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abstract. The principle-based or axiomatic approach is a methodol-
ogy to choose an argumentation semantics for a particular application,
and to guide the search for new argumentation semantics. This chapter
gives a complete classification of the fifteen main alternatives for argu-
mentation semantics using the twenty-seven main principles discussed
in the literature on abstract argumentation, extending Baroni and Gi-
acomin’s original classification with other semantics and principles pro-
posed in the literature. It also lays the foundations for a study of rep-
resentation and (im)possibility results for abstract argumentation, and
for a principle-based approach for extended argumentation such as bipo-
lar frameworks, preference-based frameworks, abstract dialectical frame-
works, weighted frameworks, and input/output frameworks.

1 The principle-based approach

A considerable number of semantics exists in the argumentation literature.
Whereas examining the behaviour of semantics on examples can certainly be
insightful, a need for more systematic study and comparison of semantics has
arisen. Baroni and Giacomin [2007] present a classification of argumentation
semantics based on a set of principles. In this chapter, we extend their analysis
with other principles and semantics proposed in the literature over the past
decade.

The principle-based approach is a methodology that is also successfully ap-
plied in many other scientific disciplines. It can be used once a unique uni-
versal method is replaced by a variety of alternative methods, for example,
once a variety of modal logics is used to represent knowledge instead of unique
first order logic. The principle-based approach is also called the axiomatic ap-
proach, or the postulate based approach (for example in AGM theory change
by Alchourrón et al. [1985]).

Maybe the best known example of the principle-based approach is concerned
with the variety of voting rules, a core challenge in democratic societies, see,
e.g., Tennenholtz and Zohar [2016]. It is difficult to find two countries that elect
their governments in the same way, or two committees that decide using exactly
the same procedure. Over the past two centuries many voting rules have been
proposed, and researchers were wondering how we can know that the currently
considered set of voting rules is sufficient or complete, and whether there is no
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better voting rule that has not been discovered yet. Voting theory addresses
what we call the choice and search problems inherent to diversity:

Choice problem: If there are many voting rules, then how to choose one
voting rule from this set of alternatives in a particular situation?

Search problem: How to guide the search for new and hopefully better voting
rules?

In voting theory, the principle-based approach was introduced by Nobel prize
winner Kenneth Arrow. The principle-based approach classifies existing ap-
proaches based on axiomatic principles, such that we can select a voting rule
based on the set of requirements in an area. Moreover, there may be sets
of principles for which no voting rule exist yet. Beyond voting theory, the
principle-based approach has been applied in a large variety of domains, in-
cluding abstract argumentation.

Formal argumentation theory, following the methodology in non-monotonic
logic, logic programming and belief revision, defines a diversity of semantics.
This immediately raises the same questions that were raised before for voting
rules, and in many other areas. How do we know that the currently considered
set of semantics is sufficient or complete? May there be a better semantics that
has not been discovered yet? Moreover, the same choice and search problems
of voting theory can be identified for argumentation theory as well:

Choice problem: If there are many semantics, then how to choose one se-
mantics from this set of alternatives in a particular application?

Search problem: How to guide the search for new and hopefully better ar-
gumentation semantics?

The principle-based approach again addresses both problems. For example,
if one needs to exclude the possibility of multiple extensions, one may choose
the grounded or ideal semantics. If it is important that at least some extension
is available, then stable semantics should not be used. As another common ex-
ample, consider the admissibility principle that if an argument in an extension
is attacked, then it is defended against this attack by another argument in the
extension. If one needs a semantics that is admissible, then for example CF2
or stage2 cannot be chosen.

Principles have also been used to guide the search for new semantics. For ex-
ample, the principle of resolution was defined by Baroni and Giacomin [2007],
well before resolution based semantics were defined and studied by Baroni et
al. [2011b]. Likewise it may be expected that the existing and new principles
will guide the further search for suitable argumentation semantics. For exam-
ple, consider the conflict-freeness principle that says that an extension does not
contain arguments attacking each other. All semantics studied in this chapter
satisfy this property. If one needs to define new argumentation semantics that
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are para-consistent in the sense that its extensions are not necessarily conflict
free [Arieli, 2015], then one can still adopt other principles such as admissibility
in the search for such para-consistent semantics.

The principle-based approach consists of three steps.

The first step in the principle-based approach is to define a general func-
tion, which will be the object of study. Kenneth Arrow defined social welfare
functions from preference profiles to aggregated preference orders. For abstract
argumentation, the obvious candidate is a function from graphs to sets of sets
of nodes of the graph. Following Dung’s terminology, we call the nodes of the
graph arguments, we call sets of nodes extensions, we call the edges attacks,
and we call the graphs themselves argumentation frameworks. Moreover, we
call the function an argumentation semantics. Obviously nothing hinges on
this terminology, and in principle the developed theory could be used for other
applications of graph theory as well.

We call this function from argumentation frameworks to sets of extensions
a two valued function, as a node is either in the extension, or not. Also multi
valued functions are commonly used, in particular three valued functions con-
ventionally called labelings. For three valued labelings, the values are usually
called in, out and undecided. Other more general functions have been con-
sidered in abstract argumentation, for example in value based argumentation,
bipolar argumentation, abstract dialectical frameworks, input/output frame-
works, ranked semantics, and more. The principle-based approach can be
applied to all of them, but in this chapter we will not consider such gener-
alisations.

The second step of the principle-based approach is to define the principles.
The central relation of the principle-based approach is the relation between
semantics and principles. In abstract argumentation a two valued relation is
used, such that every semantics either satisfies a given property or not. In
this case, principles can be defined also as sets of semantics, and they can be
represented by a constraint on the function from argumentation frameworks to
sets of extensions. An alternative approach used in some other areas gives a
numerical value to represent to which degree a semantics satisfies a principle.

The third step of the principle-based approach is to classify and study sets
of principles. For example, a set of principles may imply another one, or a
set of principles may be satisfiable in the sense that there is a semantics that
satisfies all of them. A particular useful challenge is to find a set of principles
that characterises a semantics, in the sense that the semantics is the only one
that satisfies all the principles. Such characterisations are sometimes called
representation theorems.

The principles used in a search problem are typically desirable, and desirable
properties are sometimes called postulates. For the mathematical development
of a principle-based theory, it may be less relevant whether principles are de-
sirable or not.

Before we continue, we address two common misunderstandings about the
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principle-based approach, which are sometimes put forward as objections against
it.

The first point is that not every function from argumentation frameworks to
sets of extensions is an argumentation semantics. In other words, the objection
is sometimes raised against the axiomatic approach that it allows for counter-
intuitive or even absurd argumentation semantics, just like the objection may
be raised that not every function from preference profile to candidates is a
voting rule. However, in the principle-based approach, such counterintuitive
alternatives are excluded by the principles, they are not excluded a priori.

It may be observed that in formal argumentation, this objection is not re-
stricted to principle-based abstract argumentation. A general framework for
structured argumentation like ASPIC+ also allows for many counterintuitive
or even absurd argumentation theories. However, from the perspective of the
principle-based approach, the generality of the ASPIC+ approach can be used
to study which combinations of definitions lead to argumentation theories sat-
isfying desired principles [Caminada, 2018].

The second point is that a semantics is fundamentally different from a prin-
ciple. In general a semantics is a function from argumentation frameworks to
sets of extensions, and principles can be defined as sets of such functions and
represented by a constraint on such functions. This misunderstanding arises
because there are examples where a property can be represented as a seman-
tics. For example, the completeness principle may be defined to state that
each extension is complete, and the complete semantics may be defined such
that the set of extensions of an argumentation framework are all its complete
extensions. Likewise, some authors transform the admissibility principle into
a “semantics” that associates with a framework all the admissible extensions.
In this chapter we do not consider an admissibility semantics defined in this
sense, only the admissibility principle.

Finally, we end this introduction with two methodological observations.
First, we note that both argumentation semantics and argumentation prin-
ciples can be organised and clustered in various ways. For example, sometimes
a distinction is made between the set of admissibility based semantics and the
set of naive based semantics, which are semantics satisfying the admissibility
principle and the maximal conflict free principle respectively. In this chapter
we have organised the semantics and principles in a way that seemed reason-
able to us, but we did not use a systematic approach and we expect that some
readers might have preferred an alternative organisation.

Second, while writing the chapter, several readers and reviewers have sug-
gested additional semantics and principles to us. For example, we did not
systematically study all resolution based semantics. The reason is pragmatic:
this chapter has been growing while we were writing, and at some moment we
needed to finish it. Moreover, we excluded several semantics proposed in the
literature, such as AD1, AD2, CF1 introduced by Baroni et al. [2005], because
they have not been further discussed or applied in the formal argumentation
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literature. However, if some of them will become more popular in the future,
then the principle-based study in this chapter has to be extended to them as
well. Also various principles are defined and analysed in other chapters, so we
decided not to include them. For example, dynamic principles are discussed in
others chapter of this volume [Baroni et al., 2018b; Baumann, 2018], including
the dynamic principles studied by Baroni et al. [2014]. Finally, other dynamic
principles have been discussed by Rienstra et al. [2015].

The layout of this chapter is as follows. Section 2 introduces the setting and
notation, Section 3 introduces the argumentation semantics we study in the
rest of the chapter, and Section 4 introduces the principles and presents the
table detailing which principles are satisfied by each semantics.

2 Setting and notations

The current section introduces the setting and notations.

Definition 2.1 (Argumentation framework, [Dung, 1995]) An argumen-
tation framework is a couple F = (A,R) where A is a finite set and R ⊆ A×A.
The elements of A are called arguments and R is called attack relation. We
say that a attacks b if (a, b) ∈ R; in that case we also write aRb. For a set
S ⊆ A and an argument a ∈ A, we say that S attacks a if there exists b ∈ S
such that bRa; we say that a attacks S if there exists b ∈ S such that aRb. We
say that S attacks a set P if there exist a ∈ S, b ∈ P such that a attacks b.

