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Abstract

An argumentation framework is seen as a directed graph whose nodes are
arguments and arcs are attacks between those arguments. Acceptable sets
of arguments, called extensions, are computed using an acceptability se-
mantics. In this paper, we study how preferences issued from differences
in strengths of arguments can help in argumentation frameworks. We first
explain that they play two key roles: i) to repair the attack relation be-
tween arguments, ii) to refine the evaluation of arguments. We show that
the two roles are independent and need different procedures for modelling
them. In a second part of this paper, after showing that existing systems
that treat the first role of preferences do not perform well in certain situ-
ations, we propose and study a new abstract and general system which is
capable of treating properly both roles of preferences. The third part of
this work is devoted to defining a bridge between the argumentation-based
and the coherence-based approaches for handling inconsistency in knowl-
edge bases, in particular when priorities between formulas are available. We
focus on two well-known models, namely the preferred sub-theories intro-
duced by Brewka and the demo-preferred sets defined by Cayrol, Royer and
Saurel. For each of these models, we provide an instantiation of our abstract
framework which is in full correspondence with it.

Keywords: Preferences, Argumentation, Handling inconsistency.

1. Introduction

Argumentation is a reasoning model based on the construction and the
evaluation of interacting arguments. An argument is seen as a reason for be-

IThis paper extensively develops and extends the contents of three conference papers,
namely [1, 2, 3].
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lieving in a statement, doing an action, pursuing a goal, etc. Argumentation
has gained an increasing interest from researchers in Artificial Intelligence. It
has, for instance, been used for handling inconsistency in knowledge bases
(e.g. [4, 5, 6]), merging several knowledge bases (e.g. [7]), making deci-
sions under uncertainty (e.g. [8, 9, 10]), modeling different types of dialogs,
namely negotiation (e.g. [11, 12]) and persuasion [13, 14, 15].

One of the most popular argumentation frameworks was proposed by
Dung [16]. It consists of a set of arguments and an attack relation among
them. The framework can thus be represented as a directed graph whose
nodes are the arguments and the arcs represent the attacks. Arguments
are evaluated using a semantics which is based on the attack relation and
on a key principle according to which an attacker wins unless the attacked
argument is defended by other “good” arguments.

In argumentation literature and since early nineties, in their seminal
paper [6], Simari and Loui have emphasized the importance of consider-
ing additional criteria, namely preferences, when evaluating arguments in a
framework. Preferences are expressed between arguments and reflect their
relative strengths. They may have different sources, like available priorities
between formulas of a knowledge base over which an argumentation frame-
work is built [6, 17] or the importance of values that may be promoted by
arguments [18], etc. In [6], the authors used a weaker version of the basic
principle of Dung’s semantics. They argued that attacks do not always win.
They proposed to remove from an argumentation graph any critical attack,
i.e., an arc that emanates from an argument which is weaker, or less pre-
ferred, than the argument it attacks. This idea was largely acknowledged in
the literature and was later applied by several scholars to Dung’s abstract
framework [17, 18, 19, 20] and to its logic-based instantiations [21, 22].

Note that while the previous idea is very intuitive, it only takes into
account the preferences appearing in critical attacks. However, in some
cases, preferences play other roles. In [23], an interesting example of such a
framework was given. The framework has two extensions and one of them
is clearly better than the other since its arguments are preferred to those
of the second extension. This suggests that handling critical attacks is not
the unique role that preferences may play in an argumentation framework.
They may be used to refine the set of extensions of a framework. Unfortu-
nately, this second role is completely neglected in the literature and existing
frameworks capture only the first role. Things are different for the other
approaches for defeasible reasoning (e.g., [24]). Indeed, priorities between
formulas or defaults are used in a model in order to select some solutions
among possible ones. Thus, the second role is the most popular in these



models.

In this paper, we investigate the different roles that preferences may
play in a Dung style argumentation framework. We show that there are
indeed two distinct roles: handling critical attacks and refining the results
of a framework. The two roles are independent in the sense that none of
the roles can be captured by the other. Moreover, they are not modeled
in the same way. We provide one model for each role. Regarding handling
critical attacks, the existing approach which consists of deleting them from
an argumentation graph may have serious problems in some cases. Indeed,
if the attack relation is not symmetric, removing arcs may lead to conflict-
ing extensions and consequently the framework may violate the consistency
postulate proposed in [25]. So, instead of deleting the critical attacks, we
propose to invert their arrows keeping thus the information about the con-
flicts and in the same time considering the preferences. We show that this
novel approach is well-founded, i.e., it guarantees safe and intuitive results.

