles which are compatible with Quality Precedence. This led to our
third contribution, which is the introduction of three novel semantics Mbs, Cbs, Hbs, one for each of the three previous
strategies (QP, CP, and compensation). Like IS, Mbs satisfies Quality Precedence. However, unlike IS, it satisfies all
the principles which are compatible with QP. Cbs is the sole semantics that satisfies Cardinality Precedence. Hbs is the
sole semantics that satisfies compensation as well as all the other compatible principles, and that deals with any graph
structure. The three semantics were also analysed experimentally. The study revealed that the three semantics are very
efficient. Indeed, they compute the strengths of arguments in few iterations, and in very short time. This is true even for
big graphs with 100000 arguments, which means that the semantics scale well.

Future work consists of characterizing families of semantics that satisfy all or subsets of the proposed principles.
Another line of research consists of applying the new semantics in different contexts, namely for defining argument-
based paraconsistent logics, and argument-based decision systems.
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Appendix

This appendix contains the proofs of the results presented in the paper. Note that the order in which we prove
our results is not exactly the same as the order in which we present them. Namely, we first need to prove Lemma 1,
Propositions 1, 3, 6, 9, 10 and 11, and then Theorem 1 and Proposition 12. Later, we prove the other results, by the order
of their appearance.

Proof of Proposition 1. Let us prove the two items.

1. Suppose that there exists a semantics S, which satisfies Cardinality Precedence, Quality Precedence, Resilience
and Maximality. Consider the argumentation graph G = 〈A, w,R〉 withA = {x, y, z, a, b}, w(x) = w(y) = 0.5,
w(z) = w(a) = w(b) = 1 and R = {(x, a), (y, a), (z, b)}. From Maximality we obtain DegSG(x) = DegSG(y) =
0.5 and DegSG(z) = 1. By Resilience, both DegSG(a) > 0 and DegSG(b) > 0. Now, using Cardinality Precedence
we conclude that DegSG(b) > DegSG(a), while Quality Precedence implies DegSG(a) > DegSG(b), contradiction.

2. Let S be a semantics which satisfies Resilience, Strict Reinforcement, Maximality, Strict Weakening, Strict Invari-
ance and Quality Precedence. Consider the graph G depicted below, and assume that the basic weight of each
argument is equal to 1.

x c c′ a a′ b b′ y

From Resilience, the eight arguments have strictly positive degree DegSG(.) > 0. From Maximality, DegSG(c) = 1
and from Strict Weakening, DegSG(a) < 1. Thus, by Strict Reinforcement, DegSG(a′) > DegSG(c′).

Case DegSG(a′) > DegSG(b′): From Quality Precedence, DegSG(a) > DegSG(b). Thus, from Strict Reinforcement
DegSG(b′) > DegSG(a′), which is impossible.

Case DegSG(b′) > DegSG(a′): From Strict Reinforcement, we obtain DegSG(b) > DegSG(y). Note that

• AttG(y) = AttG(c) ∪ {b′} and
• AttG(a) = AttG(x) ∪ {b′}.

Since DegSG(c) = 1 (by Maximality), DegSG(x) < 1 (by Strict Weakening), we obtain DegSG(x) < DegSG(c).
Thus, from Strict Invariance, obtain DegSG(a) < DegSG(y). Consequently, DegSG(a) < DegSG(b). Thus, from
Strict Reinforcement DegSG(a′) > DegSG(b′) which is impossible.

Case DegSG(a′) = DegSG(b′): Note that

• AttG(b) = AttG(c) ∪ {a′} and
• AttG(a) = AttG(x) ∪ {b′}.

Since DegSG(x) < DegSG(c) (by Maximality and Strict Weakening), from Strict Invariance we obtain DegSG(a) <
DegSG(b). Thus, from Strict Reinforcement DegSG(a′) > DegSG(b′) which is impossible.

Proof of Proposition 2. Let S be a semantics which satisfies Equivalence, and let us show that it also satisfies Symmetry.
Let G = 〈A, w,R〉 ∈ WAG and a, b ∈ A such that:

• w(a) = w(b), and

• AttG(a) = AttG(b).

Thus, there exists a bijective function f from AttG(a) to AttG(b) such that ∀x ∈ AttG(a), f(x) = x, thus DegSG(x) =
DegSG(f(x)). From Equivalence, DegSG(a) = DegSG(b).

Let S satisfy Independence, Directionality, Invariance, and Maximality. Let us show that S satisfies Equivalence. Let
G = 〈A, w,R〉 ∈ WAG and a, b ∈ A such that:

• w(a) = w(b), and

• there exists a bijective function f from AttG(a) to AttG(b) such that ∀x ∈ AttG(a), DegSG(x) = DegSG(f(x)),
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Assume a new graph G1 = 〈A1, w1,R1〉 ∈ WAG such that A1 = A ∪ {a′, b′}, for any x ∈ A, w1(x) = w(x),
w1(a

′) = w1(b
′) = w(a), and R1 = R. Note that AttG1

(a′) = AttG1
(b′) = ∅. From Maximality, it holds that

DegSG1
(a′) = w1(a

′) and DegSG1
(b′) = w1(b

′). So,

DegSG1
(a′) = DegSG1

(b′).

From Proposition 9, it holds that DegSG1
(a) = DegSG1

(b). Note that A is unattacked in G1, and that (G1)|A = G. From
Proposition 3 we obtain that for any x ∈ A, DegSG1

(x) = DegSG(x). Thus, DegSG(a) = DegSG(b).

Assume that S satisfies in addition Neutrality, and let us prove that it satisfies Weakening Soundness. Suppose a
semantics S which satisfies the five principles. Assume also a weighted argumentation graph G = 〈A, w,R〉. Let
a ∈ A. From Proposition 11, if for every b ∈ AttG(a), DegSG(b) = 0, then DegSG(a) = w(a). Weakening Soundness
follows from the previous property by contraposition.

Let S be a semantics which satisfies Independence, Directionality, Invariance, Maximality and Weakening. Let us
show that it satisfies Monotony. Let G = 〈A, w,R〉 ∈ WAG and a, b ∈ A such that:

• w(a) = w(b),

• AttG(b) = AttG(a) ∪X .

Note that according to what we already proved in this proposition, Independence, Directionality, Invariance and Maxi-
mality imply Equivalence, which implies Symmetry. Thus, S satisfies Symmetry. IfX = ∅, AttG(b) = AttG(a), and so
from Symmetry, DegSG(a) = DegSG(b). Assume now that X 6= ∅, and consider a new graph G1 = 〈A1, w1,R1〉 ∈ WAG

such that A1 = A ∪ {a′, b′}, for any x ∈ A, w1(x) = w(x), w1(a
′) = w1(b

′) = w(a) = w(b), and R1 =
R∪{(x, b′) | x ∈ X}. Note that AttG1

(a′) = ∅ and AttG1
(b′) = X . From Maximality, it holds that DegSG1

(a′) = w(a).
From Weakening, it holds that DegSG1

(b′) ≤ w(b′). Since w1(a
′) = w1(b

′), then

DegSG1
(a′) ≥ DegSG1

(b′).

From Proposition 9, it follows that
DegSG1

(a) ≥ DegSG1
(b).

Note that A is unattacked in G1, and that (G1)|A = G. From Proposition 3 we obtain that for any x ∈ A

DegSG1
(x) = DegSG(x).

Thus, DegSG(a) ≥ DegSG(b).

Proof of Proposition 3. Suppose that A \ U = {b1, . . . , bn}, for some n ≥ 1 (the case when U = A is trivial). Let
us denote the graph G|U by G0. Next we define G1, . . . ,Gn such that every Gk is obtained by adding the argument
bk to Gk−1 together with its weight. In other words, for every k ∈ {1, . . . , n}, if Gk−1 = 〈Ak−1, wk−1,Rk−1〉, then
Gk = 〈Ak, wk,Rk〉 is such that

• Ak = Ak−1 ∪ {bk}

• wk(a) = w(a) for every a ∈ Ak

• Rk = Rk−1.

Using Independence, we obtain that DegSGk
(a) = DegSGk−1

(a) for every a ∈ U and every k ∈ {1, . . . , n}. Consequently,

DegSGn
(a) = DegSG|U (a)

for every a ∈ U . Note that Gn = 〈A, w,R∩ (U × U))〉.
Now we consider the attacks from G that are not from G|U . If R \ (R ∩ (U × U)) = ∅, then Gn = G, which

completes the proof. LetR\ (R∩ (U×U)) 6= ∅. Suppose thatR\ (R∩ (U×U)) = {(c1, d1), . . . , (cm, dm)}, for some
m ≥ 1. Then we define the graphs Gn+1, . . . ,Gn+m such that every Gn+k is obtained by adding the attack (ck, dk) to
Gn+k−1. Formally, for every k ∈ {1, . . . ,m}, if Gn+k−1 = 〈A, w,Rk−1〉, then Gn+k = 〈A, w,Rk−1 ∪ {(ck, dk)}〉.
Note that Gn+m = G.

Next we prove that DegSGn+k
(a) = DegSGn+k−1

(a) for every a ∈ U and every k ∈ {1, . . . ,m}. Let us chose an
arbitrary a ∈ U . For an arbitrary attack (ck, dk) ∈ R \ (R ∩ (U × U)), from the fact that it is impossible that both ck
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and dk belong to U , and the assumption that U is unattacked, we obtain that dk /∈ U (otherwise, if dk ∈ U , then ck /∈ U ,
so U would not be unattacked since (ck, dk) ∈ R). Then, from the fact that U is unattacked we obtain that there is no
path from dk to a. Using Directionality, we obtain that DegSGn+k

(a) = DegSGn+k−1
(a) for every every k ∈ {1, . . . ,m}.

Consequently,
DegSGn+m

(a) = DegSGn
(a)

for every a ∈ U . Since we proved that DegSGn
(a) = DegSG|U (a) for every a ∈ U , from Gn+m = G we obtain

DegSG(a) = DegSG|U (a)

for every a ∈ U .

Proof of Proposition 4. Let G = 〈A, w,R〉 ∈ WAG and let a, b ∈ A be two arguments such that w(a) ≥ w(b), and there
exists a bijective function f from AttG(a) to AttG(b) such that ∀x ∈ AttG(a), DegSG(x) = DegSG(f(x)).

Assume a new graph G1 = 〈A1, w1,R1〉 ∈ WAG such that

• A1 = A ∪ {c},

• for any x ∈ A, w1(x) = w(x), w1(c) = w(a),

• R1 = R∪ {(x, c) | x ∈ AttG(b)}}.

Using Equivalence we obtain DegSG1
(a) = DegSG1

(c), and from Proportionality we obtain DegSG1
(c) ≥ DegSG1

(b).
Therefore, we have that

DegSG1
(c) ≥ DegSG1

(b).

Note that A is unattacked in G1, and that (G1)|A = G. From Proposition 3 we obtain DegSG(a) = DegSG1
(a) and

DegSG(b) = DegSG1
(b). Consequently, DegSG(a) ≥ DegSG(b).

Proof of Proposition 5. Let G = 〈A, w,R〉 ∈ WAG and let a, b ∈ A be two arguments such that w(a) > w(b),
there exists a bijective function f from AttG(a) to AttG(b) such that ∀x ∈ AttG(a), DegSG(x) = DegSG(f(x)), and
DegSG(a) > 0.

Assume a new graph G1 = 〈A1, w1,R1〉 ∈ WAG such that

• A1 = A ∪ {c},

• for any x ∈ A, w1(x) = w(x), w1(c) = w(a),

• R1 = R∪ {(x, c) | x ∈ AttG(b)}}.

Using Equivalence we obtain DegSG1
(a) = DegSG1

(c), and from Strict Proportionality we obtain DegSG1
(c) > DegSG1

(b).
Therefore, we have that

DegSG1
(a) > DegSG1

(b).

Note that A is unattacked in G1, and that (G1)|A = G. From Proposition 3 we obtain DegSG(a) = DegSG1
(a) and

DegSG(b) = DegSG1
(b). Consequently, DegSG(a) > DegSG(b).

Lemma 1. Let S be a semantics which satisfies Independence, Directionality, Invariance, and Neutrality. For any G =
〈A, w,R〉 ∈ WAG, for all a, b ∈ A, for any x ∈ A \ AttG(a), if

• w(a) = w(b),

• AttG(b) = AttG(a) ∪ {x} with DegSG(x) = 0,

then DegSG(a) = DegSG(b).