We define S+ = {a ∈ A | S attacks a} and S− = {a ∈ A | a attacks S}.
Moreover, for an argument a, we define a+ = {b ∈ A | a attacks b} and
a− = {b ∈ A | b attacks a}. We define S−out = {a ∈ A | a /∈ S and a attacks S}.
The set of all argumentation frameworks is denoted by AF .

We can observe that an argumentation framework is just a finite graph. In
the rest of the chapter, F = (A,R) stands for an argumentation framework.

Definition 2.2 (Projection, union, subset) For an argumentation frame-
work F = (A,R) and a set S ⊆ A, we define: F ↓S= (S,R ∩ (S × S)). Let
F1 = (A1,R1) and F2 = (A2,R2) be two argumentation frameworks. We de-
fine F1 ∪F2 = (A1 ∪A2,R1 ∪R2). We write F1 ⊆ F2 if and only if A1 ⊆ A2

and R1 ⊆ R2.

For a set S, we denote its powerset by 2S . Now we define the notion of
semantics. It is a function that, given an argumentation framework (A,R),
returns a set of subsets of A.

Definition 2.3 (Semantics) An extension-based semantics is a function σ

such that for every argumentation framework F = (A,R), we have σ(F) ∈ 22
A

.
The elements of σ(F) are called extensions.

Our definition requires a semantics to satisfy universal domain, i.e. to be
defined for every argumentation framework. We could give a more general
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definition, thus allowing a semantics to be defined only for some argumentation
frameworks. We do not do that in order to simplify the setting, since all the
semantics of interest for our study are defined for all argumentation frameworks.

3 Semantics

This section introduces different argumentation semantics we study in the rest
of the chapter. Note that most of the properties from the literature, which we
study in Section 4, can appear in two variants: extension-based and labelling-
based. In this chapter, we present their versions for extension-based approach.
See the chapter of this volume on abstract argumentation frameworks and their
semantics [Baroni et al., 2018a] for further discussion and examples.

We start by introducing the notions of conflict-freeness and admissibility.

Definition 3.1 (Conflict-freeness, admissibility, strong admissibility)
Let F = (A,R) and S ⊆ A. Set S is conflict-free in F if and only if for every
a, b ∈ S, (a, b) /∈ R.

Argument a ∈ A is defended by set S if and only if for every b ∈ A such that
bRa there exists c ∈ S such that cRb. Argument a ∈ A is strongly defended by
set Sif and only if for every b ∈ A such that bRa there exists c ∈ S \ {a} such
that cRb and c is strongly defended by S \{a}. S is admissible in F if and only
if it is conflict-free and it defends all its arguments. S is strongly admissible
in F if and only if it is conflict-free and it strongly defends all its arguments.

Stable, complete, preferred and grounded semantics were introduced by
Dung [1995]:

Definition 3.2 (Complete, stable, grounded, preferred semantics) Let
F = (A,R) and S ⊆ A.

• Set S is a complete extension of F if and only if it is conflict-free, it
defends all its arguments and it contains all the arguments it defends.

• Set S is a stable extension of F if and only if it is conflict-free and it
attacks all the arguments of A \ S.

• S is the grounded extension of F if and only if it is a minimal with
respect to set inclusion complete extension of F .

• S is a preferred extension of F if and only if it is a maximal with respect
to set inclusion admissible set of F .

Dung [1995] shows that each argumentation framework has a unique grounded
extension. Stable extensions do not always exist, i.e. there exist argumentation
frameworks whose set of stable extensions is empty. Semi-stable semantics [Ver-
heij, 1996; Caminada, 2006b] guarantees that every argumentation framework
has an extension. Furthermore, semi-stable semantics coincides with stable se-
mantics on argumentation frameworks that have at least one stable extension.
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Definition 3.3 (Semi-stable semantics) Let F = (A,R) and S ⊆ A. Set S
is a semi-stable extension of F if and only if it is a complete extension and
S∪S+ is maximal with respect to set inclusion among complete extensions, i.e.
there exists no complete extension S1 such that S ∪ S+ ⊂ S1 ∪ S+

1 .

Ideal semantics [Dung et al., 2007] is an alternative to grounded semantics.
Like grounded semantics, ideal semantics always returns a unique extension,
which is also a complete extension [Dung et al., 2007]. From the definition of
the grounded semantics, we conclude that the ideal extension is a superset of
the grounded extension. Ideal semantics is thus less sceptical than grounded
semantics.

Definition 3.4 (Ideal semantics) Let F = (A,R) and S ⊆ A. Set S is the
ideal extension of F if and only if it is a maximal with respect to set inclusion
admissible subset of every preferred extension.

We now introduce eager semantics [Caminada, 2007].

Definition 3.5 (Eager semantics) Let F = (A,R) and S ⊆ A. Set S is
the eager extension of F if and only if it is the maximal with respect to set
inclusion admissible subset of every semi-stable extension.

Caminada [2007] shows that each argumentation framework has a unique
eager extension and that the eager extension is also a complete extension.
Note that eager semantics is similar to ideal semantics: the ideal extension is
the unique biggest admissible subset of every preferred extension; the eager
extension is the unique biggest admissible subset of each semi-stable extension.
Since each semi-stable extension is a preferred extension [Caminada, 2006a],
the eager extension is a superset of the ideal extension.

In our chapter, we want to conduct an exhaustive investigation of properties
of extension-based semantics. Thus, for the sake of completeness, we introduce
even the semantics that are not very commonly used or studied in the litera-
ture, like stage semantics, naive semantics and prudent variants of grounded,
complete, stable and preferred semantics.

Stage semantics [Verheij, 1996] was defined in a slightly different setting
than ours; we provide an alternative but equivalent definition [Verheij, 1996;
Baroni et al., 2011a].

Definition 3.6 (Stage semantics) Let F = (A,R) and S ⊆ A. Set S is
a stage extension of F if and only if S is a conflict-free set and S ∪ S+ is
maximal with respect to set inclusion, i.e. S is conflict-free, and there exists no
conflict-free set S1 such that S ∪ S+ ⊂ S1 ∪ S+

1 .

Note the difference between semi-stable and stage semantics: semi-stable
extension is a complete extension whereas stage extension is a conflict-free set;
stage extension is not necessarily an admissible set.
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Definition 3.7 (Naive semantics) Let F = (A,R) and S ⊆ A. Set S is a
naive extension of F if and only if S is a maximal conflict-free set.

Prudent semantics [Coste-Marquis et al., 2005] is based on the idea that an
extension should not contain arguments a and b if a indirectly attacks b. An
indirect attack is an odd length attack chain.

Definition 3.8 (Indirect conflict) Let F = (A,R), S ⊆ A and a, b ∈ A.
We say that a indirectly attacks b if and only if there is an odd-length path
from a to b with respect to the attack relation. We say that S is without indirect
conflicts and we write wic(S) if and only if there exist no x, y ∈ S such that x
indirectly attacks y.

The semantics introduced by Dung (grounded, complete, stable, preferred) is
based on admissibility; prudent semantics is based on p-admissibility. Prudent
semantics is called grounded prudent, complete prudent, stable prudent and
preferred prudent by Coste-Marquis et al. [2005]. In order to make the names
shorter, we call them p-grounded, p-complete, p-stable and p-preferred.

Definition 3.9 (p-admissible sets) Let F = (A,R) and S ⊆ A. Set S is
a p-admissible set in F if and only if every a ∈ A is defended by S and S is
without indirect conflicts.

Definition 3.10 (p-complete semantics) Let F = (A,R) and S ⊆ A. Set
S is a p-complete extension in F if and only if S is a p-admissible set and
for every argument a ∈ A we have: if a defended by S and S ∪ {a} is without
indirect conflicts, then a ∈ S.

We now introduce p-characteristic function, which is needed to define p-
grounded semantics. Note that grounded semantics can be defined using char-
acteristic function, but we preferred to provide an alternative equivalent defi-
nition.

Definition 3.11 (p-characteristic function) The p-characteristic function
of an argumentation framework F = (A,R) is defined as follows:

• CFpF : 2A → 2A

• CFpF (S) = {a ∈ A | S defends a and wic(S ∪ {a})}

Definition 3.12 (p-grounded semantics) Let F = (A,R). Let j be the
lowest integer such that

CFpF (CFpF (. . . CFpF︸ ︷︷ ︸
j times

(∅) . . .) = CFpF (CFpF (. . . CFpF︸ ︷︷ ︸
j+1 times

(∅) . . .) = S.

The p-grounded extension is the set S.
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The p-grounded extension is a p-complete extension [Coste-Marquis et al.,
2005]. Note that it is not the case in general that the p-grounded extension is
included into every p-preferred extension [Coste-Marquis et al., 2005].

Definition 3.13 (p-stable semantics) Let F = (A,R) and S ⊆ A. Set S
is a p-stable extension in F if and only if S is without indirect conflicts and S
attacks (in a direct way) each argument in A \ S.

Definition 3.14 (p-preferred semantics) Let F = (A,R) and S ⊆ A. Set
S is a p-preferred extension if and only if S is a maximal for set inclusion
p-admissible set.

Evert p-stable extension is a p-preferred extension [Coste-Marquis et al.,
2005].

We now introduce CF2 semantics [Baroni et al., 2005]. For more explana-
tions and examples, the reader is referred to the original paper. The definition
of this semantics is complicated; we must introduce several auxiliary definitions
in order to present it.

Let us first introduce the notion of strongly connected component (SCC)
introduced by Baroni et al. [2005].

Definition 3.15 (Strongly Connected Component) Let F = (A,R). The
binary relation of path-equivalence between nodes, denoted as PEF ⊆ A × A,
is defined as follows:

• for every a ∈ A, (a, a) ∈ PEF

• given two distinct arguments a, b ∈ A, we say that (a, b) ∈ PEF if and
only if and only if there is a path from a to b and a path from b to a.

The strongly connected components of F are the equivalence classes of argu-
ments under the relation of path-equivalence. The set of strongly connected
components is denoted by SCCSF . Given an argument a ∈ A, notation
SCCF (a) stands for the strongly connected component that contains a.

In the particular case when the argumentation framework is empty, i.e.
F = (∅, ∅), we assume that SCCSF = {∅}. The choices in the antecedent
strongly connected components determine a partition of the nodes of S into
three subsets: defeated, provisionally defeated and undefeated. D stands for
defeated, P for provisionally defeated and U for undefeated.