For refining the results of an argumentation framework, namely its set
of extensions under a given semantics, we use a preference relation defined
on the powerset of the set of arguments. The best extensions with respect
to this relation will be kept and the others are discarded. Note that such
a relation is not unique and that different relations may lead to different
outcomes. In the paper, we do not study all possible relations. A review of
different ways to compare sets of objects can be found in [26].

Another important contribution of the paper consists of proposing a uni-
fied abstract argumentation framework that extends Dung’s framework with
preferences, and more importantly that captures the two roles of preferences.
Note that this is the first framework that captures both roles of preferences.
It starts by inverting the arrows of the critical attacks, then computes the
extensions of the revised graph, and finally applies a refinement relation on
the set of extensions in order to select the best ones.

The last contribution of the paper consists of applying our rich frame-
work to reasoning under inconsistency. Our aim is to make bridges with
well-known approaches, namely the preferred sub-theories introduced by
Brewka in [27] and the demo-preferred sets defined by Cayrol, Royer and
Saurel in [28]. Each of these models is in full correspondence with a partic-
ular instantiation of our framework.

The paper is organized as follows: Section 2 recalls Dung’s framework.
Section 3 discusses the two roles of preferences and how they should be
modeled. Section 4 presents an abstract framework which handles the two
roles of preferences. Section 5 presents briefly existing approaches [27, 28]



for handling inconsistency. In Section 6, we show some links between a
knowledge base and the arguments which can be built from it. A bijection
between preferred sub-theories and a particular case of the framework we
propose is shown. This result is generalized by presenting a link between
demo-preferred sets and more general instantiation of our rich preference-
based framework. Section 7 compares our approach with existing works.
The last section concludes.

2. Basics of argumentation

Dung has developed one of the most abstract argumentation framework
in the literature [16]. It consists of a set of arguments and an attack relation
between the arguments.

Definition 1 (Argumentation framework). An argumentation frame-
work (AF)is a pair F = (A, R), where A is a set of arguments and R is an
attack relation (R C A x A). The notation aRb or (a,b) € R means that
the argument a attacks the argument b.

Let us consider the following example borrowed from [29].

Example 1. Assume the following dialog between an expert and a three-
year old child.

Expert: This violin is expensive since it was made by Stradivari (a).
Child: The violin was not made by Stradivari (b).

The corresponding argumentation framework Fi is depicted in the figure

below.
OmO

In Dung’s framework, arguments and attacks are abstract entities, thus
neither their origin nor their structure are known. In the logic-based in-
stantiations of the framework like the one proposed in [21] for reasoning
about inconsistent propositional knowledge bases, arguments are built from
a knowledge base and are considered as minimal proofs for formulas.

Definition 2 (Argument). Let X be a finite propositional knowledge base.
An argument is a pair o = (H, h) such that:



e HC X
e H is consistent

e H I+ h (where = stands for classical propositional logic entailment)
e #AH' C H such that H' & h.

H is the support of the argument and h its conclusion.

The first condition shows the origin of the support of an argument. The
second condition ensures the consistency of the support. The third condi-
tion says that the conclusion of an argument is a consequence of its support.
Finally, the last condition ensures that an argument uses only the necessary
information in order to draw its conclusion.

The attack relation is the second key component of Dung’s framework.
When applied for reasoning about inconsistent information, this relation
captures the logical inconsistency of a knowledge base. An example of rela-
tion is the so-called undercut and proposed in [30] (see [31] for more attack
relations in case of systems built over propositional knowledge bases).

Definition 3 (Undercut). An argument (H,h) undercuts an argument
(H', 1) iff I € H' such that h = —-h".

That is, an argument attacks another one if the conclusion of the first ar-
gument contradicts some of the hypothesis of the second one. We illustrate
those definitions in the next example.