Proof Let S be a semantics which satisfies Independence, Directionality, Invariance, and Neutrality. Let G = 〈A, w,R〉 ∈
WAG and a, b ∈ A such that:

• w(a) = w(b),

• AttG(b) = AttG(a) ∪ {x} with x ∈ A \ AttG(a) and DegSG(x) = 0,
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Assume a new graph G1 = 〈A1, w1,R1〉 ∈ WAG such that A1 = A ∪ {a′, b′}, for any x ∈ A, w1(x) = w(x),
w1(a

′) = w1(b
′) = w(a), andR1 = R∪ {(x, b′)}. Note that AttG1

(a′) = ∅ and AttG1
(b′) = {x}. From Neutrality, it

holds that
DegSG1

(a′) = DegSG1
(b′).

From Proposition 9, it follows that
DegSG1

(a) = DegSG1
(b).

Note that A is unattacked in G1, and that (G1)|A = G. From Proposition 3 we obtain

∀x ∈ A, DegSG1
(x) = DegSG(x).

Hence, DegSG(a) = DegSG(b).

Proof of Proposition 6. Let S be a semantics which satisfies Independence, Directionality, Invariance, and Neutrality.
Let G = 〈A, w,R〉 ∈ WAG, and let a, b ∈ A, such that X ⊆ A \ AttG(a), if

• w(a) = w(b),

• AttG(b) = AttG(a) ∪X such that X 6= ∅ and for any x ∈ X , DegSG(x) = 0,

Let X = {x1, . . . , xn}. Assume a new graph G1 = 〈A1, w1,R1〉 ∈ WAG such that A1 = A ∪ {a1, . . . , an−1}, for any
x ∈ A, w1(x) = w(x), for any i ∈ {1, . . . , n− 1}, w1(ai) = w(a), and

R1 = R∪
n⋃
i=1

{(x, ai) | x ∈ AttG(a)} ∪
n⋃
i=1

{(xj , ai) | xj ∈ X, j ≤ i}.

Note that AttG1(a1) = AttG(a) ∪ {x1} and for 1 < i < n, AttG1(ai) = AttG1(ai−1) ∪ {xi} and AttG1(an) =
AttG(b) ∪ {xn}. By applying several times Lemma 1, we get

DegSG1
(a) = DegSG1

(a1) = . . . DegSG1
(an−1) = DegSG1

(b).

Note that A is unattacked in G1, and that (G1)|A = G. From Proposition 3 we obtain DegSG1
(a) = DegSG(a) and

DegSG1
(b) = DegSG(b). Hence, DegSG(a) = DegSG(b)

Proof of Proposition 7. Let S be a semantics which satisfies Independence, Directionality, Invariance, and Reinforce-
ment. Let G = 〈A, w,R〉 ∈ WAG and a, b, x, y ∈ A such that:

• w(a) = w(b),

• AttG(a) \ AttG(b) = {x},

• AttG(b) \ AttG(a) = {y}, and

• DegSG(y) ≥ DegSG(x) > 0,

Assume a new graph G1 = 〈A1, w1,R1〉 ∈ WAG such that A1 = A ∪ {a′, b′}, w1(z) = w(z) for every z ∈ A,
w1(a

′) = w1(b
′) = w(a), and R1 = R ∪ {(x, a′), (y, b′)}. Note that A is unattacked in G1, and that (G1)|A = G.

From Proposition 3 we obtain DegSG(z) = DegSG1
(z) for every z ∈ A. From Reinforcement, it holds that

DegSG1
(a′) ≥ DegSG1

(b′).

From Proposition 9, we get
DegSG1

(a) ≥ DegSG1
(b).

Consequently, DegSG(a) ≥ DegSG(b).

Proof of Proposition 8. Let S be a semantics that satisfies Independence, Directionality, Maximality, Weakening,
Invariance, Strict Invariance and Strict Reinforcement. Let G = 〈A, w,R〉 ∈ WAG and a, b, x, y ∈ A such that:

• w(a) = w(b),

• DegSG(a) > 0,
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• AttG(a) \ AttG(b) = {x},

• AttG(b) \ AttG(a) = {y}, and

• DegSG(y) > DegSG(x) > 0,

Assume a new graph G1 = 〈A1, w1,R1〉 ∈ WAG such that A1 = A ∪ {a′, b′}, w1(z) = w(z) for every z ∈ A,
w1(a

′) = w1(b
′) = w(a), andR1 = R∪{(x, a′), (y, b′)}. Note thatA is unattacked in G1, and that (G1)|A = G. From

Proposition 3 we obtain DegSG(z) = DegSG1
(z) for every z ∈ A. Since AttG1

(a′) ⊆ AttG1
(a), then from Proposition

2 it holds that DegSG1
(a′) ≥ DegSG1

(a) = DegSG(a). From the condition DegSG(a) > 0, we obtain DegSG1
(a′) > 0. From

Strict Reinforcement, it holds that
DegSG1

(a′) > DegSG1
(b′).

From Proposition 10, we get
DegSG1

(a) > DegSG1
(b).

Consequently, DegSG(a) > DegSG(b).

Proof of Proposition 9. Let S be a semantics which satisfies Independence, Directionality, and Invariance. Let G =
〈A, w,R〉 ∈ WAG, a, b, a′, b′ ∈ A, X,Y ∈ P(A) \ ∅ such that:

• w(a) = w(b),

• w(a′) = w(b′),

• AttG(a′) = AttG(a) ∪X ,

• AttG(b′) = AttG(b) ∪ Y ,

• there exists a bijective function f from X to Y such that ∀x ∈ X , DegSG(x) = DegSG(f(x)),

Let X = {x1, . . . , xn}.
Assume that DegSG(a) ≥ DegSG(b).
Assume a new graph G1 = 〈A1, w1,R1〉 ∈ WAG such that A1 = A ∪ {a1, . . . , an−1, b1, . . . , bn−1}, for any

x ∈ A, w1(x) = w(x), for any i ∈ {1, . . . , n − 1}, w1(ai) = w(a), w1(bi) = w(b), and R1 = R ∪ {(x, ai) | x ∈
AttG(a)} ∪ {(xj , ai) | xj ∈ X, j ≤ i} ∪ {(x, bi) | x ∈ AttG(b)} ∪ {(f(xj), bi) | xj ∈ Y, j ≤ i}. Note that for
ai, bi ∈ A1, AttG1

(ai) = AttG(a) ∪ {x1, . . . , xi} and AttG1
(bi) = AttG(b) ∪ {f(x1), . . . , f(xi)}. By applying

several times Invariance, we get DegSG1
(a1) ≥ DegSG1

(b1), . . ., DegSG1
(an−1) ≥ DegSG1

(bn−1), and DegSG1
(a′) ≥

DegSG1
(b′). Note that A is unattacked in G1, and that (G1)|A = G. From Proposition 3 we obtain that for any x ∈ A,

DegSG1
(x) = DegSG(x). Hence, DegSG(a′) ≥ DegSG(b′).

Proof of Proposition 10. Similar as the proof of Proposition 9.

Proof of Proposition 11. Suppose a semantics S which satisfies Independence, Directionality, Invariance, Neutrality
and Maximality. Let G = 〈A, w,R〉 be a weighted argumentation graph and a ∈ A such that AttG(a) 6= ∅ and ∀x ∈
AttG(a), DegSG(x) = 0. Let G1 = 〈A1, w1,R1〉 be another weighted argumentation graph such that A1 = A ∪ {b}
(b /∈ A), for any x ∈ A, w1(x) = w(x), w1(b) = w(a), andR1 = R. Note that AttG1

(b) = ∅. Hence, from Proposition
6 it holds that DegSG1

(a) = DegSG1
(b). From Independence, DegSG1

(a) = DegSG(a). Hence, DegSG(a) = DegSG1
(b). From

Maximality it holds that DegSG1
(b) = w(a). So, DegSG(a) = w(a).

Proof of Proposition 12. Let S be a semantics satisfying Independence, Directionality, Neutrality, Maximality, Strict
Weakening, Invariance, and Strict Invariance. Let G = 〈A, w,R〉 ∈ WAG, and a, b, x ∈ A, such that

• w(a) = w(b),

• AttG(b) = AttG(a) ∪ {x} with x /∈ AttG(a) and DegSG(x) > 0

• DegSG(a) > 0
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Assume a new graph G1 = 〈A1, w1,R1〉 ∈ WAG such that A1 = A ∪ {a′, b′, c, y}, w1(z) = w(z) for every z ∈ A,
w1(a

′) = w1(b
′) = w1(c) = w(a), w1(y) = 0, and R1 = R ∪ {(x, b′), (y, a′)}. Note that AttG1

(a′) = {y},
AttG1

(b′) = {x} and AttG1
(y) = AttG1

(c) = ∅. Note that A is unattacked in G1, and that (G1)|A = G. From
Proposition 3 we obtain that for every z ∈ A, it holds that DegSG(z) = DegSG1

(z). Then, DegSG1
(a) = DegSG(a) and

DegSG1
(b) = DegSG(b).

Maximality ensures DegSG1
(y) = w(y) = 0 and DegSG1

(c) = w(a). Neutrality ensures DegSG1
(c) = DegSG1

(a′) =
w(a).

From Theorem 1, it follows that 0 ≤ DegSG(a) ≤ w(a). Since DegSG(a) > 0, then w(a) > 0. Since DegSG(x) > 0
and DegSG1

(x) = DegSG(x), then DegSG1
(x) > 0, and Strict Weakening leads to DegSG1

(b′) < w(a). Then, DegSG1
(a′) >

DegSG1
(b′). From Proposition 10, it follows that DegSG1

(a) > DegSG1
(b). Consequently, DegSG(a) > DegSG(b).

Proof of Proposition 13. Let S be a semantics which satisfies Anonymity, Independence, Directionality, Neutrality,
Monotony, Invariance, and Reinforcement. Let G = 〈A, w,R〉 ∈ WAG and a, b ∈ A such that:

• w(a) = w(b),

• AttG(a) \ AttG(b) = {x},

• AttG(b) \ AttG(a) = {y},

• DegSG(y) ≥ DegSG(x)

• DegSG(a) = 0.

Let us show that DegSG(b) = 0. There are two cases:

• DegSG(x) > 0. From Proposition 7, it follows that DegSG(a) ≥ DegSG(b). Since DegSG(b) ∈ [0, 1] by definition of a
semantics, then DegSG(b) = 0.

• DegSG(x) = 0. This case has two sub-cases.

– Let DegSG(y) > DegSG(x). G′ = 〈A′, w′,R′〉 ∈ WAG such that A′ = A ∪ {b1}, for all t ∈ A, w′(t) = w(t),
w′(b1) = w(b), R′ = R ∪ {(t, b1) | t ∈ X}, where X = AttG(a) \ {x}. Note that A is unattacked in
G′, and that (G′)|A = G. From Proposition 3 we obtain that for each t ∈ A, DegSG′(t) = DegSG(t). From
Lemma 1, DegSG′(a) = DegSG′(b1). From Monotony, DegSG′(b) ≤ DegSG′(b1). Consequently

DegSG(b) = DegSG′(b) ≤ DegSG′(b1) = DegSG′(a) = DegSG(a) = 0.

– Let DegSG(y) = DegSG(x). Let G′′ = 〈A′′, w′′,R′′〉 ∈ WAG such that A′′ = A ∪ {a2, b2}, for all t ∈ A
w′′(t) = w(t), w′′(a2) = w′′(b2) = w(a) = w(b), R′′ = R ∪ {(t, a2) | t ∈ X} ∪ {(t, b2) | t ∈ X} ,
where X = AttG(a) \ {x}. Since a2 and b2 have the same attackers in G′′, from Anonymity, DegSG′′(a2) =
DegSG′′(b2). From Invariance, DegSG′′(a) = DegSG′′(b). Note that A is unattacked in G′′, and that (G′′)|A =
G. From Proposition 3 we obtain that for each t ∈ A, DegSG′′(t) = DegSG(t). Thus, DegSG′′(a) = DegSG(a)
and DegSG′′(b) = DegSG(b). Hence, DegSG(b) = DegSG(a) = 0.

Proof of Theorem 1. Let S be a semantics which satisfies Independence, Directionality, Neutrality, Invariance, Weak-
ening and Maximality. Let G = 〈A, w,R〉 be a weighted argumentation graph and a ∈ A. There are two cases:

Case 1. AttG(a) = ∅. From Maximality, DegSG(a) = w(a).

Case 2. AttG(a) 6= ∅. There are again two sub-cases:

Case 2.1. ∀x ∈ AttG(a), DegSG(x) = 0. From Proposition 11, DegSG(a) = w(a).

Case 2.2. ∃x ∈ AttG(a) such that DegSG(x) > 0. From Weakening, it follows that DegSG(a) ≤ w(a).
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Proof of Theorem 2. Let S be a semantics which satisfies Independence and Directionality, let G = 〈A, w,R〉 ∈ WAG

and a ∈ A. Let
G0 = 〈A0, w0,R0〉 = G|StrG(a) ⊕G|A\StrG(a).