Definition 3.16 (D,P,U [Baroni et al., 2005]) Given an argumentation
framework F = (A,R), a set E ⊆ A and a strongly connected component
S ∈ SCCSF , we define:

• DF (S, E) = {a ∈ S | (E ∩ S−out) attacks a}

• PF (S, E) = {a ∈ S | (E ∩ S−out) does not attack a and ∃b ∈ (S−out ∩ a−)
such that E does not attack b}
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• UF (S, E) = S \ (DF (S, E) ∪DF (S, E))

We define UPF (S, E) = UF (S, E) ∪ PF (S, E).

Definition 3.17 (CF2 semantics) Let F = (A,R) and E ⊆ A. Set E is an
extension of CF2 semantics if and only if

• E is a naive extension of F if |SCCSF | = 1

• for every S ∈ SCCSF , (E ∩ S) is a CF2 extension of F ↓UPF (S,E) other-
wise

Observe that F ↓UPF (S,E)= {a ∈ S | there exists no b ∈ E \ S s.t. (b, a) ∈ R}.

We now introduce stage2 semantics [Dvorák and Gaggl, 2016].

Definition 3.18 Let F = (A,R) and E ⊆ A. Set E is a stage2 extension if
and only if

• E is a stage extension of F if |SCCSF | = 1

• for every S ∈ SCCSF , (E ∩ S) is a stage2 extension of F ↓UPF (S,E)
otherwise

Dvorák and Gaggl [2016] showed that every stage2 extension is a CF2 ex-
tension and that every stable extension is a stage2 extension.

This ends the discussion on extension based semantics of abstract argumen-
taton. There exist additional proposals for argumentation semantics in the lit-
erature, such as for example resolution based semantics of Baroni et al. [2011b],
but we do not consider them in this chapter.

In this chapter, we focus on the extension-based approach, which means
that each semantics is defined by specifying the extensions it returns for a
given argumentation framework. There exists an alternative, labelling-based
approach. Instead of calculating extensions, it provides labellings, one labelling
being a function that attaches to every argument a label in, out or undec (which
stands for “undecided”).

Definition 3.19 (Labelling-based semantics) Let Λ = {in, out, undec}.
Let F = (A,R) be an argumentation framework. A labelling on F is a to-
tal function Lab : A → Λ. A labelling-based semantics is a function λ defined
for every element of AF such that for every argumentation framework F , we
have that λ(F) is a set of labellings on F .

To illustrate, let us provide a labelling-based definition of complete seman-
tics.

Definition 3.20 (Complete labelling) Let F = (A,R) and Lab a labelling
on F . We say that Lab is a complete labelling if and only if for every a ∈ A:
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• if a is labelled in then all its attackers are labelled out

• if a is labelled out then none of its attackers is labelled in

• if a is labelled undec then not all its attackers are labelled out and none
of its attackers is labelled in.

We denote by in(Lab) (resp. out(Lab), und(Lab)) the set of arguments labelled
in (resp. out, und).

For every F = (A,R), the set of complete extensions under σ is exactly the
set {in(Lab) | Lab is a complete labelling}.

Moreover, there exists a general way that allows to obtain a labelling-based
definition of a semantics given its extension-based definition, under the condi-
tion that the semantics returns conflict-free sets.

Definition 3.21 (Extension to labelling) Given an extension E, labelling
LabE is defined as follows: LabE(a) = in if a ∈ E, LabE(a) = out if a ∈ E+,
LabE(a) = und otherwise. Then, given a semantics σ, we say that Lab is a σ
labelling of F if and only if there exists E ∈ σ(F) such that Lab = LabE .

Other ways to obtain a labelling from an extension are possible, for example
we could say that an argument is out if it is attacked by an argument in the
extension, or it attacks an argument in the extension. This would make the
definition of out more symmetric and more in line with naive based semantics.
However, it seems such alternatives have not been explored systematically in
the literature. Moreover, even if extension and labelling based semantics are
inter-translatable, it may affect other definitions such as equivalence of frame-
works. Finally, using Definition 3.21, every principle defined in terms of exten-
sion based semantics can be translated into labelings and vice versa, though
one of the definitions may be more compact or intuitive than the other.

We saw an intuitive way to define complete labellings in Definition 3.20.
Intuitive labelling-based definitions of other semantics also exist in the litera-
ture. For example: a grounded labelling is a complete labelling such that the
set of arguments labelled in is minimal with respect to set inclusion among all
complete labellings; a stable labelling is a complete labelling such that the set
of undecided arguments is empty; a preferred labelling is a complete labelling
such that the set of arguments labelled in is maximal with respect to set inclu-
sion among all complete labellings. The reader interested in more details about
the labelling-based approach is referred to the paper by Baroni et al. [2011a].

4 List of Principles

This section presents the properties from the literature and reviews all the
semantics with respect to the properties.

Definition 4.1 (Isomorphic argumentation frameworks) Two argumen-
tation frameworks F1 = (A1,R1) and F2 = (A2,R2) are isomorphic if and only
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Defence Admiss.
Strong
adm.

Naivety
Ind.
CF

Reinst.
Weak
reinst.

CF-
-reinst.

complete X X × × × X X X
grounded X X X × × X X X
preferred X X × × × X X X
stable X X × X × X X X
semi-stable X X × × × X X X
ideal X X × × × X X X
eager X X × × × X X X
p-complete X X × × X × × ×
p-grounded X X X × X × × ×
p-preferred X X × × X × × ×
p-stable X X × X X X X X
naive × × × X × × × X
CF2 × × × X × × X X
stage × × × X × × × X
stage2 × × × X × × X X

Table 1. Properties of semantics: basic properties, admissibility and reinstate-
ment

if there exists a bijective function m : A1 → A2, such that (a, b) ∈ R1 if and
only if (m(a),m(b)) ∈ R2. This is denoted by F1

.
=m F2.

The first property, called “language independence” by Baroni and Gia-
comin [2007] is an obvious requirement for argumentation semantics. It is
sometimes called abstraction [Amgoud and Besnard, 2013; Bonzon et al., 2016a]

or anonymity [Amgoud et al., 2016].

Principle 1 (Language independence) A semantics σ satisfies the language
independence principle if and only if for every two argumentation frameworks
F1 and F2, if F1

.
=m F2 then σ(F2) = {m(E) | E ∈ σ(F1)}.

It is immediate to see that all the semantics satisfy language independence,
since the definitions of semantics take into account only the topology of the
graph, and not the arguments’ names.

Conflict-freeness is one of the basic principles. Introduced by Dung [1995]

and stated as a principle by Baroni and Giacomin [2007], it is satisfied by all
argumentation semantics studied in this chapter. Note that one can define
a non conflict-free semantics [Arieli, 2015]. As another example of relaxing
conflict-freeness consider the work by Dunne et al. [2011], who introduce a
framework where each attack is associated a weight; given an inconsistency
budget β, they accept to disregard the set of attacks up to total weight of β.

Principle 2 (Conflict-freeness) A semantics σ satisfies the conflict-freeness
principle if and only if for every argumentation framework F , for every E ∈
σ(F), E is conflict-free set in F .

Defence is a well-known property introduced by Dung [1995].
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Principle 3 (Defence) A semantics σ satisfies the defence principle if and
only if for every argumentation framework F , for every E ∈ σ(F), for every
a ∈ E, E defends a.

Baroni and Giacomin [2007] show that complete, grounded, preferred, stable,
semi-stable, ideal, p-complete, p-grounded, p-preferred, p-stable satisfy defence
and that CF2 does not satisfy defence. Let us consider the four remaining
semantics: stage, stage2, eager and naive. The argumentation framework from
Figure 1 shows that stage, stage2 and naive semantics violate defence since
they all return three extensions: {a}, {b} and {c}. Eager semantics satisfies
defence (this follows directly from its definition).

a b

c

Figure 1. Stage, stage2, naive and CF2 semantics violate admissibility, defence
and reinstatement, since they return three extensions: {a}, {b} and {c}.

Baroni and Giacomin [2007] suppose that every extension is conflict-free.
Thus an extension defends all it arguments if and only if it is admissible. How-
ever, if conflict-freeness is seen as an optional criterion, we can distinguish
between the principles of admissibility and defence.

Principle 4 (Admissibility) A semantics σ satisfies the admissibility prin-
ciple if and only if for every argumentation framework F , every E ∈ σ(F) is
admissible in F .

Observation 1 If a semantics σ satisfies admissibility it also satisfies conflict-
freeness and defence.

We now study the notion of strong admissibility [Baroni and Giacomin,
2007].

Principle 5 (Strong admissibility) A semantics σ satisfies the strong ad-
missibility principle if and only if for every argumentation framework F , for
every E ∈ σ(F) it holds that a ∈ E implies that E strongly defends a.

Observation 2 If a semantics σ satisfies strong admissibility then it satisfies
admissibility.

To understand the notion of strong admissibility, consider the example from
Figure 2. Set {a, d} is admissible but is not strongly admissible. Informally
speaking, this is because a is defended by d whereas d is defended by a. The
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intuition behind strong admissibility is that this kind of defence is not strong
enough because it is cyclic, i.e. arguments defend each other. However, ar-
gument e is not attacked, thus {e} is strongly admissible. Furthermore, {e}
strongly defends a, so {a, e} is strongly admissible. Also, {a, e} strongly de-
fends d. Thus {a, d, e} is strongly admissible.

a b e

cd

Figure 2. Set {a, d} is admissible but is not strongly admissible. Set {a, d, e}
is admissible and strongly admissible.