Example 2. Let ¥ = {z,~y,x — y} be a propositional knowledge base.
The following arguments can be built from this base:

aj : ({1’},-%') az: ({_‘y}v _‘y)
as: ({z = y}t,z—y) as: ({x, -y}, zA-y)
as : ({~y, 2 >y}, ) as: ({z,2 =y} y)

Note that more arguments can be built from 3. The figure below depicts
the argumentation framework Fo = ({a1,a2,a3,a4,a5,a6}, R) where R is
“undercut” between those arguments.




Different acceptability semantics for evaluating arguments have been pro-
posed in [16]. Each semantics amounts to define sets of acceptable argu-
ments, called extensions. Before recalling those semantics, let us first intro-
duce the two basic properties underlying them, namely conflict-freeness and
defence.

Definition 4 (Conflict-free, Defence). Let F = (A, R) be an argumentation
framework and £ C A.

e & is conflict-free iff # a, b € B such that aRb.

e & defends an argument a iff for all b € A such that bRa, there exists
c € B such that cRb.

The following definition recalls the semantics proposed in [16]. Note
that other semantics refining them have been proposed in the literature.
However, we do not need to recall them for the purpose of our paper since
our approach remains valid for any semantics.

Definition 5 (Semantics). Let F = (A, R) be an argumentation frame-
work and £ C A is conflict-free.

e & is an admissible extension iff it defends all its elements.

e £ is a complete extension iff it is admissible and contains all the ar-
guments it defends.

e & is a grounded extension iff it is the minimal (for set inclusion)
complete extension.

& is a preferred extension iff it is a maximal (for set inclusion) ad-
mussible extension.

e & is a stable extension iff it attacks any element is A\ E.

Let Ext(F) denote the set of extensions of F under a given semantics.

Example 1 (Cont): The grounded extension of Fj is {b}. This extension
is also its unique preferred and stable extension.

Example 2 (Cont): The argumentation framework F5 of Example 2
has an empty grounded extension. However, it has three stable/preferred
extensions: & = {a1,a2,a4}, E2 = {az,as3,a5} and & = {a1, a3, as}.



Example 3. Let us consider the argumentation framework Fs depicted in

the figure below.
(@D—0©

F3 has two preferred and stable extensions: {a,c} and {b,d}. Its grounded
extension is the empty set.

The extensions are used for defining the status of each argument. An
argument may be either skeptically accepted if it belongs to all the exten-
sions of the framework, or credulously accepted if it belongs to at least one
extension, or rejected if it does not belong to any extension.

Definition 6. Let F = (A, R) be an argumentation framework and Ext(F)
its set of extensions (under a given semantics). Let a € A.

e a is skeptically accepted iff Ext(F) # (0 and VE; € Ext(F), a € &;.
e a is credulously accepted iff 3&; € Ext(F) such that a € &;.
e a is rejected iff VE; € Ext(F), a ¢ &;.

Let Status(a, F) be a function that returns the status of an argument a € A
in a framework F.

Example 1 (Cont): In Fj, the argument b is skeptically accepted while
a is rejected under grounded, stable and preferred semantics.

Example 2 (Cont): The six arguments of F; are all credulously accepted
under stable and preferred semantics, and are all rejected under grounded
semantics.

Example 3 (Cont): In F3, the four arguments a, b, c,d are credulously
accepted under stable and preferred semantics, whereas they are all rejected
under grounded semantics.

3. The roles of preferences in argumentation

In this section we investigate the different roles that preferences between
arguments may play in an argumentation framework. For each identified



role, we propose a framework that handles it properly. Although some
properties in this section may look trivial, which is sometimes actually the
case as their proofs follow very simple ideas, we state them explicitly in
order to show that the system we propose is well-founded. It is also worth
mentioning that some of these simple properties are not satisfied by some
existing preference-based argumentation frameworks.