By Independence, DegSG0
(a) = DegSG|StrG(a)

(a). Note that A0 = A and w0 = w , while R0 ⊆ R. If R0 = R, then

G0 = G and DegSG(a) = DegSG|StrG(a)
(a). If R \ R0 6= ∅, then for every (x, y) ∈ R \ R0 exactly one argument from

{x, y} belongs to StrG(a). If we suppose that y ∈ StrG(a) and x ∈ A \ StrG(a), then there exists a path π form y to
a, and the concatenation of the path (x, y) and π would be a path from x to a, which is impossible since x /∈ StrG(a).
Consequently, letting R \ R0 = {(x1, y1), . . . , (xn, yn)}, it holds that xi ∈ StrG(a) and yi ∈ A \ StrG(a) for every
i ∈ {1, . . . , n}. If Gi = 〈A, w,Ri〉 , where Ri = R0 ∪ {(x1, y1), . . . , (xi, yi)} for every i ∈ {1, . . . , n}, then by
Directionality

DegSG0
(a) = DegSG1

(a) = · · · = DegSGn
(a).

Note that Gn = G. Now the claim follows from DegSG0
(a) = DegSG|StrG(a)

(a).

Proof of Theorem 3. Let S be a semantics which satisfies Anonymity, Independence and Directionality, let G =
〈A, w,R〉 ∈ WAG and a, b ∈ A such that there exists an isomorphism f : G|StrG(a) → G|StrG(b) with f(a) = b.
By Anonymity, DegSG|StrG(a)

(a) = DegSG|StrG(b)
(b). From Theorem 2 we obtain both DegSG(a) = DegSG|StrG(a)

(a) and

DegSG(a) = DegSG|StrG(b)
(b). Consequently, DegSG(a) = DegSG(b).

Proof of Theorem 4. Let S be a semantics which satisfies Independence, Directionality, Invariance, Reinforcement,
Maximality, Neutrality, and Weakening. Let G = 〈A, w,R〉 be a weighted argumentation graph and a, b ∈ A such that
w(a) = w(b) and there exists an injective function f from AttG(a) to AttG(b) such that ∀x ∈ AttG(a), DegSG(x) ≤
DegSG(f(x)). Let us show that DegSG(a) ≥ DegSG(b).

The case DegSG(b) = 0 is trivial; this is why in the remainder of the proof we suppose DegSG(b) > 0.
Let G′ = 〈A′, w′,R′〉 be a weighted argumentation graph such that A′ = A ∪ {b0}, for all t ∈ A, w′(t) = w(t),

w′(b0) = w(b) andR′ = R∪{(f(t), b0) | t ∈ AttG(a)}. Note thatA is unattacked in G′, and that (G′)|A = G. From
Proposition 3 we obtain that for all t ∈ A, DegSG(t) = DegSG′(t). From Proposition 2 we have that S satisfies Monotony,
so DegSG′(b0) ≥ DegSG′(b). Thus, it remains to prove that DegSG′(a) ≥ DegSG′(b0).

If AttG(a) = ∅, then AttG′(a) = AttG′(b0) = ∅. From Maximality and w′(b0) = w′(a) we obtain DegSG′(a) ≥
DegSG′(b0).

If AttG(a) 6= ∅, let AttG(a) = {x1, . . . , xn}, for some n ≥ 1. Let G(1) = 〈A(1), w(1),R(1)〉 be such that
A(1) = A′ ∪ {b1, . . . , bn}, for all t ∈ A′, w(1)(t) = w′(t), w(1)(b1) = · · · = w(1)(bn) = w(b) andR(1) is such that

• for all t ∈ A′, AttG(1)(t) = AttG′(t)

• for every i ∈ {1, . . . , n}, AttG(1)(bi) = (AttG(1)(bi−1) \ {f(xi)}) ∪ {xi}.

Note that A′ is unattacked in G(1), and that (G(1))|A′ = G′. From Proposition 3 we obtain that for all t ∈ A′,
DegS

G(1)(t) = DegSG′(t). Thus, in order to prove the proposition, it is sufficient to show that

DegSG(1)(bi) ≥ DegSG(1)(bi−1)

for every i ∈ {1, . . . , n}. For each i we consider two possible cases:

• If DegSG(xi) 6= 0, then using Proposition 7 we obtain DegS
G(1)(bi) ≥ DegS

G(1)(bi−1).

• If DegSG(xi) = 0, let Si = AttG(1)(bi)∩AttG(1)(bi−1). Note that AttG(1)(bi) = S1∪{xi} and AttG(1)(bi−1) =
S1 ∪ {f(xi)}. Let G(i) = 〈A(i), w(i),R(i)〉 be such that A(i) = A(1) ∪ {ci}, for all t ∈ A(1), w(i)(t) = w(1)(t),
w(i)(ci) = w(b) and R(i) = R(1) ∪ {(t, ci) | t ∈ Si}. From Proposition 6 we obtain DegS

G(i)(bi) = DegS
G(i)(ci),

and from Proposition 2 we have DegS
G(i)(ci) ≥ DegS

G(i)(bi−1). Thus, DegS
G(i)(bi) ≥ DegS

G(i)(bi−1). Finally,
note that A(1) is unattacked in G(i), and that (G(i))|A(1) = G(1). From Proposition 3 we obtain DegS

G(1)(bi) ≥
DegS

G(1)(bi−1).
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Proof of Theorem 5.
Contraction-based approach: grounded, stable, preferred and complete semantics

Anonymity is satisfied by the four semantics. This follows straightforwardly from the definitions of the semantics.
Independence is satisfied by grounded, preferred and complete semantics. Let G = 〈A, w,R〉,G′ = 〈A′, w′,R′〉 ∈

WAG be such that A ∩ A′ = ∅. Since grounded, complete and preferred semantics satisfy Directionality as defined by
Baroni and Giacomin [24], we have that for any x ∈ {g, c, p}, Extx(G) = {E ∩ A | E ∈ Extx(G ⊕G′)}. Hence, for
any a ∈ A, DegxG(a) = DegxG⊕G′(a).

Stable semantics violates independence. Consider the two weighted argumentation graphs G and G′ depicted below.
Note that despite the fact that the two graphs do not share arguments, DegstG(b) = 1 while DegstG⊕G′(b) = β since the
graph G has one stable extension {b} while the graph G⊕G′ has no extension.

a:0.6 b:0.6 c:0.6

G G′

Directionality is satisfied by grounded, preferred and complete semantics. Let G = 〈A, w,R〉 ∈ WAG and G′ =
〈A, w,R′〉 ∈ WAG be such thatR′ = R∪{(a, b)}. We denote byA′ = {x ∈ A | there is a path from b to x with respect
toR}. Let A′′ = A \ A′. Note that A′ does not attack A′′ with respect to R. A fortiori, A′ does not attack A′′ with

respect to the revised attack relation. Since grounded, preferred and complete semantics satisfy Directionality as defined
by Baroni and Giacomin [24], the status of x is the same in G and G′.

To see that (our) Directionality principle is not satisfied by stable semantics, consider the graph G depicted below.
This graph has one stable extension {a, b}, hence DegstG(b) = 1. If now we add an attack from a to itself (thus a attacks
itself), the new graph has no stable extension, thus DegstG(b) = β even if there is no path from a to b.

a:0.6 b:0.6 c:0.6

Maximality is violated by the four semantics. Consider the argument a of Example 1. The four semantics assign the
value 1 to this argument while its basic weight is 0.01.

Weakening and Strict Weakening are violated by the four semantics. Consider the graph depicted below. The
preference-based approaches based on Dung’s semantics [11, 31, 32] remove the attack from a to b since w(a) < w(b).
The new graph has one grounded, complete, stable and preferred extension {a, b}. Hence, both a and b get degree 1.
Note that DegSG(b) > w(b).

a:0.2 b:0.5

Weakening Soundness is violated by stable, preferred and complete semantics. To see why preferred and complete
semantics violate Weakening Soundness, consider the graph depicted below. Both arguments b and c have degree 0 since
they are rejected and each of them is attacked by an extension. The argument a has a basic weight equal to 1 but its
strength is equal to β < 1.

a:1 b:1 d:1

c:1 e:1
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To see that stable semantics violates Weakening Soundness, it is sufficient to consider a graph containing two arguments
a and b such that w(a) = w(b) = 1 andR = {(b, b)}. Since there is no stable extension, the degree of a is β.

Let us now show that grounded semantics satisfies weakening soundness. Let G = 〈A, w,R〉 ∈ WAG, G′ = 〈A,R′〉
is its revised graph, and GE(G′) the grounded extension of G′. Let a ∈ A such that w(a) > 0. Assume also
that DeggG(a) < w(a). Thus, DeggG(a) < 1. Consequently, either DeggG(a) = 0 or DeggG(a) = β. Assume that
Deg

g
G(a) = 0, then by definition, there exists x ∈ GE(G′) such that xR′a, hence xRa. Furthermore, DeggG(x) = 1.

Assume now that DeggG(a) = β. Clearly AttG′(a) 6= ∅ (otherwise a would belong to the grounded extension of G′). If
∀x ∈ Att(a), DeggG(x) = 0, then by definition of grounded extension, a should belong to the extension. Hence, there
exists at least one attacker whose degree is greater than 0.

Neutrality is satisfied by grounded and stable semantics. Let G = 〈A, w,R〉 ∈ WAG and a, b ∈ A be such that:

• w(a) = w(b),

• AttG(a) = ∅,

• AttG(b) = {x} with DegSG(x) = 0.

Let us first present the proof for grounded semantics. Since a is not attacked, then a belongs to the grounded extension
and thus Deg

g
G(a) = 1. From Deg

g
G(x) = 0, the argument x is attacked by the grounded extension. Since all the

attackers of b are attacked by the extension, b belongs to the extension. Thus DeggG(b) = 1.
Let us show that stable semantics satisfies Neutrality. If there are no stable extensions, DegstG(a) = DegstG(b) = β.

Else, suppose that there exists at least one stable extension. Since a is not attacked, it belongs to all extensions and then
DegstG(a) = 1. Since DegstG(x) = 0, then x does not belong to any extension. From the definition of stable semantics,
this means that x is attacked by all the extensions. Since x is the only attacker of b, this means that b is not attacked by
any extension. Hence, b belongs to all extensions. Consequently, DegstG(b) = 1.

Neutrality is violated by complete and preferred semantics. Consider the graph below. Namely, the degree of a is
equal to 1 whereas the degree of b is α, even if the degree of x is 0.

a:1 b:1 x:1 c:1 d:1

Symmetry is satisfied by the four semantics. Let G = 〈A, w,R〉 ∈ WAG and G′ = G = 〈A,Rc〉 its revised version.
Let us show that for any a, b ∈ A, such that w(a) = w(b) and AttG(a) = AttG(b), it holds that AttG′(a) = AttG′(b).
Let (x, a) ∈ R. There are two cases:

Case w(x) ≥ w(a) By definition of Rc, it holds that (x, a) ∈ Rc. Since w(a) = w(b), then w(x) ≥ w(b). Since
(x, b) ∈ R, then (x, b) ∈ Rc.

Case w(x) < w(a) By definition of Rc, it holds that (x, a) /∈ Rc. Since w(a) = w(b), then w(x) < w(b). Since
AttG(a) = AttG(b), then (x, b) /∈ Rc.

Hence, AttG′(a) = AttG′(b). For each extension E, we have a ∈ E if and only if b ∈ E. Hence, a and b have the same
degrees.

Equivalence is violated by the four semantics. Consider the graph depicted below. Note that DegSG(c) = DegSG(e) =
1 while DegSG(a) = 0 and DegSG(b) = 1 for any S ∈ {s, g, c, p}.

c:0.7 a:0.5 e:0.3 b:0.5

Invariance is violated by all the four semantics. Consider the graph depicted below.
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a:1 a′:1 c:1

b:1 b′:1 e:0.5

Since b′ is strictly stronger than e, we obtain the following graph which has a unique stable / preferred / complete /
grounded extension: {a, c, b, b′, e}. Note that DegSG(a) = DegSG(b) = 1 while DegSG(a′) = 0 < DegSG(b′) = 1.

a:1 a′:1 c:1

b:1 b′:1 e:0.5

Strict Invariance is violated by the four semantics. Consider the following graph.

a:1 a′:1 x:1

b:1 c:1 b′:1 y:1

For all four semantics, DegSG(a) = 1 whereas all the other arguments get the degree α. Thus DegSG(a) > DegSG(b)
and DegSG(a′) = DegSG(b′). Consequently, Strict Invariance is violated.

Monotony is satisfied by all the four semantics. Let G = 〈A, w,R〉 ∈ WAG and a, b ∈ A be such that w(a) = w(b)
and AttG(a) ⊆ AttG(b). Let us prove that DegSG(a) ≥ DegSG(b).