Baroni and Giacomin [2007] show that grounded and p-grounded semantics
satisfy strong admissibility and that complete, preferred, stable, semi-stable,
ideal, p-complete, p-preferred, p-stable and CF2 do not satisfy this principle.
Let us consider stage, stage2, eager and naive semantics. Since stage, stage2
and naive semantics violate admissibility, they also violate strong admissibil-
ity. To see that eager semantics violates strong admissibility too, consider the
example from Figure 3, suggested by Caminada [2007]. The eager extension is
{b, d}; this set is not strongly admissible since it does not strongly defend b.

a b c

d

e

Figure 3. Eager semantics violates strong admissibility because eager extension
{b, d} does not strongly defend b. The same example shows that eager semantics
violates directionality. Observe that U = {a, b} is an unattacked set. Denote
the whole framework by F = (A,R). The eager extension of F is the set {b, d}
whereas the eager extension of F ↓U is the empty set.

Another principle, which we call naivety, says that every extension under
semantics σ is a naive extension.

Principle 6 (Naivety) A semantics σ satisfies the naivety principle if and
only if for every argumentation framework F , for every E ∈ σ(F), E is maximal
for set inclusion conflict-free set in F .
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We see directly from the definitions of stable, stage, naive, p-stable and
CF2 semantics that they satisfy naivety. Since every stage2 extension is also
a CF2 extension [Dvorák and Gaggl, 2016], naivety is also satisfied by stage2
semantics. It is easy to see that the other semantics violate this principle.

Coste-Marquis et al. [2005] introduced prudent semantics, which are based
on the notion of indirect conflict-freeness.

Principle 7 (Indirect conflict-freeness) A semantics σ satisfies the indi-
rect conflict-freeness principle if and only if for every argumentation framework
F , for every E ∈ σ(F), E is without indirect conflicts in F .

Observation 3 If a semantics σ satisfies indirect conflict-freeness then it sat-
isfies conflict-freeness.

By examining the definitions of prudent semantics, we see that they all
satisfy indirect conflict-freeness, since this concept is built in through the use
of p-admissibility and p-characteristic function.

The other semantics do not satisfy indirect conflict-freeness. To show this,
consider the argumentation framework depicted in Figure 4, suggested by
Coste-Marquis et al. [2005]. All the semantics except prudent ones have an ex-
tension containing both a and e. Hence, they violate indirect conflict-freeness
since e indirectly attacks a.

a

b c

d

e

f

Figure 4. All semantics except prudent semantics violate indirect conflict-
freeness. They all yield an extension containing both a and e, even if e indirectly
attacks a.

Defence says that an extension must defend all the arguments it contains.
Reinstatement can be seen as its counterpart, since it says that an extension
must contain all the arguments it defends. This principle was first studied in
a systematic way by Baroni and Giacomin [2007].
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Principle 8 (Reinstatement) A semantics σ satisfies the reinstatement prin-
ciple if and only if for every argumentation framework F , for every E ∈ σ(F),
for every a ∈ A it holds that if E defends a then a ∈ E.

The results in Table 1 concerning complete, grounded, preferred, stable,
semi-stable, ideal, p-complete, p-grounded, p-preferred, p-stable and CF2 se-
mantics were proved by Baroni and Giacomin [2007]. To summarise, all the
semantics they study satisfy reinstatement except p-grounded, p-complete, p-
preferred and CF2. Let us consider eager, stage, stage2 and naive semantics.

Regarding eager semantics, suppose that E is an eager extension and that
a is defended by E . The eager extension is a complete extension [Caminada,
2007], and complete semantics satisfies reinstatement. Thus, a ∈ E , which
means that eager semantics satisfies reinstatement.

Stage, stage2 and naive semantics violate reinstatement, as proved by Dvorák
and Gaggl [2016]. Another way to see this is to consider the counter-example
from Figure 1.

Baroni and Giacomin [2007] study another property called weak reinstate-
ment.

Principle 9 (Weak reinstatement) A semantics σ satisfies the weak rein-
statement principle if and only if for every argumentation framework F , for
every E ∈ σ(F) it holds that

E strongly defends a implies a ∈ E .

Observation 4 If a semantics σ satisfies reinstatement then it satisfies weak
reinstatement.

The results in Table 1 concerning complete, grounded, preferred, stable,
semi-stable, ideal, p-complete, p-grounded, p-preferred, p-stable and CF2 se-
mantics were proved by Baroni and Giacomin [2007]. From Observation 4 we
conclude that eager semantics satisfies weak reinstatement.

Stage and naive semantics violate weak reinstatement as can be seen from
Figure 5. This was also shown by Dvorák and Gaggl [2016]. Namely, {b} is
a stage and a naive extension that strongly defends a but does not contain it.
Stage2 semantics does satisfy weak reinstatement [Dvorák and Gaggl, 2016].

a b c

Figure 5. Stage and naive semantics violate weak reinstatement, since E = {b}
is an extension that strongly defends a, but E does not contain a.
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The reinstatement principle makes sure that as soon as an argument a is
defended by an extension E , a should belong to E—without specifying that
a is not in conflict with arguments of E . To take this into account, another
principle was defined by Baroni and Giacomin [2007].

Principle 10 (CF-reinstatement) A semantics σ satisfies the CF-reinstate-
ment principle if and only if for every argumentation framework F , for every
E ∈ σ(F), for every a ∈ A it holds that if E defends a and E∪{a} is conflict-free
then a ∈ E.

Observation 5 If a semantics σ satisfies reinstatement then it satisfies CF-
reinstatement.

The results in Table 1 concerning complete, grounded, preferred, stable,
semi-stable, ideal, p-complete, p-grounded, p-preferred, p-stable and CF2 se-
mantics were proved by Baroni and Giacomin [2007].

If E is a naive extension and a an argument such that E defends a and E∪{a}
is conflict-free, then a ∈ E since E is a maximal conflict-free set. This means
that naive semantics satisfies CF-reinstatement.

Observation 5 implies that eager semantics satisfies CF-reinstatement.
Stage and stage2 semantics satisfy CF-reinstatement, as shown Dvorák and

Gaggl [2016].

I-max.
Allowing

abstention
Crash

resistance
Non-

-interference
Direct.

Weak-
-direct.

Semi-
-direct.

complete × X X X X X X
grounded X X X X X X X
preferred X × X X X X X
stable X × × × × X ×
semi-stable X × X X × × ×
ideal X X X X X X X
eager X X X X X X X
p-complete × X X X × × X
p-grounded X X X X X X X
p-preferred X × X X × × X
p-stable X × × × × X ×
naive X × X X × × X
CF2 X × X X X X X
stage X × X X × × ×
stage2 X × X X X X X

Table 2. Properties of semantics, part 2

The next principle was first considered by Baroni and Giacomin [2007]. It
says that an extension cannot contain another extension.

Principle 11 (I-maximality) A semantics σ satisfies the I-maximality prin-
ciple if and only if for every argumentation framework F , for every E1, E2 ∈
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σ(F), if E1 ⊆ E2 then E1 = E2.

I-maximality is trivially satisfied by single extension semantics. It is thus
satisfied by eager semantics. We see directly from the definitions of naive and
stage semantics that they satisfy I-maximality. Dvorák and Gaggl [2016] show
that stage2 semantics satisfies I-maximality. Baroni and Giacomin [2007] show
that I-maximality is satisfied by all other semantics except complete and p-
complete semantics.

Baroni et al. [2011a] define a principle called rejection, which says that if an
argument a is labelled in and a attacks b, then b should be labelled out. If we
use the translation from extension to a labelling we mentioned in Definition
3.21, we see that all the labellings satisfy this property. However, it would be
possible to be more general by defining a labelling-based semantics that does
not satisfy this property. Let us define a semantics σ that always returns a
unique labelling such that an argument is labelled in if it is not attacked, it is
labelled undec if it is attacked by exactly one argument and it is labelled out
otherwise. Consider the example from Figure 5: argument a will be labelled in,
argument b undec and argument c out, which violates the rejection principle.

We next consider the allowing abstention principle [Baroni et al., 2011a].

Principle 12 (Allowing abstention) A semantics σ satisfies the allowing
abstention principle if and only if for every argumentation framework F , for
every a ∈ A, if there exist two extensions E1, E2 ∈ σ(F) such that a ∈ E1 and
a ∈ E+2 then there exists an extension E3 ∈ σ(F) such that a /∈ (E3 ∪ E+3 ).

Baroni et al. [2011a] show that complete semantics satisfies the previous
principle and that preferred, stable, semi-stable, stage and CF2 semantics fal-
sify it. Observe that unique status semantics trivially satisfy this principle.
Allowing abstention is thus satisfied by grounded, ideal, eager and p-grounded
semantics.1

Let us now consider the remaining semantics, namely: naive, p-stable, p-
preferred, p-complete and stage2 semantics.

We first prove that p-complete semantics satisfies allowing abstention. We
start with a lemma.

Lemma 4.2 Let F = (A,R) be an argumentation framework, GEp its p-grounded
extension and E ⊆ A be a set that defends all its arguments. Then, E does not
attack GEp.

Proof. Let CFp be the p-characteristic function. Denote GEp
0 = ∅, GEp1 =

CFp(∅), GEp2 = CFp(CFp(∅)), . . . and denote by GEp the p-grounded extension
of F . Let E be a set that defends all its arguments. By means of contradiction,
suppose that there exist x ∈ E , y ∈ GEp such that xRy. Let k ∈ N be the

1Note that Table 2 by Baroni et al. [2011a] specifies that grounded semantics does not
satisfy dilemma abstaining. The reason is that Baroni et al. consider the property as being
“non-applicable” to unique status semantics (personal communication, 2016).
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minimal number such that y ∈ GEp
k. From the definition of function CFp,

there exists l < k such that there exists y1 ∈ GEp
l such that y1Rx. Since E

defends all its arguments, there exists x1 ∈ E such that x1Ry1. Again, there
exists m < l such that there exists y2 ∈ GEp

m such that y2Rx1. By continuing
this process, we conclude that there exists ys ∈ GEp

1 such that there exists
xs ∈ E such that xSRys. This is impossible, since the arguments of GEp

1 are
not attacked. Contradiction. �

Proposition 4.3 p-complete semantics satisfies allowing abstention.