In what follows, we assume that F = (A, R) is an arbitrary argu-
mentation framework where A is finite. Let > be a binary relation that
expresses preferences between arguments of A. Throughout the paper, the
relation > C A x A is assumed to be a preorder, i.e., reflexive and transitive.
For two arguments a and b, writing a > b (or (a,b) € >) means that a is at
least as strong as b. The relation > is the strict version of >. Indeed, a > b
iff @ > b and not (b > a). Finally, a = b iff a > b and b > a. Examples
of such relations are those based on the certainty level of the formulas of a
propositional knowledge base X. For two formulas x and y, writing z > y
means that x is at least as certain as y. We also use the notation x >y
iff > gy and not y > x. If ¥ is equipped with a total preorder >, then
it is stratified into X7 U ... U X, such that formulas of ¥; have the same
certainty level and are more certain than formulas in ¥; where j > ¢. The
stratification of ¥ enables to define a certainty level of each subset S of X.
It is the highest number of stratum met by this subset. Formally:

Level(S) = max{i | SNXE; # 0} (with Level(()) = 0).

The above certainty level is used by Benferhat, Dubois and Prade [32] in
order to define a total preorder on the set of arguments that can be built
from a knowledge base. The preorder is defined as follows:

Definition 7 (Weakest link principle [32]). Let ¥ = ¥, U ... UX, be
a propositional knowledge. An argument (H,h) is preferred to (H',h'), de-
noted by (H,h) >y, (H', 1), iff Level(H) < Level(H’).

Example 2 (Cont): Assume that ¥ = ¥; U 3y with ¥; = {2z} and
Yo = {z — y,—y}. It holds that Level({z}) = 1 while Level({—y}) =
Level({x — y}) = Level({x,~y}) = Level({—y,x — y}) = Level({z,x —
y}) = 2. Thus, a1 >y a2, a3, a4, as, ag while the five other arguments are
all equally preferred.

Let us now analyse the role that preferences between arguments can play
in an argumentation framework F = (A, R). We distinguish two roles:



1. To handle correctly the critical attacks in the framework.
2. To refine the evaluation of arguments.

Next subsections discuss in detail each of these roles, their links and how
they can be modeled.

8.1. Handling critical attacks

It has been pointed out in the literature that preferences play an impor-
tant role in argumentation. The idea is that strong arguments are protected
against attacks coming from weaker arguments. Let us consider the dialog
of Example 1 between an expert and a three-year old child. The argument
of the child clearly attacks the argument of the expert. However, this at-
tack should not win since the argument of a child is weak compared to the
argument of an expert. Such attacks conflict with the preference relation
between the arguments involved in the attacks. They will be called critical.

Definition 8 (Critical attack). Let F = (A, R) be an argumentation frame-
work and > C A x A. An attack (b,a) € R is critical iff a > b.

In existing literature like [6, 33, 18, 20], critical attacks are removed from
argumentation graphs and semantics are applied on reduced graphs. For in-
stance, in Example 1, the arrow from the argument b towards the argument
a is removed and Dung’s semantics are applied to the new graph.

While the idea seems meaningful, removing attacks from an argumentation
framework may lead to undesirable situations. Indeed, a reduced argu-
mentation framework may have a conflicting extension. In Example 1, re-
moving the arrow from b to a will lead to a new framework which has a
unique stable extension {a,b}. This extension is not conflict-free and this
contradicts the idea that extensions are coherent positions or points of view.
In logic-based instantiations of Dung’s framework, conflicting extensions will
lead to the violation of the rationality postulates discussed in [25, 34]. Let
us consider the framework F5 of Example 2. The arrow from as to ai is
deleted. It can be checked that the set {a1,a9,as,a5} is a stable extension
of the new graph. This extension is clearly not conflict-free. Worse yet, it
supports both the formula = (via the argument a;) and its negation -z (via
the argument as). This means that the framework violates the consistency
postulate.

Let us observe that argumentation frameworks that use symmetric at-
tack relations are not concerned by the problem described above since even if



an attack is removed, a second attack between the same arguments remains.
Thus, the extensions cannot be conflicting. One could say that the problem
is solved by using only symmetric attack relations. Unfortunately, this is not
possible. Indeed, it was shown in [35] that logic-based frameworks that use
a Tarskian logic [36] and symmetric attack relations violate the consistency
postulate. This is in particular the case when the knowledge base contains
at least one minimal conflict (e.g., {z,y,x — —y}). Thus, another solution
is needed.