• Case DegSG(b) = 1. This means that b is in all extensions. Let E be an extension, hence b ∈ E. Observe that E
defends b, hence E defends a. Moreover, E ∪ {a} is conflict-free. Hence a ∈ E. This means that a belongs to all
the extensions and DegSG(a) = 1.

• Case DegSG(b) = α. Thus, b belongs to at least one extension E. Like in the previous item, we have a ∈ E. Hence
a belongs to at least one extension and DegSG(a) ≥ α.

• Case DegSG(b) = β. Thus, b is not attacked by any extension. Consequently, a is not attacked by any extension.
Hence, DegSG(a) ≥ β.

• Case DegSG(b) = 0 is trivial.

Counting is violated by the four semantics. Consider the graph depicted below. In case of complete, preferred or
stable semantics, all arguments have degree α. In case of grounded semantics, all arguments have degree β. For every of
the four semantics, DegSG(x) > 0, DegSG(a) > 0 but DegSG(a) = DegSG(b). Thus, Counting is violated.

a:1 b:1 x:1 c:1

Reinforcement is violated by the four semantics. Consider the argumentation graph depicted below.
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x:0.7 a:0.5 y:0.3 b:0.5

When preferences are taken into account, the attack from y to b is ignored and we obtain the following graph:

x:0.7 a:0.5 y:0.3 b:0.5

There is a unique stable / preferred / complete / grounded extension: {x, y, b}. Thus DegSG(x) = DegSG(y) and
DegSG(a) < DegSG(b), which means that Reinforcement is violated by the four semantics.

Strict Reinforcement is violated by all the four semantics. Consider the counter-example below.

x:0.5 a:0.5 y:0.3 b:0.5

When preferences are taken into account, the attack from y to b is ignored and we obtain the following graph:

x:0.5 a:0.5 y:0.3 b:0.5

With respect to all semantics, DegSG(y) = DegSG(b) = 1. The two other arguments have score α with respect to stable,
preferred and complete semantics; they have score β with respect to grounded semantics. In all cases, DegSG(a) > 0 and
DegSG(y) > DegSG(x) > 0. However, DegSG(a) < DegSG(b). Thus, Strict Reinforcement is not satisfied.

Proportionality is satisfied by all the four semantics. In both cases, in the “revised” graph, i.e. the graph where some
attacks might be deleted, we have Att(a) ⊆ Att(b). Thus, DegSG(a) ≥ DegSG(b) (the proof is the same as the proof of
Monotony).

Strict Proportionality is violated by all four semantics. It is sufficient to consider a graph with two arguments a and
b with an empty attack relation and w(a) = 0.7, w(b) = 0.5. We have DegSG(a) = DegSG(b) = 1.

Resilience is violated by the four semantics. It is sufficient to consider the graph consisting of two arguments, a and
x and one attack (x, a), where both arguments have the same weight 1. We have w(a) = 1 and DegSG(a) = 0.

QP is violated by the four semantics as shown with the graph depicted below on the left-side. Its revised version,
on the right-side, has one stable/preferred/complete/grounded extension {z, y, a, b}. Hence, DegSG(y) > DegSG(x) while
DegSG(a) = DegSG(b) = 1.

z:1 x:0.3

a:0.5

y:0.3

b:0.5

z x

a

y

b

CP is violated by the four semantics as shown with the graph depicted below. Note that this graph is identical to its
revised version. Under preferred, complete and stable semantics, all the arguments get degree α while they all get degree
β under grounded semantics.
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x:1

a:1

y:1 z:1

b:1

Compensation is satisfied by the four semantics since they all violate CP and QP.

Change-based approach: Grounded, Stable, Preferred and Complete semantics
Anonymity is satisfied by the four semantics (from the definitions of the four semantics).

Independence: the proof is the same as for the contraction-based approach. The counter-example for stable seman-
tics is also the same.

Directionality is violated by the four semantics. Indeed, let S be any of the four change-based semantics, and let
us consider the graph G = 〈A, w,R〉 where A = {a, b}, w(a) = 0.2, w(b) = 0.4 and R = ∅. Since G does not
contain any attack, DegSG(a) = DegSG(b) = 1. Let R′ = R ∪ {(a, b)} and let G′ = 〈A, w,R′〉. Since w(a) < w(b),
change-based semantics will invert the attack, so we obtain the graph 〈A, {(b, a)}〉 which has the unique extension {b}.
Thus, DegSG′(a) = 0. Hence, Directionality is violated.

Maximality is violated by the four semantics. As in the case of contraction-based approach, consider the argument a
of Example 1. The four semantics assign value 1 to this argument while its basic weight is 0.01.

Weakening and Strict Weakening are violated by the four semantics. Consider the graph below. Both arguments
get the degree α in the case of stable, preferred and complete semantics. They both get degree β in case of grounded
semantics. In all cases, their degree is strictly greater than their initial weight.

a:β/2 b:β/2

Weakening Soundness is violated by stable, preferred and complete semantics. It is sufficient to consider the same
counter-example as for contraction-based semantics. Weakening Soundness is satisfied by grounded semantics and the
proof is similar to the one for contraction-based approach.

Neutrality is violated by the four semantics. Consider the graph below.

a:0.5y:1 b:0.5 x:0.5 c:0.5

Its revised version is the graph below. Note that DegSG(x) = 0 for the four semantics while DegSG(a) = 0, DegSG(b) = 1.

a:0.5y:1 b:0.5 x:0.5 c:0.5

Symmetry is violated by the four semantics. Let us consider the weighted graph G depicted below on the left-side.
Note that w(a) = w(b) and AttG(a) = AttG(b). Note also that b is weaker than its target y. Thus, the revised graph G′

(depicted on the right-side) contains the inverted arrow from y to b. Thus, Att′G(a) 6= Att′G(b). It is easy to check that
G′ has two complete/preferred/stable extensions: E1 = {x} and E2 = {a, y}. Thus, DegSG(a) = β while DegSG(b) = 0.
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x:0.5y:0.5 y x

a:0.2b:0.2 b a

Let us now present a counter-example for grounded semantics. Let us consider the argumentation weighted graph G
depicted below on the left-side. Note that w(a) = w(b) and AttG(a) = AttG(b). The revised graph G′ is depicted on
the right-side. Its grounded extension is E = {y}, thus DegSG(a) = α while DegSG(b) = 0.

x:0.5y:0.5 y x

a:0.2b:0.2 b a

Equivalence is violated by the four semantics. This can be seen on the two counter-examples given for symmetry.

Invariance is violated by the four semantics. Consider the following counter-example for grounded semantics. It
can be checked that the grounded extension of its revised version is {a, b, z}. Thus, DegSG(a) = DegSG(b) = 1 while
DegSG(a′) = α and DegSG(b′) = 0.

x:0.5

a′:0.5a:0.5 b:0.5 b′:0.5 z:1

y:0.5

The following example shows that Invariance is violated by stable, preferred and complete semantics. Arguments a,
b, b′, x and y get the degree α whereas a′ gets the degree 0.

a:1 a′:1

a1:1 x:1

b′:1b:1 y:1 b3:1

b2:1 b1:1

47



Strict Invariance is violated by the four semantics (consider the same counter-example as for the contraction-based
approach).

Monotony is violated by all the four semantics (consider the same counter-examples as for symmetry).

Counting is violated by the four semantics (consider the same counter-example as for the contraction-based ap-
proach).

Reinforcement is violated by the four semantics. Consider the graph depicted below on the left-side and its revised
version at the right-side. The grounded extension is {z}, then DegSG(x) = DegSG(y) = α > 0 while DegSG(a) = α and
DegSG(b) = 0. There are two stable/complete/preferred extensions: {x, z} and {y, z, a}. Thus, DegSG(x) = DegSG(y) =
β > 0 while DegSG(a) = β and DegSG(b) = 0.

a:0.5 b:0.5

x:0.5 y:0.5 z:1 x y z

a b

Strict Reinforcement is satisfied by stable and grounded semantics and violated by preferred and complete semantics.
To see why preferred and complete semantics violate Strict Reinforcement, consider the following counter-example. Note
that DegSG(y) > DegSG(x) (since y is credulously accepted and x is rejected). However, DegSG(a) = DegSG(b) since they
are both credulously accepted (note that in the revised graph, z attacks a).

z:1

v:1

a:0.5

u:1 x:0.5 y:0.5

b:0.5

Let us now show that Strict Reinforcement is satisfied by stable and grounded semantics. Assume that G =
〈A, w,R〉 ∈ WAG, a, b, x, y ∈ A such that:

• w(a) = w(b),

• DegSG(a) > 0,

• AttG(a) = {x},

• AttG(b) = {y},

• DegSG(y) > DegSG(x) > 0.

We denote by R′ the attack relation of the revised graph. Let us prove the claim for stable semantics. Since
DegSG(y) > DegSG(x) > 0 then DegSG(y) = 1 and DegSG(x) = α. It holds that yR′b or bR′y. Since y is scepti-
cally accepted, b is rejected. Thus DegSG(b) = 0.

As for grounded semantics, note that it must be DegSG(x) = β and DegSG(y) = 1. It holds that yR′b or bR′y.
Case yRb: obviously, DegSG(b) = 0. Case bRy: then, since the grounded semantics is admissible, there exists z in the
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extension such that zR′b. Thus, DegSG(b) = 0.

Proportionality is violated by all four semantics. Consider the graph G depicted below on the left-side and its
revised version G′ on the right-side. Note that w(b) > w(a) and AttG(a) = AttG(b). However, G′ has a single
preferred/complete/stable/grounded extension {a, d}. Thus, DegSG(a) = 1 > DegSG(b) = 0.

c:0.3

a:0.5 b:0.7

d:0.8 c

a

d

b

Strict Proportionality is violated by the four semantics. We can use the same counter-example as for contraction-
based approach.

Resilience is violated by the four semantics. We can use the same counter-example as for contraction-based approach.

QP is violated by the four semantics as shown by the graph depicted below.

x:0.6 a:0.5 z:0.6

t:0.6 v:0.6

b:0.5 y:0.5

Its revised version is depicted below. It can be checked that under stable, preferred and complete semantics, DegSG(a) =
DegSG(b) = α while DegSG(x) = 0 and DegSG(y) = α. Under grounded semantics, DegSG(a) = DegSG(b) = β while
DegSG(x) = 0 and DegSG(y) = β.

x a z

t v

b y

CP is violated by the four semantics. It is sufficient to consider the counter-example given for the contraction-based
approach.

Compensation is satisfied by the four semantics since they all violate CP and QP.

TB semantics: Let us recall the definition of TB:

DegTBG (a) = lim
i→+∞

fi(a), where (7)

fi(a) =
1

2
fi−1(a) +

1

2
min[w(a), 1−max

bRa
fi−1(b)] (8)

Recall also that the following equation is satisfied:

DegTBG (a) = min[w(a), 1−max
bRa

DegTBG (b)]. (9)

Anonymity is satisfied since the above equations do not take into account arguments’ names but only the topology of
the graph.
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Independence: Since equation (7) only takes into account direct attackers, independence is satisfied.
Directionality: We see from equation (7) that the strength of an argument is fully determined by the strengths of its

ancestors (i.e., the parents, parents’ parents and so on). Hence, adding the attack (a, b) does not impact the strength of
argument x if there is no path from b to x.

Maximality is satisfied since from (9) we obtain

DegTBG (a) = min[w(a), 1] = w(a). (10)

Weakening follows directly from the same equation.
The other proofs follow immediately from the three equations above. We now present counter-examples for violated

principles.
Strict Weakening: G = 〈A, w,R〉, where A = {a, b}, w(a) = 0.5, w(b) = 0.1,R = {(b, a)}.
Strict Invariance: G = 〈A, w,R〉, where A = {a, a′, b, b′, c, d, x, y}, w(a) = w(a′) = w(b) = w(b′) = 1,

w(c) = 0.1, w(d) = 0.2, w(x) = 0.5, w(y) = 0.5,R = {(c, a), (c, a′), (x, a′), (d, b), (d, b′), (y, b′)}.
Counting: Let G = 〈A, w,R〉, where A = {a, b, x}, w(a) = 0.5, w(b) = 0.5, w(x) = 0.1,R = {(x, b)}.
Strict Reinforcement: Let G = 〈A, w,R〉, where A = {a, b, x, y}, w(a) = 0.5, w(b) = 0.5, w(x) = 0.1,

w(y) = 0.2,R = {(x, a), (y, b)}.
Strict Proportionality: Let G = 〈A, w,R〉, where A = {a, b, x}, w(a) = 0.7, w(b) = 0.3, w(x) = 0.9, R =

{(x, a), (x, b)}.
Resilience: G = 〈A, w,R〉, where A = {a, x}, w(a) = 0.5, w(x) = 1,R = {(x, a)}.
CP and QP are violated by TB. Consider the following graph. It can be checked that DegSG(a) = DegSG(b) = 0.5.

x:0.2 y:0.2 z:0.3

a:0.5 b:0.5

Compensation is satisfied by TB since the latter violates both CP and QP.