Proof. Let F = (A,R), let a, b ∈ A, let bRa and let E1 and E2 be p-complete
extensions such that a ∈ E1 and b ∈ E2. Denote by GEp the p-grounded exten-
sion of F . Let us prove that a /∈ GEp and that GEp does not attack a. First, since
bRa and b belongs to a p-complete extension (and every p-complete extension
defends all its arguments), Lemma 4.2 implies that a /∈ GEp. Let us now show
that GEp does not attack a. By means of contradiction, suppose the contrary.
Let b ∈ GEp be an argument such that bRa. Since a ∈ E1, and E1 defends
all its arguments, then there exists c ∈ E1 such that cRb. Contradiction with
Lemma 4.2. Thus, it must be that GEp does not attack a. It is known that the
p-grounded extension is a p-complete extension [Coste-Marquis et al., 2005].
Thus, we showed that there exists a p-complete extension that neither contains
nor attacks argument a. �

To see why naive, p-stable, p-preferred and stage2 semantics violate allow-
ing abstention, consider the argumentation framework depicted in Figure 6.
The principle is violated since all those semantics return two extensions, {a}
and {b}.

a b

Figure 6. Several semantics violate allowing abstention principle.

To define crash resistance [Caminada et al., 2012], we first need to introduce
the following two definitions.

Definition 4.4 (Disjoint argumentation frameworks) Two argumentation
frameworks F1 = (A1,R1) and F2 = (A2,R2) are disjoint if and only if
A1 ∩ A2 = ∅.

A framework F? is contaminating if joining F? with an arbitrary disjoint
framework F results in a framework F ∪F? having the same extensions as F?.
The intuition behind this definition is that F? contaminates every framework.

Definition 4.5 (Contaminating) An argumentation framework F? is con-
taminating for a semantics σ if and only if for every argumentation frame-
work F disjoint from F? it holds that σ(F? ∪ F) = σ(F?).
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A semantics is crash resistant if and only if there are no contaminating
frameworks. The intuition behind this name is that a contaminating framework
causes the system to crash.

Principle 13 (Crash resistance) A semantics σ satisfies the crash resis-
tance principle if and only if there are no contaminating argumentation frame-
works for σ.

Crash resistance forbids only the most extreme form of interferences between
disjoint subgraphs. A stronger property, non-interference, was defined by Cam-
inada et al. [2012]. We first need to define a notion of isolated set, i.e. a set
that neither attacks outside arguments nor is attacked by them.

Definition 4.6 (Isolated set of arguments) Let F = (A,R) be an argu-
mentation framework. A set S ⊆ A is isolated in F if and only if

((S × (A \ S)) ∪ ((A \ S)× S)) ∩R = ∅.

A semantics satisfies non-interference principle if for every isolated set S,
the intersections of the extensions with set S coincide with the extensions of
the restriction of the framework on S.

Principle 14 (Non-interference) A semantics σ satisfies the non-interference
principle if and only if for every argumentation framework F , for every set of
arguments S isolated in F it holds that σ(F ↓S) = {E ∩ S | E ∈ σ(F)}.

The previous principle can be made even stronger by considering the case
when the set S is not attacked by the rest of the framework, but can attack
the rest of the framework. Let us formalize the notion of an unattacked set.

Definition 4.7 (Unattacked arguments) Given an argumentation frame-
work F = (A,R), a set U is unattacked if and only if there exists no a ∈ A\U
such that a attacks U . The set of unattacked sets in F is denoted US(F).

We can now define the principle of directionality, introduced by Baroni and
Giacomin [2007].

Principle 15 (Directionality) A semantics σ satisfies the directionality prin-
ciple if and only if for every argumentation framework F , for every U ∈ US(F),
it holds that σ(F ↓U ) = {E ∩ U | E ∈ σ(F)}.

Baroni et al. [2011a] show the following dependencies between directionality,
interference and crash resistance.

Observation 6 Directionality implies non interference, and non interference
implies crash resistance.
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Let us see which semantics satisfy directionality. Baroni and Giacomin [2007]

proved that complete, grounded, preferred, ideal, p-grounded and CF2 se-
mantics satisfy directionality. They also showed that stable, semi-stable, p-
complete, p-stable and p-preferred semantics violate this principle. Baroni et
al. [2011a] show that stage semantics does not satisfy directionality; however,
Dvorák and Gaggl [2016] show that stage2 semantics does satisfy directionality.

The only remaining semantics are eager and naive. The argumentation
framework from Figure 7 shows that naive semantics does not satisfy direction-
ality. The argumentation framework from Figure 3 shows that eager semantics

a b

c

Figure 7. Naive semantics violates directionality and weak directionality. De-
note the whole framework by F = (A,R). Let U = {a, b}. Observe that {a, c}
is a naive extension of F but that {a} is not a naive extension of F ↓U .

does not satisfy directionality.
Let us now consider non-interference. Baroni et al. [2011a] showed that non-

interference is satisfied by complete, grounded, preferred, semi-stable, ideal,
stage and CF2 semantics. Eager semantics satisfies non-interference since it
satisfies directionality. From the definition of non-interference we see that this
principle is satisfied by naive semantics. Since p-grounded semantics satisfies
directionality, it also satisfies non-interference.

Proposition 4.8 p-complete, p-preferred semantics satisfy non-interference.

Proof. We present the proof for p-complete semantics, the one for p-preferred
semantics is similar. Let F = (A,R) and A′ ⊆ A be an isolated set in F .
Denote by F ′ = (A′,R′) the restriction of F on A′. Let us first suppose that E
is a complete prudent extension of F . Denote E ′ = E ∩A′. We have icf(E ′). It
is easy to see that every α ∈ E ′ is defended by E ′ from all attacks from A′. Also,
for an α ∈ A′ \ E ′, we can easily see that either E ′ ∪{α} is not without indirect
conflicts or α is attacked by some argument and not defended by E ′. Suppose
now that E ′ is a complete prudent extension of F ′. Then E ′ is p-admissible
in F , so there must be a complete prudent extension E ′′ of F such that E ′ ⊆ E ′′.

�

Stage2 semantics satisfies non-interference since it satisfies directionality. Fi-
nally, p-stable semantics violates non-interference. Indeed, as we will soon
see, p-stable semantics violates crash resistance. Since non-interference implies
crash resistance, we conclude that p-stable semantics violates non-interference.
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Let us now consider crash resistance. Baroni et al. [2011a] showed that non-
interference is satisfied by complete, grounded, preferred, semi-stable, ideal,
stage and CF2 semantics. Eager, naive, p-grounded, p-complete, p-preferred
and stage2 semantics satisfy crash resistance since they satisfy non-interference.
To see that stable semantics and p-stable semantics violate crash resistance,
consider the framework F∗ = ({a}, {(a, a)}). We see that F∗ is contaminating
for stable and p-stable semantics. Thus, they both violate crash resistance.

Let us now consider two variants of directionality, called weak directionality
and semi-directionality suggested by M. Giacomin (personal communication,
2016).

Principle 16 (Weak directionality) A semantics σ satisfies the weak di-
rectionality principle if and only if for every argumentation framework F , for
every U ∈ US(F), it holds that σ(F ↓U ) ⊇ {E ∩ U | E ∈ σ(F)}.

Principle 17 (Semi-directionality) A semantics σ satisfies the semi-
directionality principle if and only if for every argumentation framework F ,
for every U ∈ US(F), it holds that σ(F ↓U ) ⊆ {E ∩ U | E ∈ σ(F)}.

Observation 7 A semantics σ satisfies directionality if and only if σ satisfies
both weak directionality and semi-directionality.

Thus, grounded, complete, preferred, ideal, eager, p-grounded, stage2 and
CF2 semantics satisfy both weak directionality and semi-directionality. It is
immediate from the definition that stable semantics satisfies weak directional-
ity. Since stable semantics does not satisfy directionality, it does not satisfy
semi-directionality.

a b c

d e f

Figure 8. Semi-stable and stage semantics violate weak directionality. Let
U = {d, e, f}. Set {b, d} is an extension of this argumentation framework,
but {b} is not an extension of the restriction of this framework on U .

Example from Figure 8 shows that semi-stable semantics does not satisfy
weak directionality. To see that semi-stable semantics does not satisfy semi-
directionality, consider the example from Figure 9, suggested by M. Giacomin.
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Stage semantics violates weak directionality, the same counter-example as for

a b c

Figure 9. Semi-stable and stage semantics violate semi-directionality. Let
U = {a, b}. Set {a} is an extension of the restriction of the framework on U ,
but there is no extension E of the whole framework such that E ∩ U = {a}.

semi-stable semantics (Figure 8) can be used. Stage semantics also violates
semi-directionality, and we can again use the same counter-example as for semi-
stable semantics (Figure 9).

Directly from the definition of naive semantics we see that it satisfies semi-
directionality. Since it does not satisfy directionality, we conclude from Obser-
vation 7 that it does not satisfy weak directionality.

Proposition 4.9 p-complete and p-preferred semantics satisfy semi-
directionality.

Proof. We present the proof for p-complete semantics, the proof for p-preferred
semantics is similar. Let F = (A,R) be an argumentation framework, U ⊆ A
an unattacked set and F ′ = F ↓U the restriction of F on U . Let E ′ be a
p-complete extension of F ′. Then E ′ is without indirect conflicts and is p-
admissible in F ′. It is immediate to see that E ′ is also p-admissible in F . It is
clear that there exists no x ∈ U \E ′ such that x is defended by E ′ and E ′∪{x} is
without indirect conflicts. Thus, there exists a (possibly empty) set E ⊂ (A\U)
such that E ∪ E ′ is a p-complete extension. �

Since both p-complete and p-preferred semantics violate directionality, the pre-
vious proposition and Observation 7 imply that they both violate weak direc-
tionality.

Directly from the definition of p-stable semantics, we see that this semantics
satisfies weak directionality. From Observation 7 we conclude that it does not
satisfy semi-directionality.

We now consider the six properties related to skepticism and resolution ad-
equacy [Baroni and Giacomin, 2007].

The first definition says that a set of extensions Ext1 is more skeptical than
Ext2 if the set of skeptically accepted arguments with respect to Ext1 is a
subset of the set of skeptically accepted arguments with respect to Ext2.