The main reason behind the dysfunction of the existing approach is that
by removing an attack, a crucial information is lost. In what follows, we
propose a novel approach which palliates this limit. The idea is to keep all
existing information (arguments and attacks among them). We suggest to
modify the graph of attacks by inverting the arrow of any critical attack
instead of removing it. For instance, in Example 2, the arrow from as to
a1 is replaced by another arrow emanating from a; towards as. Even if
the argument a; does not attack the argument as (in the sense of R), it is
clear that both arguments cannot be taken together in the same extension.
Our approach amounts to taking the strong argument a; and discarding
as. The intuition behind this is that an attack between two arguments
represents in some sense two things: i) an incoherence between the two
arguments, and ii) a kind of preference determined by the direction of the
attack. Thus, in our approach, the direction of the arrow represents a real
preference between arguments. Moreover, the conflict is kept between the
two arguments. Dung’s acceptability semantics are then applied on the
modified graph.

Definition 9 (PAF). A preference-based argumentation framework (PAF)
is a tuple T = (A, R,>) where A is a set of arguments, R C A x A is an
attack relation and > is a (partial or total) preorder on A. The extensions of
T under a given semantics are the extensions of the argumentation frame-
work (A, R,), called repaired framework, under the same semantics with:

R, = {(a,b)|(a,b) € R and not (b > a)} U {(b,a)|(a,b) € R and b > a}.

Example 2 (Cont): In Example 2, we invert the arrow from as to a; and
obtain the following graph of the repaired framework.

()
DEEw)

10



The corresponding PAF has two stable extensions: & = {a1,a2,a4} and
&y = {a1,a3,a6}. We can see that the knowledge base ¥ contains three
maximal consistent sets: {z,z — y}, {z,—-y} and {-y,z — y}. Since
we supposed that x is stronger than the two other formulas, our framework
calculates the expected result, namely two stable extensions, both containing
an argument for z: one corresponding to the set {x,z — y}, and other to
{z,—y}. In Section 5, we precisely define a criterion which allows to see why
those two maximal consistent sets are better than the third one. In Section
6, we prove that there is a bijection between “the best” maximal consistent
sets and the extensions of argumentation framework we propose.

Remark: It is worth mentioning that a full aziomatics justification of our
solution is provided in [37].

Roughly speaking, one could say that in case of critical attacks, prefer-
ences (when they are strict) take precedence over attacks, in the sense that
they invert the arrows representing attacks. Let us now check whether the
same conclusion holds for non-critical attacks.

Example 4. Let us consider the argumentation framework Fy depicted in
the figure below.

OmO,

The set {c,d} is the only grounded, preferred and stable extension of this
argumentation framework. Thus, the two arguments ¢ and d are skeptically
accepted while a and b are both rejected.

Assume now that a > d and b > c. According to these preferences, it could
be argued that the set {a,b} is better than {c,d}. But let us take a closer
look at this situation. The argument c attacks a because some fact in a may
be challenged by the conclusion of c. Here, the fact that b is stronger than c
cannot protect a from c since neither b attacks ¢ nor c attacks b. The simple
fact that b is stronger than ¢ cannot protect a. Since a and ¢ are in conflict,
one must choose between them. The argument ¢ wins since it attacks a and
it is not attacked. Moreover, b and ¢ may be on completely different topics.

The same justification holds for choosing d and not b. Thus, one should
accept the set {c,d}.

Informally speaking, we could say that preferences do not take prece-
dence over attacks when they are not critical. Arguments a,b,c,d in the

11



previous example could be given by four witnesses such that ¢ attacks the
hypothesis of a and d attacks the hypothesis of b. The fact that witness b is
more reliable than ¢ should not be taken into account when reasoning about
the conflict between a and ¢, since argument b is on different topic.

From Definition 9, it is clear that if a PAF has no critical attacks, then
the repaired framework coincides with the basic one.

Property 1. Let T = (A, R,>) be a PAF. If R has no critical attacks,
then R, = R. Thus, the extensions of T are the extensions of (A, R) under
the same semantics.

This property shows also that when a PAF has no critical attacks, then
preferences do not play any role in the evaluation process.

Example 3 (Cont): Consider the framework F3 and assume that a > b
and ¢ > d. Note that there are no critical attacks. Thus, the corresponding
PAF has two stable extensions: {a,c} and {b,d}.

Example 4 (Cont): The attack relation has no critical attacks. Conse-
quently, the stable extension of the PAF is that of F4, namely {c, d}.