Iterative Schema (IS) semantics:
Anonymity is obviously satisfied.
Independence is satisfied since the strength of an argument is a function of the strengths of its direct attackers.
Directionality is satisfied since the strength of an argument depends on its parents, grand-parents, and so on.
Maximality is violated. Consider a graph with only one argument a such that w(a) = 0 and the attack relation is

empty. The strength of a is 1.
Neutrality is satisfied. Let G = 〈A, w,R〉 ∈ WAG and a, b ∈ A such thatw(a) = w(b), AttG(a) = ∅ and AttG(b) =

{x}, withw(x) = 0. The strength of a is 1 (DegSG(a) = 1). Furthermore, for every i, gi(b) = (1−gi−1(b)).0.5+gi−1(b).
It is clear that lim

i→+∞
gi(b) = 1.

Weakening and Strict Weakening are violated. Consider the graph depicted below. It can be checked that DegSG(a) =
DegSG(b) = DegSG(c) = 0.5.

c:0.5 b:0.5 a:0.1

Weakening Soundness: is satisfied since non-attacked arguments get value 1 whatever their basic weights.
Resilience: is violated as shown in the following graph. Indeed, DegSG(b) = 1 while DegSG(a) = 0.

b:1 a:1
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Monotony is satisfied since for any a, b ∈ A such that w(a) = w(b) and AttG(a) ⊆ AttG(b), it holds that
max

x∈AttG(a)
DegSG(x) ≤ max

x∈AttG(b)
DegSG(x). Hence, DegSG(a) ≥ DegSG(b).

Symmetry is satisfied. Indeed, for G = 〈A, w,R〉 ∈ WAG, for a, b ∈ A such that w(a) = w(b) and AttG(a) =
AttG(b), for every i, gi(a) = gi(b). Thus, DegSG(a) = DegSG(b).

Equivalence is satisfied. Let G = 〈A, w,R〉 ∈ WAG and a, b ∈ A such that w(a) = w(b) and there exists a bijection
f from AttG(a) to AttG(b) such that for each x ∈ AttG(x), it holds that DegSG(x) = DegSG(f(x)). Let v be the degree
of the strongest attacker of a. Corollary 2.5 by Gabbay and Rodrigues [34] shows that IS returns only three values (0,
0.5, 1). If v = 1, then DegSG(a) = DegSG(b) = 0. If v = 0.5, then DegSG(a) = DegSG(b) = 0.5. If v = 0, then
DegSG(a) = DegSG(b) = 1.

Invariance is satisfied. Let G = 〈A, w,R〉 ∈ WAG, a, b, a′, b′, x, y ∈ A such that

• w(a) = w(a′) = w(b) = w(b′),

• AttG(a′) = AttG(a) ∪ {x} with x /∈ AttG(a),

• AttG(b′) = AttG(b) ∪ {y} with y /∈ AttG(b),

• DegSG(x) = DegSG(y).

Since DegSG(a) ≥ DegSG(b), then max
x∈AttG(a)

DegSG(x) ≤ max
x′∈AttG(b)

DegSG(x′). Since DegSG(x) = DegSG(y), then

max
x∈AttG(a′)

DegSG(x) ≤ max
x′∈AttG(b′)

DegSG(x′). Thus, DegSG(a′) ≥ DegSG(b′).

Strict Invariance is violated. Consider the graph depicted below. Clearly, DegSG(a) = 1, DegSG(b) = 0.5 and
DegSG(a′) = DegSG(b′) = 0.

a:1 a′:1

x:1 z:0.5

b:1 b′:1

y:1

Counting is violated as shown on the following example. Indeed, DegSG(a) = DegSG(b) = 0.5.

y:0.5 x:0.5

a:0.5 b:0.5

Reinforcement is satisfied. Let G = 〈A, w,R〉 ∈ WAG and a, b, x, y ∈ A such that:

• w(a) = w(b),

• AttG(a) = {x},

• AttG(b) = {y},

• DegSG(y) ≥ DegSG(x) > 0.

Since arguments get unique scores, we have:

DegSG(a) = (1− DegSG(a)).A+ DegSG(a).B (11)

DegSG(b) = (1− DegSG(b)).C + DegSG(b).D (12)
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where A = min( 12 , 1 − DegSG(x)), B = max( 12 , 1 − DegSG(x)) C = min( 12 , 1 − DegSG(y)), D = max( 12 , 1 −
DegSG(y)). From equation 11 (respectively 12), we obtain:

DegSG(a) =
A

1 +A−B
,

DegSG(b) =
C

1 + C −D
.

Since A ≥ C and B ≥ D, we get A(1−D) ≥ C(1−D) ≥ C(1−B). Consequently, A(1+C −D) ≥ C(1+A−B).
Hence, DegSG(a) ≥ DegSG(b).

Strict Reinforcement is satisfied. Assume that G = 〈A, w,R〉 ∈ WAG, a, b, x, y ∈ A such that:

• w(a) = w(b),

• DegSG(a) > 0,

• AttG(a) = {x},

• AttG(b) = {y},

• DegSG(y) > DegSG(x) > 0.

Corollary 2.5 by Gabbay and Rodrigues [34] shows that IS returns only three values (0, 0.5, 1). Hence, it must be that
DegSG(y) = 1 and DegSG(x) = 0.5. Furthermore, DegSG(b) = (1− DegSG(b)).min( 12 , 0) + DegSG(b)max( 12 , 0). Hence,
DegSG(b) = 1

2Deg
S
G(b). Thus, DegSG(b) = 0. Since DegSG(a) > 0, then DegSG(a) > DegSG(b).

Proportionality is satisfied. Let us prove the property by induction. Let G = 〈A, w,R〉 ∈ WAG and a, b ∈ A such
that w(a) ≥ w(b) and AttG(a) = AttG(b). Base case: w(a) ≥ w(b). Suppose now that gi−1(a) ≥ gi−1(b) and let us
show that gi(a) ≥ gi(b). Let A = min( 12 , 1− max

x∈AttG(a)
gi−1(x)) and B = max( 12 , 1− max

x∈AttG(a)
gi−1(x)). Observe that

B ≥ A. Denote by E = gi−1(a)− gi−1(b). It follows that gi(a)− gi(b) = E.(B − A). Since E ≥ 0 and B − A ≥ 0,
then gi(a) ≥ gi(b). By induction, for every i, gi(a) ≥ gi(b).

Strict Proportionality: is violated as shown on the simple graph depicted below. Indeed, note that DegSG(a) =
DegSG(b) = 0.

a:0.7 x:1.0 b:0.6

QP is satisfied. Let G = 〈A, w,R〉 ∈ WAG and a, b ∈ A such that

• w(a) = w(b),

• DegSG(a) > 0,

• ∃y ∈ AttG(b) such that ∀x ∈ AttG(a), DegSG(y) > DegSG(x).

Assume that ∃y ∈ AttG(b) such that DegSG(y) = 1. Thus, DegSG(b) = 0. Hence, DegSG(a) > DegSG(b). Assume now
that max

z∈AttG(b)
DegSG(z) = 0.5 (1), then DegSG(b) = 0.5. From (1), we also conclude that max

z∈AttG(a)
DegSG(z) = 0. Hence,

DegSG(a) = 1. Consequently, DegSG(a) > DegSG(b).
CP is violated as shown with the following graph.

t:0.5 a:0.5

x:0.5 y:0.5

z:0.5 b:0.5
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Compensation is violated since QP is satisfied.

Proof of Theorem 6. Let us recall the definition of a degree of an argument with respect to DF-Quad, in the case of a
graph without supports:

Deg
DF−QuAD
G (a) = w(a)×

∏
bRa

(1− Deg
DF−QuAD
G (b)). (13)

Anonymity follows from the fact that (13) does not use the names of the arguments.
Independence follows from the fact that the degree of an argument does not depend on the arguments that are not

connected to it.
Directionality follows from the fact that (13) uses the degrees of parents, their parents, and so on but not the other

arguments.
Maximality follows from (13) since if an argument a has no attackers, we obtain Deg

DF−QuAD
G (a) = w(a)× 1.

Weakening and Strict Weakening follow from (13) since of an argument a has an attacker b such that DegDF−QuADG (b) >

0, we obtain Deg
DF−QuAD
G (a) = w(a)× α, with 0 < α < 1.

The other proofs also follow directly from equation (13).
We now present the counter-examples.
Strict Invariance: Let G = 〈A, w,R〉, where A = {a, a′, b, b′, c, d, x, y}, w(a) = w(a′) = w(b) = w(b′) = 1,

w(c) = 0.5, w(d) = 0.8, w(x) = 1, w(y) = 1, R = {(c, a), (c, a′), (x, a′), (d, b), (d, b′), (y, b′)}. It is easy to check
that DegSG(a) = 0.5 > DegSG(b) = 0.2 while DegSG(a) = DegSG(b) = 0.

Strict Proportionality: Let G = 〈A, w,R〉, where A = {a, b, x}, w(a) = 0.5, w(b) = 0.3, w(x) = 1, R =
{(x, a), (x, b)}. Strict Proportionality is not satisfied since DegSG(a) = DegSG(b) = 0.

Resilience: Let G = 〈A, w,R〉, where A = {a, x}, w(a) = 0.5, w(x) = 1, R = {(x, a)}. Resilience is not
satisfied since DegSG(a) = 0.

CP: Let G = 〈A, w,R〉, where A = {a, b, x, y1, y2}, w(a) = 1, w(b) = 1,w(x) = 0.9, w(y1) = 0.1,w(y2) = 0.1,
R = {(x, a), (y1, b), (y2, b)}. We have DegSG(a) = 0.1 and DegSG(b) = 0.81, thus CP is not satisfied.

QP: Let G = 〈A, w,R〉, where A = {a, b, x1, x1, y}, w(a) = 1, w(b) = 1,w(x1) = 0.4, w(x2) = 0.4,w(y) = 0.5,
R = {(x1, a), (x2, a), (y, b)}. We obtain DegSG(a) = 0.36 and DegSG(b) = 0.5, thus QP is not satisfied.

Lemma 2. Let G = 〈A, w,R〉 ∈ WAG and a ∈ A. For any i ∈ {0, 1, . . .}, fim(a) ≤ w(a).

Proof It is obvious from the definition that fim is nonnegative for each i, so 1 + max
b∈AttG(a)

fi−1m (b) ≥ 1.

Proof of Theorem 7. Let 〈A, w,R〉 ∈ WAG and assume an enumeration A = {a1, . . . , an} of the arguments. We denote
by fim(A) the vector (n-tuple) (fim(a1), . . . , f

i
m(an)), for every i ∈ N. We need to prove that fim(A) converges in the

vector space Rn. First, note that if w(ai) = 0, then fkm(ai) = 0 for every k ∈ N; otherwise fkm(ai) 6= 0 for every k ∈ N.
Also note that an attack of an argument whose weight is zero doesn’t affect the scoring value of attacked arguments.
Thus, without any loss of generality, in this proof we can assume that w(ai) > 0 for all i ∈ {1, . . . , n}. Let us define the
function F : [0, 1]n → [0, 1]n by F ((x1, . . . , xn) = (F1(x1, . . . , xn), . . . , Fn(x1, . . . , xn)), where

Fi(x1, . . . , xn) =
w(ai)

1 + max
j:aj∈Att(ai)

xj
(14)

for every i ∈ {1, . . . , n}. We also define the partial order ≤ on Rn in the following way: if x = (x1, . . . , xn) and
y = (y1, . . . , yn), then x ≤ y iff for every for every i ∈ {1, . . . , n} the inequality xi ≤ yi holds. Then it is clear that
F is a non-increasing function with respect to ≤, i.e., that F (x) ≥ F (y) whenever x ≤ y. Consequently, the function
G = F ◦ F is non-decreasing, since F (x) ≥ F (y) implies F (F (x)) ≤ F (F (y)).