Definition 4.10 (�E∩ ) Let Ext1 and Ext2 be two sets of sets of arguments.
We say that Ext1 �E∩ Ext2 if and only if⋂

E1∈Ext1

E1 ⊆
⋂

E2∈Ext2

E2.
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The previous definition compares only the intersections of extensions. A
finer criterion was introduced by Baroni et al. [2004].

Definition 4.11 (�EW ) Let Ext1 and Ext2 be two sets of sets of arguments.
We say that Ext1 �EW Ext2 if and only if

for every E2 ∈ Ext2, there exists E1 ∈ Ext1 such that E1 ⊆ E2.

Baroni and Giacomin [2007] refine the previous relation by introducing the
following definition.

Definition 4.12 (�ES ) Let Ext1 and Ext2 be two sets of sets of arguments.
We say that Ext1 �ES Ext2 if and only if Ext1 �EW Ext2 and

for every E1 ∈ Ext1, there exists E2 ∈ Ext2 such that E1 ⊆ E2.

Letters W and S in the previous definitions stand for weak and strong.
Baroni and Giacomin [2007] showed that the three relations are reflexive and
transitive and that they are also in strict order of implication. Namely, given
two sets of sets of arguments Ext1 and Ext2, we have

Observation 8

Ext1 �ES Ext2 implies Ext1 �EW Ext2

Ext1 �EW Ext2 implies Ext1 �E∩ Ext2

We now define a skepticism relation �A between argumentation frameworks.
It says that F1 �A F2 if F1 may have some symmetric attacks where F2 has a
directed attack.

Definition 4.13 (�A) Given an argumentation framework F = (A,R), the
conflict set is defined as CONF(F) = {(a, b) ∈ A×A | (a, b) ∈ R or (b, a) ∈ R}.
Given two argumentation frameworks F1 = (A1,R1) and F2 = (A2,R2), we
say that F1 �A F2 if and only if CONF(F1) = CONF(F2) and R2 ⊆ R1.

Observe that �A is a partial order, as it consists of an equality and a set
inclusion relation [Baroni and Giacomin, 2007]. Note that within the set of ar-
gumentation frameworks comparable with a given argumentation framework F ,
there might be several maximal elements with respect to �A, since there might
be several ways to replace all symmetric attacks by asymmetric ones.

We can now introduce the skepticism adequacy principle. Its idea is that
if F is more skeptical than F ′ then the set of extensions of F is more skeptical
than that of F ′.



The Principle-Based Approach to Abstract Argumentation Semantics 25

Principle 18 (Skepticism adequacy) Given a skepticism relation ≺E be-
tween sets of sets of arguments, a semantics σ satisfies the �E-skepticism
adequacy principle if and only if for every two argumentation frameworks F
and F ′ such that F �A F ′ it holds that σ(F) �E σ(F ′).

For example if F consists of two arguments a and b attacking each other
and F ′ has only an attack from a to b, then the intersection of the extensions
of F (∅ for all semantics) is a subset of extensions of F ′, typically {a}. Roughly
speaking: the more symmetric attacks we replace, the more we know, but we
do not loose any accepted arguments.

Observation 9

• If σ satisfies �ES -sk. adequacy then it satisfies �EW -sk. adequacy

• If σ satisfies �EW -sk. adequacy then it satisfies �E∩ -sk. adequacy

�E∩ -sk. ad. �EW -sk. ad. �ES -sk. ad. �E∩ -res. ad. �EW -res. ad. �ES -res. ad.

complete X X × × × ×
grounded X X X × × ×
preferred × × × X X X
stable X X × X X X
semi-stable × × × X X ×
ideal × × × × × ×
eager × × × × × ×
p-complete × × × × × ×
p-grounded × × × X × ×
p-preferred × × × × × ×
p-stable × × × X X ×
naive X X X X X X
CF2 X X × × × ×
stage × × × X X ×
stage2 × × × × × ×

Table 3. Properties of semantics, skepticism and resolution adequacy

Let us see which semantics satisfy skepticism adequacy. Baroni and Gia-
comin [2007] proved all the results for grounded, complete, stable, preferred,
semi-stable, ideal, all four prudent and CF2 semantics.

Eager semantics does not satisfy �E∩ -skepticism adequacy, as illustrated by
the example depicted in Figure 10. From Observation 9, we conclude that eager
semantics violates �EW -skepticism adequacy and �ES -skepticism adequacy.

Naive semantics satisfies all three variants of skepticism adequacy since
CONF(F1) = CONF(F2) implies σ(F1) = σ(F2).

Stage semantics does not satisfy �E∩ -skepticism adequacy, as illustrated by
the example from Figure 11. From Observation 9, we conclude that stage
semantics violates �EW -skepticism adequacy and �ES -skepticism adequacy.
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Figure 10. Eager semantics does not satisfy �E∩ -skepticism adequacy. We have
F1 �A F2. The eager extension of F1 is {e} and the eager extension of F2 is ∅.
Thus the set of skeptically accepted arguments of F1 equals {e} is not a subset
of the set of skeptically accepted arguments of F2.

a b c

F1

a b c

F2

Figure 11. Stage semantics does not satisfy �E∩ -skepticism adequacy. We have
F1 �A F2. Framework F1 has a unique stage extension {a} and framework F2

has two stage extensions {a} and {b}. Thus the set of skeptically accepted
arguments of F1 equals {a} is not a subset of the set of skeptically accepted
arguments of F2, which is the empty set.

Finally, stage2 semantics does not satisfy �E∩ -skepticism adequacy, as il-
lustrated by the example from Figure 12. From Observation 9, we conclude
that stage2 semantics violates �EW -skepticism adequacy and �ES -skepticism ad-
equacy.

Let us now consider resolution adequacy [Baroni and Giacomin, 2007].

Definition 4.14 (RES) We denote by RES(F) the set of all argumentation
frameworks comparable with F and maximal with respect to �A.

Definition 4.15 (UR) Given an argumentation framework F and a seman-
tics σ, we define UR(F , σ) =

⋃
F ′∈RES(F) σ(F ′).

Principle 19 (Resolution adequacy, [Baroni and Giacomin, 2007])
Given a skepticism relation �E between sets of sets of arguments, a seman-
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Figure 12. Stage2 semantics does not satisfy �E∩ -skepticism adequacy. We have
F1 �A F2. Framework F1 has a unique stage2 extension {a} and framework F2

has three stage2 extensions {a}, {b} and {c}. Thus the set of skeptically
accepted arguments of F1 equals {a} is not a subset of the set of skeptically
accepted arguments of F2, which is the empty set.

tics σ satisfies the �E-resolution adequacy principle if and only if for every
argumentation framework F we have UR(F , σ) �E σ(F).

We consider three variants of the resolution adequacy principle: �E∩ -resolution
adequacy, �EW -resolution adequacy and �ES -resolution adequacy.

Observation 10

• If σ satisfies �ES -res. adequacy then it satisfies �EW -res. adequacy

• If σ satisfies �EW -res. adequacy then it satisfies �E∩ -res. adequacy

The results regarding grounded, complete, stable, preferred, semi-stable,
ideal, all four prudent and CF2 semantics were shown by Baroni and Gia-
comin [2007].

Eager semantics violates �E∩ -resolution adequacy, as illustrated by the ex-
ample from Figure 13. Consequently, it does not satisfy the other two forms
of resolution adequacy. Consider naive semantics; from its definition we see
that for every argumentation framework F , for every F ′ ∈ RES(F), we have
σ(F) = σ(F ′). Thus, naive semantics satisfies all three forms of resolution
adequacy.

Proposition 4.16 Stage semantics satisfies �EW -resolution adequacy.

Proof. To show this, it is sufficient to show the following claim: for every
argumentation framework F = (A,R), for every stage extension E of F , there
exists F ′ ∈ RES(F) such that E is a stage extension of F ′. Let E be a stage
extension of F . Let F ′ = (A,R′) ∈ RES(F) be such that for every a, b ∈ A
if a ∈ E then (a, b) ∈ R′. (In other words, all attacks from E are preserved.)
E is conflict-free in F ′, and all the attacks from E are preserved. Observe that
the set of conflict-free sets of F and the set of conflict-free sets of F ′ coincide.
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Figure 13. Eager semantics does not satisfy �E∩ -resolution adequacy. We have
RES(F) = {F1,F2}. Namely, the eager extension of F1 is {b, d} and the eager
extension of F2 is {a, d}. Since the eager extension of F is the empty set, and
{a, d} ∩ {b, d} = {d} 6⊆ ∅, the criterion is not satisfied.

Also, no conflict-free set attacks more arguments in F ′ than it attacks in F .
Thus, since E is a stage extension in F , it is also a stage extension in F ′.

From the fact that for every argumentation framework F = (A,R), for
every stage extension E of F , there exists F ′ ∈ RES(F) such that E is a
stage extension of F ′, we conclude that stage semantics satisfies �EW -resolution
adequacy. �

Since stage semantics satisfies �EW -resolution adequacy, then it satisfies �E∩ -
resolution adequacy. The example from Figure 14 shows that stage semantics
does not satisfy �ES -resolution adequacy.

a b c

d

e

F

a b c

d

e

F ′

Figure 14. Stage semantics does not satisfy �ES -resolution adequacy. We have
F ′ ∈ RES(F), set E ′ = {a, c} is a stage extension of F ′, but there exists no
stage extension E of F such that E ′ ⊆ E .



The Principle-Based Approach to Abstract Argumentation Semantics 29

Stage2 semantics violates �E∩ -resolution adequacy, as illustrated by the ex-
ample from Figure 15. Consequently, it does not satisfy the other two forms of
resolution adequacy.

a b

ced

f

F

a b

ced

f

a b

ced

f

F1

F2

Figure 15. (Example provided by Wolfgang Dvorak, personal communication)
Stage2 semantics does not satisfy �E∩ -resolution adequacy. We have RES(F) =
{F1,F2}. Namely, the stage2 extensions of F are {a, e} and {b, e}, and the
stage2 extension of F1 and F2 is {a, e}. Since {a, e} 6⊆ {a, e}∩{b, e} = {e}, the
criterion is not satisfied. The intuitive reason for the different behaviour from
stage is that resolutions can break up a SCC into several SCCS and arguments
that are not in the same SCC are not considered for range maximality.