Our approach does not suffer from the drawback of the existing ones.
Indeed, it always delivers conflict-free extensions of arguments.

Property 2. Let T = (A, R,>) be a PAF and Ext(T) its set of extensions
under a given semantics. For all & € Ext(T), &; is conflict-free with respect

to R.

The fact of inverting the arrows of critical attacks in an argumentation
graph does not affect the status of arguments that are not related to the
arguments involved in those attacks. This means that our approach has no
bad side effects. Before presenting the formal result, let us first define when
two arguments are related.

Definition 10. Let F = (A, R) be an argumentation framework and a,b €
A. The arguments a and b are related in F iff there exists a finite sequence
ai,...,an of arguments such that n > 1, a; = a, a, = b and for all i =
1,...,n—1, either (a;,a;+1) € R or (a;t+1,a;) € R.

Property 3. Let T = (A, R,>) be a PAF. For all a € A such that b,c € A
with (b,c) € R is a critical attack and a is related with b, it holds that:

12



e Status(a, (A, R)) =Status(a, (A, R,)) (under preferred and grounded
semantics).

o If (A,R) and (A, R,) both have at least one stable extension, then it
holds that Status(a, (A,R)) = Status(a, (A, R;)) (under this seman-
tics).

Our approach privileges the strongest arguments of a PAF. Indeed, we show
that these arguments are skeptically accepted when they are not conflict-
ing. If such a strong argument is not skeptically accepted, then it is for
sure attacked (with respect to R) by another strongest argument. Before
presenting the formal result, let us define the strongest arguments (or the
top elements) with respect to a relation >.

Definition 11 (Maximal elements). Let O be a set of objects and > C
O x O is a preorder. The maximal elements of O with respect to > are
Max(0,>) = {o € O | o' € O such that o' > o}.

Property 4. Let T = (A, R,>) be a PAF such that > is total.
If Max(A, >) is conflict-free (with respect to R), then Va € Max(A,>) :

e a is skeptically accepted in T under preferred and grounded semantics.

e if T has at least one stable extension, then a is skeptically accepted
under stable semantics.

The following result shows that when the preference relation > is a lin-
ear order (i.e. reflexive, antisymmetric, transitive and complete), then the
corresponding PAF has a unique stable/preferred extension. Moreover, this
extension is computed in O(n?) time.

Property 5. Let T = (A, R,>) be a PAF such that R is irreflexive and >
is a linear order.

e T has exactly one stable extension.
o Stable, preferred and grounded extensions of T coincide.

o If |A| = n, then this extension is computed in O(n?) time.

2A preorder > on a set A is total iff for all a,b € A, a >bor b> a.

13



Note that if the attack relation is symmetric, our approach returns the
same results as those developed in [17, 18].

Property 6. LetT = (A, R,>) be a PAF. If R is symmetric, then Ext(T) =
Ext((A,R')) (under the same semantics) where

R' = {(a,b) | (a,b) € R and —(b > a)}.

We can also show that when the attack relation is symmetric, the extensions
of a PAF are a subset of those of its basic framework. This means that
preferences filter the extensions, i.e., help to select only the best ones.

Property 7. Let T = (A, R,>) be a PAF where R is symmetric. If € C A
is a preferred (stable) extension of framework T then & is a preferred (stable)
extension of (A, R).

This property does not hold in case the attack relation is not symmetric
as shown in the following example.

Example 5. The argumentation framework, Fs, depicted in the left side of
the figure below has a unique stable extension, {b,d}. Assume that a > b,
then the repaired framework is depicted in the right side of the same figure.
It can be checked that its stable extension is the set {a,c}.

OmOmOaOBNOROMON0)

The following result characterizes the extensions of (A, R) that are dis-
carded in a PAF when R is symmetric. The idea is that an extension is
discarded iff there exists an argument outside the extension which is strictly
preferred to any arguments with which it conflicts in the extension.

Property 8. Let T = (A, R,>) be a PAF such that R is symmetric, and
E C A. & is a stable extension of (A, R) but not of T iff Iz’ ¢ & such that
Vo € &, if tR2’, then 2’ > x.

When the attack relation is symmetric and irreflexive, the corresponding
PAF is coherent (i.e. its preferred and stable extensions coincide) and it has
at least one stable extension.