Note that for every i ∈ N we have fi+1
m (A) = F (fim(A)). Since f0m(A) = (w(a1), . . . , w(an)), by Lemma 2 we

obtain both
f1m(A) ≤ f0m(A) (15)

and
f2m(A) ≤ f0m(A). (16)

Applying the non-increasing function F to the inequality (16), we also obtain F (f2m(A)) ≥ F (f0m(A)), i.e.,

f1m(A) ≤ f3m(A). (17)
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Since fi+2
m (A) = G(f1m(A)), applying G to the inequality (16) and using non-decreasingness of G we derive f4m(A) =

G(f2m(A)) ≤ G(f0m(A)) = f2m(A). Repeating the application of G, we obtain

f0m(A) ≥ f2m(A) ≥ f4m(A) ≥ f6m(A) ≥ · · · ≥ (0, . . . , 0) (18)

Thus, the sequence {f2im (A)}i∈N is monotonically non-increasing in Rn and bounded by (0, . . . , 0), so it has a limit
fm(A) = lim

i→+∞
f2im (A). Similarly, applying G to the inequality (17), we conclude

f1m(A) ≤ f3m(A) ≤ f5m(A) ≤ f7m(A) ≤ . . . (19)

so the sequence {f2i+1
m (A)}i∈N is monotone (non-decreasing) in Rn. Since it is bounded by (w(a1), . . . , w(an)) (by

Lemma 2), it has a limit fm(A) = lim
i→+∞

f2i+1
m (A). It remains to prove that fm(A) = fm(A). Similarly as above, we can

apply G to (15) and show that f2i+1
m (A) ≤ f2im (A) for every i ∈ N and, consequently, that fm(A) ≤ fm(A).

Let us prove that fm(A) ≥ fm(A). Using the Archimedean property, we obtain that for every k ∈ N there exists
αk > 0 such that

f2k+1
m (A) ≥ αkf2km (A).

Let πk := sup{αk | f2k+1
m (A) ≥ αkf

2k
m (A)}. Obviously πk ≤ 1 for every k ∈ N, and the sequence {πk}k∈N is

non-decreasing in R. Then there exists the limit π = lim
k→+∞

πk, and π ≤ 1. Note that, since f2k+1
m (A) ≥ πkf

2k
m (A), we

have F (f2k+1
m (A)) ≤ F (πkf2km (A)), i.e.,

f2k+2
m (A) ≤ F (πkf2km (A)). (20)

For i ∈ {1, . . . , n}, x = (x1, . . . , xn) and α ∈ (0, 1] we have

Fi(αx) =
w(ai)

1 + max
j:aj∈Att(ai)

αxj
=

w(ai)

1 + α max
j:aj∈Att(ai)

xj

=
w(ai)

(α− α) + 1 + α max
j:aj∈Att(ai)

xj

=
w(ai)

(1− α) + α(1 + max
j:aj∈Att(ai)

xj)

=
w(ai)

(1− α) + αw(ai)
Fi(x)

· Fi(x)
Fi(x)

It follows that

Fi(αx) =
w(ai)

(1− α)Fi(x) + αw(ai)
Fi(x). (21)

If we apply (21) to the inequality (20), we have that for every i ∈ {1, . . . , n} and k ∈ N

f2k+2
m (ai) ≤

w(ai)

(1− πk)Fi(f2km (A)) + πkw(ai)
Fi(f

2k
m (A)),

or, equivalently,

f2k+2
m (ai) ≤

w(ai)f
2k+1
m (ai)

(1− πk)f2k+1
m (ai) + πkw(ai)

. (22)

Let us rewrite (22) as
f2k+3
m (ai) ≥

f2k+3
m (ai)[(1− πk)f2k+1

m (ai) + πkw(ai)]

w(ai)f
2k+1
m (ai)

f2k+2
m (ai). (23)

Since πk+1 = sup{α | f2k+3
m (A) ≥ αf2k+2

m (A)}, we conclude that πk+1 is the maximal number β such that for every
i ∈ {1, . . . , n} we have

f2k+3
m (ai) ≥ β · f2k+2

m (ai).

Combining this observation with (23) we conclude that for every k ∈ N there is i(k) ∈ {1, . . . , n} such that

f2k+3
m (ai(k))[(1− πk)f2k+1

m (ai(k)) + πkw(ai(k))]

w(ai(k))f
2k+1
m (ai(k))

≤ πk+1. (24)
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Here we wish to use the fact that all the indexes of the weighted max-based function fm on the left hand side of the
inequality (24) are odd, and to apply lim

k→+∞
to the both side of the inequality. The problem is that, although the sequence

{f2k+1
m (A)}k∈N converges, the sequence {f2k+1

m (ai(k))}k∈N doesn’t necessarily converge since indexes i(k) may take
different values for different k. For that reason, note that the set {1, . . . , n} is finite and that there is at least one number
from the set that appears infinitely many times in the sequence {i(k)}k∈N. Without any loss of generality, suppose that
one such number is j. Denote by f

j
m the j-th projection of the vector fm. Using the fact that if a sequence converges, then

its subsequences converges as well, we apply limit to the inequality (24) using the subsequence obtained by taking only
those k for which i(k) = j. Then we obtain

f
j
m[(1− π)fjm + πw(aj)]

w(aj)f
j
m

≤ π. (25)

We can rewrite (25) as
(1− π)fjm + πw(aj) ≤ πw(aj). (26)

Note that from w(aj) > 0 and 1 + maxb∈AttG(aj) f
i−1
m (b) ≤ 2 we obtain that fkm(aj) ≥

w(aj)
2 , for all k, so f

j
m > 0.

Since fjm 6= 0, from (26) we obtain 1− π ≤ 0, i.e., π ≥ 1. Finally, from π ≤ 1 we obtain π = 1.
We proved that for every k ∈ N we have f2k+1

m (A) ≤ f2km (A). Together with the inequality f2k+1
m (A) ≥ πkf2km (A) it

gives us
πkf

2k
m (A) ≤ f2k+1

m (A) ≤ f2km (A). (27)

Now we let k → +∞ and obtain
1 · fm(A) ≤ fm(A) ≤ fm(A).

Thus, lim
k→+∞

f2km (A) = fm(A) = fm(A) = lim
k→+∞

f2k+1
m (A), so the sequence {fkm(A)}k∈N converges.

Proof of Theorem 8. Let G = 〈A, w,R〉 ∈ WAG and a ∈ A. Letting i→ +∞ in the equality

fi+1
m (a) =

w(a)

1 + max
b∈AttG(a)

fim(b)

and using the fact that arithmetical operations and max are continuous functions, we obtain

lim
i→+∞

fi+1
m (a) =

w(a)

1 + max
b∈AttG(a)

lim
i→+∞

fim(b)

i.e.

DegMbsG (a) =
w(a)

1 + max
b∈AttG(a)

DegMbsG (b)
.

Proof of Theorem 9. Let G = 〈A, w,R〉 ∈ WAG and suppose that D : A → [0, 1] is the function such that

D(a) =
w(a)

1 + max
b∈Att(a)

D(b)
(28)

for every a ∈ A. Since the function D is nonnegative, we obtain that

D(a) ≤ w(a)

1 + 0
= w(a), ∀a ∈ A. (29)

LetA = {a1, . . . , an} and letF : [0,+∞)n → [0,+∞)n be the function such thatF ((x1, . . . , xn) = (F1(x1, . . . , xn),
. . . , Fn(x1, . . . , xn)), where Fi’s are defined by the equalities (14) in the proof of Theorem 8. From (28) it follows that

F (D(a1), . . . , D(an)) = (D(a1), . . . , D(an)). (30)

Recall that F is a non-increasing function and G = F ◦ F is a non-decreasing function, and that

(fi+1
m (a1), . . . , f

i+1
m (an)) = F (fim(a1), . . . , f

i
m(an))
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for every i ∈ N.
Since (f0m(a1), . . . , f

0
m(an)) = (w(a1), . . . , w(an)), by the inequalities (29) we obtain

(f0m(a1), . . . , f
0
m(an)) ≥ (D(a1), . . . , D(an)). (31)

Now, applying F on (31), and using non-increasingness of F and (30), we obtain

(f1m(a1), . . . , f
1
m(an)) ≤ (D(a1), . . . , D(an)). (32)

Finally, applying the non-decreasing function G = F ◦ F on (31) and (32), we conclude that

(f2im (a1), . . . , f
2i
m (an)) ≥ (D(a1), . . . , D(an)) (33)

and
(f2i+1

m (a1), . . . , f
2i+1
m (an)) ≤ (D(a1), . . . , D(an)). (34)

for every i ∈ N. Since lim
i→+∞

((fim(a1), . . . , f
i
m(an)) = (DegMbsG (a1), . . . , Deg

Mbs
G (an)), we let i → +∞ in (33) and (34),

and obtain
(DegMbsG (a1), . . . , Deg

Mbs
G (an)) ≥ (D(a1), . . . , D(an))

and
(DegMbsG (a1), . . . , Deg

Mbs
G (an)) ≤ (D(a1), . . . , D(an)),

respectively. Thus, DegMbsG (a) = D(a) for all a ∈ A.

Proof of Theorem 10.
Anonymity: Let G = 〈A, w,R〉 ∈ WAG and G′ = 〈A′, w′,R′〉 ∈ WAG and f be an isomorphism from G to G′. Let

fim and gim be their corresponding weighted max-based functions, respectively. If a ∈ A, using the induction on i, it is
easy to show that fim(a) = gim(f(a)), for every i ∈ N. Consequently, DegMbsG (a) = DegMbsG′ (f(a)).

Independence: Let G = 〈A, w,R〉 ∈ WAG and G′ = 〈A′, w′,R′〉 ∈ WAG such that A ∩ A′ = ∅. Let G ⊕G′ =
〈A∪A′, w⊕w′,R∪R′〉. Let fim and gim be the weighted max-based functions of G and G⊕G′, respectively. We show
by induction that ∀ i ∈ {0, 1, . . .}, the following holds:

P (i) : ∀ a ∈ A, fim(a) = gim(a)

Let i ∈ {0, 1, . . .} and suppose that ∀ j ∈ {0, 1, . . . , i− 1}, P (j) holds. We show that P (i) holds. Let a ∈ A.

• Case 0: i = 0.
We have that ∀ a ∈ A, f0m(a) = g0m(a) = w(a). Thus, P (0) holds.

• Case 1: i > 0.
Let X = AttG(a) and X ′ = AttG⊕G′(a). Then fim(a) =

w(a)

1+max
b∈X

fi−1
m (b)

and gim(a) =
w(a)

1+max
b∈X′

gi−1
m (b)

. Since X =

X ′, we have fim(a) =
w(a)

1+max
b∈X′

fi−1
m (b)

. By P (i−1), ∀b ∈ X ′, fim(b) = gim(b). Consequently, fim(a) =
w(a)

1+max
b∈X′

gi−1
m (b)

.

So, fim(a) = gim(a). Thus, P (i) holds.

Consequently, DegMbsG (a) = DegMbsG⊕G′(a).

Directionality: Let G = 〈A, w,R〉 ∈ WAG and G′ = 〈A′, w′,R′〉 ∈ WAG such that A = A′, w′ = w, and
R′ = R ∪ {(a, b)}. We denote the set {c ∈ A | there is a path from b to c} with p(b) (since R′ = R ∪ {(a, b)}, there
is a path from b to c in G iff there is a path in G′, so we use the same notation p(b) for both graphs). Let fim and gim be
the weighted max-based functions of G and G′, respectively. We show by induction that ∀ i ∈ {0, 1, . . .}, the following
holds:

P (i) : ∀ x /∈ p(b), fim(x) = gim(x).

Let i ∈ {0, 1, . . .} and suppose that ∀ j ∈ {0, 1, . . . , i− 1}, P (j) holds. We show that P (i) holds.

• Case i = 0. We have that ∀ x /∈ p(b), f0m(x) = g0m(x) = w(x). Thus, P (0) holds.
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• Case i > 0. We have that

fim(x) =
w(x)

1 + maxz∈AttG(x) f
i−1
m (z)

and

gim(x) =
w(x)

1 + maxz∈AttG′ (x) g
i−1
m (z)

.

Since R′ = R ∪ {(a, b)}, we have that AttG(x) = AttG′(x). From x /∈ p(b) we deduce that for every z ∈
AttG(x) we have z /∈ p(b), so fi−1m (z) = gi−1m (z) by P (i− 1). Thus we proved that

max
z∈AttG(y)

fi−1m (z) = max
z∈AttG′ (y)

gi−1m (z),

so fim(x) = gim(x).

Letting i→ +∞, we obtain our result.

Maximality: Let G = 〈A, w,R〉 ∈ WAG. By definition, ∀a ∈ A such that AttG(a) = ∅, for every i ∈ N we have
fim(a) = w(a), so DegMbsG (a) = w(a).

Weakening: Let G = 〈A, w,R〉 ∈ WAG and a ∈ A. If w(a) = 0, then DegMbsG (a) = 0 by Theorem 8. If w(a) > 0,
then DegMbsG (a) < w(a), since the semantics satisfies Strict Weakening (see below).

Strict Weakening: Let G = 〈A, w,R〉 ∈ WAG and a, b ∈ A such that DegMbsG (b) > 0. By Theorem 8,

DegMbsG (a) =
w(a)

1 + max
b∈AttG(a)

DegMbsG (b)
.