Baroni et al. [2011b] introduce resolution-based family of semantics, which
are developed to satisfy the resolution properties.

Let us now consider the last group of properties listed in Table 4. We first
need to define the notion of strong equivalence [Oikarinen and Woltran, 2010].
Two frameworks F1 and F2 are strongly equivalent if for every argumentation
framework F3, we have that F1 ∪ F3 has the same extensions as F2 ∪ F3.

Definition 4.17 (Strong equivalence) Two argumentation frameworks F1

and F2 are strongly equivalent with respect to semantics σ, in symbols F1 ≡σs F2

if and only if for each argumentation framework F3, σ(F1 ∪F3) = σ(F2 ∪F3).

An attack is redundant in F if removing it does not change the extensions
of any F ′ that contains F .

Definition 4.18 (Redundant attack) Let F = (A,R) be an argumentation
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Succinctness Tightness
Conflict-

-sensitiveness
Com-

-closure
SCC-

-recursiveness
Cardinality

complete × × × X X 1+
grounded × X X X X 1
preferred × × X X X 1+
stable × X X X X 0+
semi-stable × × X X × 1+
ideal × X X X × 1
eager × X X X × 1+
p-complete × × × × × 1+
p-grounded × X X X × 1
p-preferred × X X X × 1+
p-stable × X X X × 0+
naive × X X X × 1+
CF2 X X X X X 1+
stage × X X X × 1+
stage2 X X X X X 1+

Table 4. Properties of semantics, part 4

framework and σ and semantics. Attack (a, b) ∈ R is said to be redundant in F
with respect to σ if and only if for all argumentation frameworks F ′ such that
F ⊆ F ′ we have σ(F ′) = σ(F ′ \ (a, b)).

We can now define the succinctness principle [Gaggl and Woltran, 2013].

Principle 20 (Succinctness) A semantics σ satisfies the succinctness prin-
ciple if and only if no argumentation framework contains a redundant attack
with respect to σ.

Gaggl and Woltran [2013] show that a semantics σ satisfies succinctness if
and only if for every two argumentation frameworks F1 and F2 strong equiva-
lence under σ coincides with F1 = F2.

Only CF2 and stage2 semantics satisfy succinctness. Namely, Oikarinen
and Woltran [2010] showed that the notions of strong equivalence and syntac-
tic equivalence do not coincide under complete, grounded, preferred, stable,
semi-stable and ideal semantics. Gaggl and Woltran [2013] show that strong
equivalence and syntactic equivalence do not coincide under stage and naive
semantics. They also show that strong equivalence coincides with syntactic
equivalence under CF2 semantics. Dvorák and Gaggl [2016] show that the
same is true under stage2 semantics, which means that it also satisfies suc-
cinctness.

Consider eager semantics. Using Theorem 2 by Oikarinen and Woltran [2010],
we can see that F1 and F2 from Figure 16 are strongly equivalent under semi-
stable semantics. Since the eager semantics is uniquely determined by the set
of semi-stable extensions, this means that F1 and F2 are strongly equivalent
under eager semantics. Hence, eager semantics does not satisfy succinctness.
Let us now show that all four prudent semantics violate succinctness.
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c d

F1

a b

c d
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Figure 16. Several semantics violate succinctness

Let F1 = (A,R1) and F2 = (A,R2) be the two argumentation frameworks
from Figure 16. Let F = (A′,R′) be an arbitrary argumentation framework.
Denote F ′1 = F1 ∪ F and F ′2 = F2 ∪ F . Let us prove that the sets with-
out indirect conflicts of F ′1 and F ′2 coincide. It is immediate to see that if
E ⊆ A ∪A′ is not without indirect conflicts in F ′2, it is also not without indi-
rect conflicts in F ′1, since R2 ⊆ R1. Let E ⊆ A ∪A′ and let us prove that if E
is not without indirect conflicts in F ′1 then it is not without indirect conflicts
in F ′2. Let {(x1, x2), (x2, x3), . . . , (xn−1, xn)} ⊆ R1 ∪R′ with n being even and
x1, xn ∈ E . If {(x1, x2), (x2, x3), . . . , (xn−1, xn)} ⊆ R2 ∪ R′ then E clearly has
an indirect conflict in F ′2. Else, it must be that for some i ∈ {1, . . . , n − 1}
we have xi = a and xi+1 = b. Then {(x1, x2), . . . , (xi, c), (c, d), (d, xi+1), . . . ,
(xn−1, xn)} ⊆ R2 ∪ R′, thus E is not without indirect conflicts in F ′2. Hence,
the sets without indirect conflicts of F ′1 and F ′2 coincide. It is immediate to see
that E ⊆ A ∪ A′ defends all it arguments in F ′1 if and only if it defends all its
arguments in F ′2. Thus, the sets of p-complete extensions of F ′1 and F ′2 coin-
cide. Also, the p-grounded extension of F ′1 is exactly the p-grounded extension
of F ′2. Since every E without indirect conflicts attacks an argument x in F ′1
if and only if E attacks x in F ′2, p-stable extensions of F ′1 and F ′2 coincide.
Since the sets without indirect conflicts coincide, then maximal sets without
indirect conflict coincide. Thus, p-preferred extensions of F ′1 and F ′2 coincide.
We conclude that all variants of prudent semantics violate succinctness.

The next principle we consider is tightness. Let us first define the notion
of pairs. A couple (a, b) is in Pairs if there is an extension containing both a
and b.

Definition 4.19 (Pairs) Given a set of extensions S = {E1, . . . , En}, we de-
fine

Pairs(S) = {(a, b) | there exists Ei ∈ S such that {a, b} ⊆ Ei}.
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Tightness was introduced by Dunne et al. [2015]. Roughly speaking, it says
that if argument a does not belong to extension E , then there must be argument
b ∈ E which is somehow incompatible with a.

Principle 21 (Tightness) A set of extensions S = {E1, . . . , En} is tight if
and only if for every extension Ei and for every a ∈ A that appears in at least
one extension from S it holds that if Ei ∪ {a} /∈ S then there exists b ∈ Ei such
that (a, b) /∈ Pairs(S).

A semantics σ satisfies the tightness principle if and only if for every argu-
mentation framework F , σ(F) is tight.

Dunne et al. [2015] show that stable, stage and naive semantics satisfy tight-
ness. Example 4 from their paper shows an argumentation framework F such
that σ(F) = {E1, E2, E3} with E1 = {a, b}, E2 = {a, d, e}, E3 = {b, c, e}, un-
der preferred and semi-stable semantics. This example shows that those two
semantics violate tightness since {a, b, e} is not an extension.

Directly from the definition of tightness, we conclude that unique status
semantics satisfy this principle.

Observation 11 If σ is a semantics that returns exactly one extension for
every argumentation framework then σ satisfies tightness.

Hence, grounded, p-grounded, ideal and eager semantics satisfy tightness.
The example from Figure 17 shows that complete and p-complete semantics
violate tightness.

a c e

b x f d

y

Figure 17. Complete and p-complete semantics violate tightness. There are
two extensions E1 = {a, b}, E2 = {a, b, c, d}. Tightness is not satisfied since set
E1 ∪ {c} is not an extension.

From Proposition 1 by Dunne et al. [2015], we have that the set of naive
extensions is tight for every argumentation framework. Note that when σ is
naive semantics and F an argumentation framework, all the elements of σ(F)
are pairwise incomparable with respect to ⊆ (i.e. for each S, S′, S ⊆ S′ implies
S = S′). Hence, we can apply Lemma 2 by Dunne et al. [2015] and obtain
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Observation 12 If every extension under σ is a maximal conflict-free set, σ
satisfies tightness.

As an immediate consequence, p-stable, CF2 and stage2 semantics satisfy
tightness. We now show that p-preferred semantics also satisfies this principle.

Proposition 4.20 p-preferred semantics satisfies tightness.

Proof. We use the proof by reductio ad absurdum. Let E be a p-preferred
extension and let a be a credulously accepted argument such that

(1) for every b ∈ E there is a preferred p-extension E ′′ s.t. {a, b} ⊆ E ′′

By means of contradiction, let us suppose that E ′ = E ∪{a} is not a p-preferred
extension. From (1), we conclude that E ′ is without indirect conflicts. Set E ′ is
not p-admissible, since that would mean that E is not a maximal p-admissible
set. Since E ′ is without indirect conflicts and E is p-admissible, there exists an
argument b1 such that b1Ra and there is no b′ ∈ E ′ such that b′Rb1. Denote
B1 = {b | bRa}.

Note that E 6= ∅, since E = ∅ would imply that there are no other p-
preferred extensions and, consequently, a would not be credulously accepted.
Thus, E 6= ∅. Let b ∈ E . From (1), there exists a p-preferred extension E1 such
that b ∈ E1 and a ∈ E1. Since a ∈ E1 then for every bi1 ∈ B1 there exists bi2 ∈ E1
such that bi2R. Let B2 = {b′ ∈ E1 | there exists b′′ ∈ B1 s.t. b′Rb′′}. In words,
B2 is the set of arguments from E1 that attack B1 (they defend a from B1).

Let us show that E ∪ B2 is without indirect conflicts. By means of contra-
diction, suppose E indirectly attacks B2. Then E indirectly attacks a, contra-
diction. Suppose now that B2 indirectly attacks E . Since E is p-admissible,
then E attacks B2, and thus (like in the previous case) E indirectly attacks a.
Contradiction. So it must be that E ∪ B2 is without indirect conflicts. Note
also that since B2 ⊆ E1 and a ∈ E1, we have that E2 = E ∪ {a} ∪B2 is without
indirect conflicts.

Note that E2 is not p-admissible, since it is a strict superset of a p-preferred
extension. Set E is p-admissible and B2 defends a so it must be that some
argument(s) of B2 are not defended by E2.

Let B3 = {b | bRB2}. It must be that B3 \ B2 6= ∅. Since B2 ⊆ E1,
and E1 is p-admissible, there exists B4 ⊆ E1 such that B4 defends B2. Let
B4 = {b′ ∈ E1 | there exists b′′ ∈ B3 such that b′Rb′′}.