Property 9. Let T = (A, R,>) be a PAF. If R is symmetric and irreflez-
e, then:

e T is coherent.

e 7 has at least one extension.

14



3.2. Refining argumentation frameworks by preferences

In the previous subsection, we studied the case where the attack relation
and the preference relation of an argumentation framework are in conflict.
We have seen that in case of conflict, the preference relation should take
precedence. But do preferences play any role in systems with no critical
attacks? For instance, the argumentation framework F4 of Example 4 has
no critical attacks. Does it mean that the two preferences a > d ad b > ¢
are useless? In this section, we show that preferences play another role in
argumentation frameworks. They may be used in order to refine the result
of the PAF developed in the previous section. To put it differently, they
allow to choose some extensions among the set of extensions of the repaired
framework. Let us illustrate our ideas on the following example.

Example 3 (Cont): Recall that F3 has two stable extensions, {a,c} and
{b,d}, and the four arguments a,b, ¢, d are all credulously accepted. Let us
now assume that a > b and ¢ > d. Note that every element of {b,d} is
weaker than at least one element of the set {a,c}. Thus, it is natural to
consider {a,c} as better than {b,d}. This can be important in a decision
making problem. Assume that the extension {c,d} supports an option o;
while the extension {b,d} supports another option, say os. Since only one
option will be chosen at the end, the available preferences make it possible
to select 0.

The previous example shows that the extensions of an argumentation
framework can be compared on the basis of preferences between arguments.
Some extensions may thus be better than others. What is worth noticing
is that a refinement amounts to compare subsets of arguments. In Example
3, the so-called democratic relation, =4, is used for comparing the two sets
{a,c} and {b,d}. This relation is defined as follows:

Definition 12 (Democratic relation). Let A be a set of objects and >
C A x A be a partial preorder. For X, X' C A, X =4 X' iff Vo' € X'\ X,
Jz € X\ X’ such that x > 2.

There are several other relations which can be used to refine the results of
a PAF. For instance, the so-called elitist relation is defined as follows.

Definition 13 (Elitist relation). Let A be a set of objects and > C AxA

be a partial preorder. For X, X' C A, X =, X' iff Vo € X\ X/, J2’ € X'\ X
such that x > z'.
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Example 6. Consider the preference-based argumentation framework Tg with
attack relation as depicted in the figure below and suppose that a > b. The

@\

corresponding PAF returns two preferred (stable) extensions: & = {a} and
Ey = {b,c}. Relation =4 does not allow to compare those two sets, formally
—\(51 ~d 52) and —|(€2 ~d 51) However, E1 e E9.

We now provide an example where the converse situation holds.

Example 7. Let us study the PAF T; depicted in the figure below with a > d
and b > e.

Oww O
Op-©
©

The basic PAF returns two preferred (stable) extensions: £ = {a,b,c}
and & = {d,e}. According to democratic relation, £ »q4 E2, while =(&1 =,
52) and —|(52 te 51)

Note that the first phase, conflict resolution, is responsible for selecting
coherent (i.e. conflict-free) points of view which are complete enough in
order to attack other sets of arguments, or at least, to defend their own
arguments. The second phase, refinement, aims at choosing among those
points of view the ones containing the best arguments.

Let us now formally define a refinement relation, i.e., the basic properties
that such a relation should satisfy.

Definition 14 (Refinement relation). Let (A,>) be such that A is a set
of arguments and > C A x A is a (partial or total) preorder. A refinement
relation, denoted by =, is a binary relation on P(A)? such that:

3P(A) denotes the powerset of a set A.
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o = is reflexive

o > 15 transitive

o Forall C A, forall a,be A\E, if a > b then EU{a} » EU{b}

The two first conditions ensure that a refinement relation is a preorder.
This is important since a refinement relation plays the role of a preference
relation and should thus satisfy some basic properties like reflexivity and
transitivity. The third condition ensures a form of monotonicity. It states
that if an argument is strictly preferred to another argument, then this
preference is preserved by the refinement relation.

Property 10. Democratic relation and elitist relation are both refinement
relations.