Assume that ∃b ∈ AttG(a) such that DegMbsG (b) > 0. Thus, max
b∈AttG(a)

DegMbsG (b) > 0. So, 1 + max
b∈AttG(a)

DegMbsG (b) > 1.

Consequently, w(a)
1+ max

b∈AttG(a)
DegMbsG (b)

< w(a) and DegMbsG (a) < w(a).

Weakening Soundness is satisfied by Mbs. Indeed, we showed that it satisfies Directionality, Independence, Invari-
ance, Maximality and Neutrality, so it must also satisfy Weakening Soundness, by Proposition 2.

Resilience: Follows directly from Theorem 11.

Proportionality: Let G = 〈A, w,R〉 ∈ WAG and a, b ∈ A such that w(a) ≥ w(b) and AttG(a) = AttG(b). If
w(a) = w(b), then DegMbsG (a) = DegMbsG (b), since Mbs satisfies Symmetry (see below). Suppose that w(a) > w(b). Then
w(a) > 0, so DegMbsG (a) > 0, since Mbs satisfies Resilience. From the fact that Mbs also satisfies Strict Proportionality
(see below), we obtain DegMbsG (a) > DegMbsG (b).

Strict Proportionality: Let G = 〈A, w,R〉 ∈ WAG and a, b ∈ A such that i) DegMbsG (a) > 0, ii) w(a) > w(b),
and iii) AttG(a) = AttG(b). Since AttG(a) = AttG(b), then 1

1+ max
ai∈AttG(a)

DegMbsG (ai)
= 1

1+ max
bi∈AttG(b)

DegMbsG (bi)
. From ii),

DegMbsG (a) > DegMbsG (b).

Neutrality: Follows directly from Theorem 8.

Reinforcement: Let G = 〈A, w,R〉 ∈ WAG and a, b, x, y ∈ A such that w(a) = w(b), AttG(a) = {x},
AttG(b) = {y} and DegSG(y) ≥ DegSG(x) > 0. If DegSG(y) = DegSG(x), then DegSG(a) = DegSG(b) since Mbs

satisfies Equivalence (see below). Suppose that DegSG(y) > DegSG(x). If DegSG(a) > 0, then DegSG(a) > DegSG(b) since
Mbs satisfies Strict Reinforcement (see below). Otherwise, if DegSG(a) = 0, from Theorem 8 we obtain w(a) = 0 and
DegSG(a) = DegSG(b) = 0.

Strict Reinforcement: Let G = 〈A, w,R〉 ∈ WAG, and a, b, x, y ∈ A such that w(a) = w(b), DegSG(a) > 0,
AttG(a) = {x}, AttG(b) = {y}, and DegSG(y) > DegSG(x) > 0. From Theorem 8 and DegSG(a) > 0 we obtain
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w(a) > 0. From w(a) = w(b) and DegSG(y) > DegSG(x), using Theorem 8 we obtain

DegSG(a) =
w(a)

1 + max
x∈AttG(a)

DegMbsG (x)
>

w(b)

1 + max
y∈AttG(b)

DegMbsG (y)
= DegSG(b).

Symmetry: Since the semantics satisfies Equivalence (see below), it obviously satisfies Symmetry (from Proposition
2).

Equivalence: Let G = 〈A, w,R〉 be a weighted argumentation graph and let a, b ∈ A be two arguments such that
w(a) = w(b) and there exists a bijective function f from AttG(a) to AttG(b) such that ∀x ∈ AttG(a), DegMbsG (x) =
DegMbsG (f(x)). Let us show that DegMbsG (a) = DegMbsG (b). If AttG(a) = AttG(b) = ∅, then obviously DegMbsG (a) =
DegMbsG (b) = w(a). If AttG(a) 6= ∅, then from the assumption that f is a bijection from AttG(a) to AttG(b) and
DegMbsG (x) = DegMbsG (f(x)) for every x ∈ AttG(a), we obtain max

x∈AttG(a)
DegMbsG (x) = max

y∈AttG(b)
DegMbsG (y). Since also

w(a) = w(b), we conclude
w(a)

1 + max
x∈AttG(a)

DegMbsG (x)
=

w(b)

1 + max
y∈AttG(b)

DegMbsG (y)
,

so DegMbsG (a) = DegMbsG (b) by Theorem 8.

Invariance: Let G = 〈A, w,R〉 ∈ WAG and a, b, a′, b′, x, y ∈ A are such that i) w(a) = w(a′) = w(b) = w(b′),
ii) AttG(a′) = AttG(a) ∪ {x}, iii) AttG(b′) = AttG(b) ∪ {y}, iv) DegMbsG (x) = DegMbsG (y), and v) DegMbsG (a) ≥
DegMbsG (b). Let us show that DegSG(a′) ≥ DegSG(b′). From conditions i) to v) we obtain, using Theorem 8, that
max

z∈AttG(b)
DegMbsG (z) ≥ max

t∈AttG(a)
DegMbsG (t). By condition iv), max

z∈AttG(b)∪{y}
DegMbsG (z) ≥ max

t∈AttG(a)∪{x}
DegMbsG (t), i.e.,

max
z∈AttG(b′)

DegMbsG (z) ≥ max
t∈AttG(a′)

DegMbsG (t). Since w(a′) = w(b′), using Theorem 8 we obtain DegSG(a′) ≥ DegSG(b′).

Monotony: Let G = 〈A, w,R〉 ∈ WAG and a, b ∈ A such that w(a) = w(b) and AttG(a) ⊆ AttG(b). From The-
orem 8, DegMbsG (a) = w(a)

1+ max
x∈AttG(a)

DegMbsG (x)
and DegMbsG (b) = w(b)

1+ max
y∈AttG(b)

DegMbsG (y)
. From AttG(a) ⊆ AttG(b), we obtain

max
x∈AttG(a)

DegMbsG (x) ≤ max
y∈AttG(b)

DegMbsG (y). Since w(a) = w(b), we have DegMbsG (a) ≥ DegMbsG (b).

Strict Invariance: Mbs violates Strict Invariance. Consider the graph G depicted below. DegMbsG (a) = DegMbsG (x) =
DegMbsG (y) = 1 and DegMbsG (z) = 0.5, by Maximality. Also, using Theorem 8 we calculate DegMbsG (b) = 2

3 and
DegMbsG (a′) = DegMbsG (b′) = 0.5. Note that

1. w(a) = w(a′) = w(b) = w(b′),
2. AttG(a′) = AttG(a) ∪ {x},
3. AttG(b′) = AttG(b) ∪ {y},
4. DegMbsG (x) = DegMbsG (y), and
5. DegMbsG (a) > DegMbsG (b),

but DegMbsG (a′) = DegMbsG (b′). Thus, Mbs does not satisfy Strict Invariance.

b:1.0 z:0.5 b′:1.0 y:1.0 x:1.0 a′:1.0 a:1.0

Counting: Mbs violates Counting (see previous example where DegMbsG (a′) = DegMbsG (b′)).
Cardinality Precedence: Since Mbs satisfies Quality Precedence (see below), Resilience and Maximality, it does not

satisfy Cardinality Precedence, by Proposition 1.

Quality Precedence: Let G = 〈A, w,R〉 ∈ WAG and let a, b ∈ A be two arguments such that i) w(a) = w(b), ii)
DegMbsG (a) > 0, iii) ∃y ∈ AttG(b) such that ∀x ∈ AttG(a), DegMbsG (y) > DegMbsG (x). From the last condition we obtain
that max

y∈AttG(b)
DegMbsG (y) > max

x∈AttG(a)
DegMbsG (x). From w(a) = w(b) we obtain

w(a)

1 + max
x∈AttG(a)

DegMbsG (x)
>

w(b)

1 + max
y∈AttG(b)

DegMbsG (y)
,
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thus DegMbsG (a) > DegMbsG (b).

Compensation: Since Mbs satisfies Quality Precedence, then it violates Compensation.

Proof of Theorem 11. It is direct consequence of Theorem 8. Indeed, since the function Mbs maps arguments to unit
interval of reals, for every a ∈ A, we obtain 1 ≤ 1 + maxb∈AttG(a) Deg

Mbs
G (b) ≤ 2, and using the equation (1) we have

w(a)

2
≤ DegMbsG (a) ≤ w(a)

1
.

Proof of Theorem 12. Let G = 〈A, w,R〉 ∈ WAG. Similarly as in the proof of Theorem 7, we assume an enumeration
A = {a1, . . . , an} of the arguments and we denote by fic(A) the vector (fic(a1), . . . , f

i
c(an)) (for every i ∈ N). We can

also use the same argument as in that proof to assume, without loss of generality, that all the arguments have positive
basic weight. We define the function F : [0, 1]n → [0, 1]n by F ((x1, . . . , xn) = (F1(x1, . . . , xn), . . . , Fn(x1, . . . , xn)),
where

Fi(x1, . . . , xn) =
w(ai)

1 + |AttFG(ai)|+

∑
j:aj∈AttFG(ai)

xj

|AttFG(ai)|

(35)

for every i ∈ {1, . . . , n}. Then for every i ∈ N we have fi+1
c (A) = F (fic(A)). In the same way as in the proof of

Theorem 7, we:

1. define the partial order ≤ on Rn and show that F is a non-increasing function with respect to ≤;
2. show that the sequence {f2ic (A)}i∈N is monotonically non-increasing, and {f2i+1

c (A)}i∈N is monotonically non-
decreasing in Rn;

3. show that f2i+1
c (A) ≤ f2ic (A) for every i ∈ N, so lim

i→+∞
f2i+1
c (A) ≤ lim

i→+∞
f2ic (A);

4. define πk := sup{αk | f2k+1
c (A) ≥ αkf2kc (A)} and we note that:

(a) the sequence {πk}k∈N is non-decreasing in R;
(b) π = lim

k→+∞
πk ≤ 1;

(c) f2k+2
m (A) ≤ F (πkf2km (A))

Then for i ∈ {1, . . . , n}, x = (x1, . . . , xn) and α ∈ (0, 1] we have

Fi(αx) =
w(ai)

1 + |AttFG(ai)|+

∑
j:aj∈AttFG(ai)

αxj

|AttFG(ai)|

=
w(ai)

1 + |AttFG(ai)|+ α

∑
j:aj∈AttFG(ai)

xj

|AttFG(ai)|

=
w(ai)

1 + |AttFG(ai)|+ α(w(ai)
Fi(x)

− 1− |AttFG(ai)|)

=
w(ai)

(1− α)(1 + |AttFG(ai)|) + αw(ai)
Fi(x)

=
w(ai)

(1− α)(1 + |AttFG(ai)|)Fi(x) + αw(ai)
Fi(x)

Now we combine this result with the inequality 4(c) and we obtain that for every i ∈ {1, . . . , n} and k ∈ N

f2k+2
c (ai) ≤

w(ai)

(1− πk)(1 + |AttFG(ai)|)Fi(f2kc (A)) + πkw(ai)
Fi(f

2k
c (A)),

so

f2k+2
c (ai) ≤

w(ai)f
2k+1
c (ai)

(1− πk)(1 + |AttFG(ai)|)f2k+1
c (ai) + πkw(ai)

.
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This inequality can be transformed to
f2k+3
m (ai) ≥

f2k+3
m (ai)[(1− πk)(1 + |AttFG(ai)|)f2k+1

m (ai) + πkw(ai)]

w(ai)f
2k+1
m (ai)

· ·f2k+2
m (ai).

So, for every k ∈ N there is j ∈ {1, . . . , n} such that

f2k+3
m (aj)[(1− πk)(1 + |AttFG(aj)|)f2k+1

m (aj) + πkw(aj)]

w(aj)f
2k+1
m (aj)

≤ πk+1.

Similarly as in the proof of Theorem 7, we choose one j ∈ {1, . . . , n} such that previous inequality holds for infinitely
many k’s, and we apply lim

k→+∞
to all those inequalities in which j appears. If we denote by (f1c, . . . , f

n
c) the vector

lim
k→+∞

f2k+1
c (A), we obtain

f
j
c[(1− π)(1 + |AttFG(aj)|)fjc + πw(aj)]

w(aj)f
j
c

≤ π.

This is equivalent to
(1− π)(1 + |AttFG(aj)|)fjc + πw(aj) ≤ πw(aj).

Since (1 + |AttFG(aj)|)fjc > 0, either 1− π ≤ 0 or fjc = 0. Since w(aj) > 0 and

1 + |AttFG(aj)|+

∑
b∈AttFG(aj)

fi−1c (b)

|AttFG(aj)|
≤ |AttFG(aj)|+ 2

we obtain that

fkc(aj) ≥
w(aj)

|AttFG(aj)|+ 2
,

for all k, so f
j
c > 0. Since f

j
c 6= 0, we obtain π ≥ 1. Together with 4(b), it gives π = 1. We can use that fact to prove

that lim
i→+∞

f2i+1
c (A) = lim

i→+∞
f2ic (A), in the same way as we proved the analogous statement for max-based function in

the proof of Theorem 7.