Note that E4 = E ∪ {a} ∪B2 ∪B4 is without indirect conflicts. By using the
similar reasoning as in the case of E2, we conclude that E4 is not p-admissible.
Let B5 = {b | bRB4}. We have B5 \ (B1∪B3) 6= ∅. By continuing this process,
we construct an infinite sequence of different arguments (b1, b3, . . . , bi+1, . . .)
such that b1 ∈ B1, b3 ∈ B3 \B1, . . ., bi+1 ∈ Bi+1 \ (B1 ∪ . . .∪Bi−1), . . ., which
is impossible, since the set of arguments is finite. �

We now study the notion of conflict-sensitiveness [Dunne et al., 2015]. Note
that an equivalent principle was called adm-closure in some papers.
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Principle 22 (Conflict-sensitiveness) A set of extensions S = {E1, . . . , En}
is conflict-sensitive if and only if for every two extensions Ei, Ej such that
Ei ∪ Ej /∈ S it holds that there exist a, b ∈ Ei ∪ Ej such that (a, b) /∈ PairsS .

A semantics σ satisfies the conflict-sensitiveness principle if and only if for
every argumentation framework F , σ(F) is conflict-sensitive.

This principle checks whether the fact that Ei ∪ Ej is not an extension is
justified by existence of a ∈ Ei and b ∈ Ej that cannot be taken together.
Dunne et al. [2015] show that every tight set is also conflict-sensitive. Thus,
grounded, stable, ideal, stage, eager, naive, p-grounded, p-stable, p-preferred,
stage2 and CF2 semantics satisfy conflict-sensitiveness. Proposition 2 by Dunne
et al. [2015] shows that preferred and semi-stable semantics satisfy conflict-
sensitiveness. Our example from Figure 18 shows that complete and p-complete
semantics violate this principle. As for tightness, it does not seem that violating
this principle is a necessarily a bad thing. It can be rational to ask for both a
and b in order to defend e. There is no conflict between a and e, it is just that e
needs to be defended from both c and d.

a c

x

e

b d

y

Figure 18. Complete and p-complete semantics violate conflict-sensitiveness.
There are four extensions E1 = ∅, E2 = {a}, E3 = {b}, E4 = {a, b, e}. Conflict-
sensitiveness is not satisfied since set {a, b} is not an extension.

Let us now turn to com-closure [Dunne et al., 2015]. To define this principle,
we first need to introduce the notion of completion set. Completion sets are
the smallest extensions that contain a given set.

Definition 4.21 (Completion set) Given a set of extensions S = {E1, . . . , En}
and a set of arguments E, set E ′ is a completion set of E in S if and only if E ′
is a minimal for ⊆ set such that E ′ ∈ S and E ⊆ E ′.
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Roughly speaking, com-closure says that, given a set of extensions S, if for
every T ⊆ S each two arguments from sets of T appear in some extension of S,
then T can be extended to an extension in a unique way.

Principle 23 (Com-closure) A set of extensions S = {E1, . . . , En} is com-
closed if and only if for every T ⊆ S the following holds: if (a, b) ∈ PairsS for
each a, b ∈ ∪Ei∈T Ei, then ∪Ei∈T Ei has a unique completion set in S.

A semantics σ satisfies the com-closure principle if and only if for every
argumentation framework F , σ(F) is com-closed.

Dunne et al. [2015] show that each conflict-sensitive set of extensions is com-
closed. Thus, all the semantics that satisfy conflict-sensitiveness also satisfy
com-closure. Their Proposition 4 shows that complete semantics is com-closed.
To see that p-complete semantics does not satisfy com-closure, consider the
graph from Figure 19.

x1x2
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x7 x8
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Figure 19. p-complete semantics is not com-closed. There are eight p-complete
extensions: E1 = ∅, E2 = {b}, E3 = {c}, E4 = {d}, E5 = {b, d}, E6 = {c, d},
E7 = {b, c, d}, E8 = {b, c, a}. Let T = {E2, E3}. Com-closure is not satisfied
since set {b, c} has two competition sets, namely E7 and E8.
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We now study the notion of SCC-recursiveness, which was introduced by
Baroni et al. [2005].

Principle 24 (SCC-recursiveness) A semantics σ satisfies the
SCC-recursiveness principle if and only if for every argumentation framework
F = (A,R) we have σ(F) = GF(F ,A), where for every F = (A,R) and for
every set C ⊆ A, the function GF(F , C) ⊆ 2A is defined as follows: for every
E ⊆ A, E ∈ GF(F , C) if and only if

• in case |SCCSF | = 1, E ∈ BFS(F , C),

• otherwise, ∀S ∈ SCCSF , (E ∩ S) ∈ GF(F ↓UPF (S,E), UF (S, E) ∩ C),

where BFS(F , C) is a function, called base function, that, given an argumen-
tation framework F = (A,R), such that |SCCS(F)| = 1 and a set C ⊆ A,
gives a subset of 2A.

Baroni et al. [2005] proved that grounded, complete, stable and preferred se-
mantics satisfy SCC-recursiveness. CF2 and stage2 semantics also satisfy this
principle, since they are defined by using SCC recursive schema. None of the re-
maining semantics satisfies SCC-recursiveness. To show that ideal, semi-stable,
stage and eager semantics does not satisfy SCC-recursiveness, consider the ex-
amples from Figures 20 and 21, which are both due to M. Giacomin (personal
communication, 2016). Naive semantics does not satisfy SCC-recursiveness

a

b

c

F1

d e

a

b

c

F2

d e

Figure 20. Ideal semantics is not SCC-recursive. Both in F1 and in F2, there
are two SCCs: S1 = {a, b, c} and S2 = {d, e}. Suppose ideal semantics is SCC-
recursive. Then, we can calculate the ideal extension of an argumentation
framework by starting from S1 and then continuing to S2. Denote by F1

1 the
restriction of F1 on S1 and by F1

2 the restriction of F2 on S1. The ideal
extension of F1

1 is the empty set. The ideal extension of F1
2 is also the empty

set. So the exact same information is transferred to the next SCC, S2. The
second SCC, S2 is the same for both frameworks, so given the same information
from S1, both frameworks should have the same ideal extension. However,
σ(F1) = ∅ whereas σ(F2) = {e}. Thus, ideal semantics does not satisfy SCC-
recursiveness.

since it ignores the direction of attacks. Consider the example from Figure 22.
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a b c

d

Figure 21. Semi-stable, stage and eager semantics violate SCC-recursiveness.
Let σ be stage, semi-stable or eager semantics. Consider the first SCC,
S1 = {a, b, c}. If we restrict the argumentation framework to S1, the only
extension under σ is {b}. If σ satisfied SCC-recursiveness, each extension of
this framework would contain b, which is not the case, since {a} is an extension
of this framework under σ.

a b

Figure 22. Naive semantics does not satisfy SCC-recursiveness. Note that the
first SCC is S1 = {a}. If naive semantics satisfied SCC-recursiveness, every
naive extension of the whole framework would contain a, which is not the case
since {b} is a naive extension of this framework too.

All four prudent semantics violate SCC-recursiveness. Consider the argumen-
tation framework from Figure 4. Let σ be any of the four prudent semantics.
In this example, every argument forms an SCC. Thus, each extension must
contain both e and f . Furthermore, no extension can contain neither of b, c, d,
since they are all attacked by e of f . Finally, if σ satisfied SCC-recursiveness,
each extension would contain a, which is not the case.

The results considering cardinality are easy to obtain.

We do not include several properties that are not satisfied by any of the
studied semantics. Let us mention three such properties. Downward closure
[Dunne et al., 2015] basically says that each subset of each extension is an
extension. Non-triviality [Dunne et al., 2012] says that it is not the case that
σ(F) = {∅}; in words, the empty set is not the only extension. Decisiveness
[Dunne et al., 2012] is a stronger principle that asks that every framework has
exactly one extension E and that E is not empty.
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5 Summary and outlook

The principle-based approach has developed over the past ten years into a
cornerstone of formal argumentation theory, because it allows for a more sys-
tematic study and comparison of argumentation semantics. In this chapter
we give a complete analysis of the fifteen main alternatives for argumentation
semantics using the twenty-seven main principles discussed in the literature
on abstract argumentation. Moreover, Caminada [2018] discusses the princi-
ples used in structured argumentation, which he calls rationality postulates,
and Dung [2016] analyses prioritised argumentation using a principle-based or
axiomatic approach.

The principle-based approach has also been used to provide a more sys-
tematic study and analysis of the semantics of extended argumentation frame-
works, of the aggregation of argumentation frameworks, and of the dynamics of
argumentation frameworks. For example, principles of ranking-based seman-
tics have been proposed [Amgoud and Ben-Naim, 2016; Amgoud et al., 2017;
Bonzon et al., 2016b], where the output is not a set of extensions but a ranking
on the set of arguments, and principles have been developed for bipolar argu-
mentation [Cayrol and Lagasquie-Schiex, 2015]. Likewise we expect a further
systematic study of weighted argumentation frameworks, preference-based ar-
gumentation frameworks, input/output frameworks, abstract dialectical frame-
works, and so on. These topics will be discussed in more detail in the second
volume of the handbook on formal argumentation.

It may be expected that the principle-based approach will play an even more
prominent role in the future of formal argumentation, as the number of alter-
natives for argumentation semantics increases, new argumentation principles
are introduced, and more requirements of actual applications are expressed in
terms of such principles. Moreover, in the future applications and principles
concerned with infinite frameworks may become more prominent. For exam-
ple, when the set of arguments becomes infinite, it may be that there are no
semi-stable extensions. However, Baumann [2018] illustrates how a meaningful
version of eager semantics can be defined, which no longer has the property
that it always returns exactly one extension.

Finally, the principle-based approach to formal argumentation may lead to
the study of impossibility and possibility results, as well as the development of
representation theorems characterising sets of argumentation semantics. The
use of the principle-based approach in other areas of reasoning, such as voting
theory or AGM theory change, may inspire such further formal investigations.
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