Proof of Theorem 13. Analogous to the proof of Theorem 8.

Proof of Theorem 14. Analogous to the proof of Theorem 9.

Proof of Theorem 15. The proofs that Cbs satisfies Anonymity, Independence, Directionality, Maximality, Weakening,
Strict Weakening, Weakening Soundness, Proportionality, Strict Proportionality, Reinforcement, Strict Reinforce-
ment, Symmetry, Equivalence and Invariance are very similar to the corresponding ones in Theorem 10.

Resilience: Let G = 〈A, w,R〉 ∈ WAG and a ∈ A such that w(a) > 0. Note that∑
b∈AttFG(a)

DegCbsG (b) ≤ |AttFG(a)|,

so
w(a)

1 + |AttFG(a)|+
∑

b∈AttFG(a) Deg
Cbs
G (b)

|AttFG(a)|

≥ w(a)

1 + |AttFG(a)|+ 1
.

Thus, DegCbsG (a) ≥ w(a)
2+|AttFG(a)| (by Theorem 13), and, consequently, DegCbsG (a) > 0.

Strict Invariance: Let G = 〈A, w,R〉 ∈ WAG and suppose that a, b, a′, b′, x, y ∈ A are arguments such that:

1. w(a) = w(a′) = w(b) = w(b′),
2. AttG(a′) = AttG(a) ∪ {x},
3. AttG(b′) = AttG(b) ∪ {y},
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4. DegCbsG (x) = DegCbsG (y), and
5. DegCbsG (a) > DegCbsG (b).

We need to show that DegCbsG (a′) > DegCbsG (b′). Since w(a′) = w(b′), by Theorem 13 it is sufficient to show

1 + |AttFG(a′)|+
∑
t∈AttFG(a′) Deg

Cbs
G (t)

|AttFG(a′)|
< 1 + |AttFG(b′)|+

∑
z∈AttFG(b′) Deg

Cbs
G (z)

|AttFG(b′)|
. (36)

From the conditions 1 and 5 we obtain, using Theorem 13, that 1+ |AttFG(a)|+
∑

t∈AttFG(a) Deg
Cbs
G (t)

|AttFG(a)| < 1+ |AttFG(b)|+∑
z∈AttFG(b) Deg

Cbs
G (z)

|AttFG(b)| . Note that this directly implies (36) if DegCbsG (x) = DegCbsG (y) = 0. Thus, in the rest of the proof we
assume DegCbsG (x) = DegCbsG (y) > 0. Note that |AttFG(a)| > |AttFG(b)| is not possible, since it would imply, together
with ∑

z∈AttFG(b) Deg
Cbs
G (z)

|AttFG(b)|
≤ 1,

that 1 + |AttFG(a)| ≥ 1 + |AttFG(b)|+
∑

z∈AttFG(b) Deg
Cbs
G (z)

|AttFG(b)| . We distinguish two possible cases:

1. Suppose that |AttFG(a)| = |AttFG(b)|. Then
∑

t∈AttFG(a) Deg
Cbs
G (t)

|AttFG(a)| <
∑

z∈AttFG(b) Deg
Cbs
G (z)

|AttFG(b)| , and, consequently,∑
t∈AttFG(a) Deg

Cbs
G (t) <

∑
z∈AttFG(b) Deg

Cbs
G (z). From the conditions 2–4, we obtain

∑
t∈AttFG(a′) Deg

Cbs
G (t) <∑

z∈AttFG(b′) Deg
Cbs
G (z). From |AttFG(a′)| = |AttFG(a)|+1 = |AttFG(b)|+1 = |AttFG(b′)|, we obtain (36).

2. Suppose that |AttFG(a)| < |AttFG(b)|. Then |AttFG(a)|+ 1 ≤ |AttFG(b)|, so, since
∑

t∈AttFG(a′) Deg
Cbs
G (t)

|AttFG(a′)| ≤ 1,

we have |AttFG(a)|+
∑

t∈AttFG(a′) Deg
Cbs
G (t)

|AttFG(a′)| ≤ |AttFG(b)|. From
∑

z∈AttFG(b′) Deg
Cbs
G (z)

|AttFG(b′)| > 0 we obtain |AttFG(a)|+∑
t∈AttFG(a′) Deg

Cbs
G (t)

|AttFG(a′)| < |AttFG(b)| +
∑

z∈AttFG(b′) Deg
Cbs
G (z)

|AttFG(b′)| . Finally, from |AttFG(a′)| = |AttFG(a)| + 1 and
|AttFG(b′)| = |AttFG(b)|+ 1, we obtain (36).

Monotony: Let G = 〈A, w,R〉 ∈ WAG and a, b ∈ A such that w(a) = w(b) and AttG(a) ⊆ AttG(b). From Theorem
13, it holds that

DegCbsG (a) =
w(a)

1 + |AttFG(a)|+

∑
t∈AttFG(a)

DegCbsG (t)

|AttFG(a)|

and

DegCbsG (b) =
w(b)

1 + |AttFG(b)|+

∑
y∈AttFG(y)

DegCbsG (y)

|AttFG(b)|

.

Since AttG(a) ⊆ AttG(b), it holds that AttFG(a) ⊆ AttFG(b). There are two cases: Case where AttFG(a) =
AttFG(b), then from condition w(a) = w(b), it follows that DegCbsG (a) = DegCbsG (b).

Case where AttFG(a) ⊂ AttFG(b). Hence, |AttFG(a)| < |AttFG(b)| and |AttFG(b)| = |AttFG(a)| + x, with

x ≥ 1. Furthermore,

∑
t∈AttFG(a)

DegCbsG (t)

|AttFG(a)| ≤ 1 and

∑
y∈AttFG(b)

DegCbsG (y)

|AttFG(b)| ≤ 1. Hence, 1 + |AttFG(a)| +

∑
t∈AttFG(a)

DegCbsG (t)

|AttFG(a)| <

1 + |AttFG(a)|+ x+

∑
t∈AttFG(b)

DegCbsG (t)

|AttFG(b)| . Since w(a) = w(b), then DegCbsG (a) ≥ DegCbsG (b).

Counting: It follows from Proposition 12.

Cardinality Precedence: Let G = 〈A, w,R〉 ∈ WAG and let a, b ∈ A be two arguments such that

• w(a) = w(b),

• DegCbsG (b) > 0,

• |{x ∈ AttG(a) | DegCbsG (x) > 0}| > |{y ∈ AttG(b) | DegCbsG (y) > 0}|,
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First, note that, by the third condition, there exists x1 ∈ AttG(a) such that DegCbsG (x1) > 0, so∑
x∈AttFG(a) Deg

Cbs
G (x)

|AttFG(a)|
> 0. (37)

From Theorem 13, we have that for any argument c, DegCbsG (c) > 0 iff w(c) > 0. Thus, AttFG(a) = {x ∈
AttG(a) | DegCbsG (x) > 0} and AttFG(b) = {y ∈ AttG(b) | DegCbsG (y) > 0}. Then, by the third condition,
|AttFG(a)| > |AttFG(b)|, so |AttFG(a)| ≥ |AttFG(b)|+ 1. Since∑

y∈AttFG(b) Deg
Cbs
G (y)

|AttFG(b)|
≤ 1,

we obtain

|AttFG(a)| ≥ |AttFG(b)|+
∑
y∈AttFG(b) Deg

Cbs
G (y)

|AttFG(b)|
. (38)

From (37) and (38) we conclude

1 + |AttFG(a)|+
∑
x∈AttFG(a) Deg

Cbs
G (x)

|AttFG(a)|
>

1 + |AttFG(b)|+
∑
y∈AttFG(b) Deg

Cbs
G (y)

|AttFG(b)|
.

Then, by Theorem 13, DegCbsG (a) < DegCbsG (b).

Finally, since Cbs satisfies CP, Maximality and Resilience, it does not satisfy QP, by Proposition 1. It also does not
satisfy Compensation.

Proof of Theorem 16. Let G = 〈A, w,R〉 ∈ WAG and a ∈ A. Let us show that DegCbsG (a) ∈ [ w(a)
2+|AttFG(a)| , w(a)]. From

Theorems 1 and 15, it follows that DegCbsG (a) ≤ w(a). From Theorem 13,

DegCbsG (a) =
w(a)

1 + |AttFG(a)|+

∑
b∈AttFG(a)

|AttFG(a)|

.

For each x ∈ A, it holds that DegCbsG (x) ∈ [0, 1]. Hence, 0 ≤

∑
b∈AttFG(a)

|AttFG(a)| ≤ 1. Thus,

1 + |AttFG(a)| ≤ 1 + |AttFG(a)|+

∑
b∈AttFG(a)

|AttFG(a)|
≤ 2 + |AttFG(a)|

and DegCbsG (a) ∈ [ w(a)
2+|AttFG(a)| , w(a)].

Proof of Theorem 17. The proof is straightforward modification of the proof of Theorem 7, obtained by replacing the
function fim with fih. We will only prove the equation (analogous to the equation (21))

Fi(αx) =
w(ai)

(1− α)Fi(x) + αw(ai)
Fi(x),

where

Fi(x) =
w(ai)

1 +
∑

j:aj∈Att(ai)
xj
,

x = (x1, . . . , xn) ∈ Rn and α ∈ (0, 1].

62



Fi(αx) =
w(ai)

1 +
∑

j:aj∈Att(ai)
αxj

=
w(ai)

1 + α
∑

j:aj∈Att(ai)
xj

=
w(ai)

(α− α) + 1 + α
∑

j:aj∈Att(ai)
xj

=
w(ai)

(1− α) + α(1 +
∑

j:aj∈Att(ai)
xj)

=
w(ai)

(1− α) + αw(ai)
Fi(x)

· Fi(x)
Fi(x)

=
w(ai)

(1− α)Fi(x) + αw(ai)
Fi(x).

The rest of the proof is identical to the proof of Theorem 7.

Proof of Proposition 14. Obvious since each argument is attacked by at most one argument. Then, the strongest attacker
of each argument is its single attacker.

Proof of Theorem 18. Analogous to the proof of Theorem 8.

Proof of Theorem 19. Analogous to the proof of Theorem 9.

Proof of Theorem 20. The proofs that weighted h-Categorizer semantics satisfies Anonymity, Independence, Direc-
tionality, Maximality, Weakening, Strict Weakening, Weakening Soundness, Proportionality, Strict Proportionality,
Reinforcement, Strict Reinforcement, Symmetry, Equivalence, Counting and Invariance are very similar to the cor-
responding ones of Theorem 10. The proofs of Resilience, Strict Invariance and Monotony are similar to the corre-
sponding ones in Theorem 15. Finally, we show that Hbs violates both Quality Precedence and Cardinality Precedence.
Consequently, it satisfies Compensation. Consider the weighted argumentation graph G4 of Example 4. Using Theorem
18, we get DegHbsG4

(c) = DegHbsG4
(d) = 1

2 and DegHbsG4
(j) = 1. We also get DegHbsG4

(a) = DegHbsG4
(b) = 1

2 . Thus,

• w(a) = w(b),

• DegHbsG4
(a) > 0,

• DegHbsG4
(b) > 0,

• |{x ∈ AttG4
(a) | DegHbsG4

(x) > 0}| > |{y ∈ DegHbsG4
(b) | DegHbsG4

(y) > 0}|,

• ∃y ∈ AttG4
(b) such that ∀x ∈ AttG4

(a), DegHbsG4
(y) > DegHbsG4

(x)

and DegHbsG4
(a) = DegHbsG4

(b). Thus, neither Quality Precedence nor Cardinality Precedence are satisfied by Hbs. Conse-
quently, Hbs satisfies Compensation.

Proof of Theorem 21. Let G = 〈A, w,R〉 ∈ WAG and a ∈ A. Let us show that DegHbsG (a) ∈ [ w(a)
1+|AttG(a)| , w(a)]. From

Theorems 1 and 20, it follows that DegHbsG (a) ≤ w(a).
From Theorem 18,

DegHbsG (a) =
w(a)

1 +
∑

b∈AttG(a)

DegHbsG (b)
.

For each x ∈ A, it holds that DegHbsG (x) ∈ [0, 1]. Hence,

0 ≤
∑

b∈AttG(a)

DegHbsG (b) ≤ |AttG(a)|

and
1 ≤ 1 +

∑
b∈AttG(a)

DegHbsG (b) ≤ 1 + |AttG(a)|.

63



We have also
1 ≥ 1

1 +
∑

b∈AttG(a)

DegHbsG (b)
≥ 1

1 + |AttG(a)|
.

Finally,

w(a) ≥ w(a)

1 +
∑

b∈AttG(a)

DegHbsG (b)
≥ w(a)

1 + |AttG(a)|
.
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