So far, we have shown that preferences play two roles in a PAF: to handle
correctly critical attacks and to refine its results. The question now is what
are the links between the two roles? Is it possible that one of them sub-
sumes the other? Let us start by studying whether handling correctly critical
attacks is sufficient to return “refined” results. The answer is certainly nega-
tive since we have shown in a previous section that when a framework has no
critical attacks, the available preferences are completely useless. Thus, the
result of the framework may still need to be refined. The following example
shows that even after repairing R, we still need to refine the results.

Example 8. Let us consider the argumentation framework Fg depicted in
the left side of the following figure.

LI bd>

Assume that a > b, ¢ > d and b > e. The repaired framework corresponding
to (A, R,>) is depicted in the right side of the above figure. This latter has
two stable extensions {a,c} and {b,d}. According to the democratic relation
=4, it is clear that the first extension is better than the second one.

It is even more immediate to see that the refinement alone cannot solve
the problem of critical attacks. We illustrate this point by the following
simple example.
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Example 9. Let us consider the argumentation framework Fg depicted in

the left side of the figure below.

OmOmOm0

If we ignore the critical attacks and preferences, the framework Fg has
two stable/preferred extensions: {a,c} and {b,d}. Assume now that a > b
and a > d and d > c¢. When democratic relation =4 is applied, the set {a,c}
is preferred to {b,d}. However, this result is not intuitive. The reason is
that d defends itself against its unique attacker c. Thus, d should be accepted
and consequently, c¢ should be rejected, thus the expected extension would be:
{a,d}. Note that {b,d} cannot be an extension since b is attacked by a
stronger argument (a). On the right side of the figure, we see the framework
obtained by inverting the arrows of the critical attacks. This framework has
a unique stable extension which is the expected result {a,d}.

The conclusion is that taking in account of preferences is a two-steps
process which consists of:

1. Repairing the attack relation R by computing R.,.

2. Refining the results of the framework (A, R,) by comparing its exten-
sions using a refinement relation.

4. Rich PAFs

In this section we propose an abstract model that extends Dung’s argu-
mentation framework with preferences between arguments. The model inte-
grates both roles of preferences. Note that this is the first model that treats
the two roles of preferences together. It is also the first model that refines
the extensions of argumentation frameworks. The model is referred to as
rich preference-based argumentation framework.

Definition 15 (Rich PAF). A rich PAF isa tuple T = (A, R, >, =) where
A is a set of arguments, R C A x A is an attack relation, > C A x A is
a (partial or total) preorder and = C P(A) x P(A) is a refinement relation.
The extensions of T under a given semantics are the elements of Max(B, )
where B is the set of extensions (under the same semantics) of the PAF

(AR, >).
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From the previous definition, it is clear that the set of extensions of a
rich PAF is a subset of the set of extensions of its repaired framework (thus,
a subset of the set of extensions of PAF (A, R,>)). This means that a rich
PAF refines a PAF. Moreover, if the PAF has only one extension, then this
latter is the only extension of the rich PAF. Another case where a refinement
is not necessary is when the relation > is a linear order.

Property 11. Let T = (A, R,>,>) be a rich PAF and B be the set of
extensions (under the same semantics) of the repaired framework (A, R;).

e Max(B,>) C B.
o If|B| =1, then Max(B,>) = B.

o If R is irreflexive and > is a linear order, then Max(B,>) = B holds
for stable, preferred, grounded and complete semantics.

Example 1 (Cont): In this example, the PAF has a unique stable ex-
tension {a}. Thus, {a} is the unique stable extension of the rich PAF
({a,b},{(b,a)}, {(a,a), (b,b), (a,b)}, =) whatever refinement relation is used.

It is also easy to see that when a rich PAF has no critical attacks, then
the set of its extensions is a subset of the set of extensions of its basic version
(i.e. the version without preferences).

Property 12. Let T = (A, R,>,>) be a rich PAF such that R has no crit-
ical attacks. Preferred (resp. stable) extensions of T are exactly the elements

of Max (S, ») where S is the set of all preferred (resp. stable) extensions of
the AF (A, R).

Example 3 (Cont): Let us use the democratic relation »=4. In Fj,
there are no critical attacks (R, = R). The extensions of the rich PAF
are Max({{a,c}, {b,d}},=4) = {{a,c}}. Thus, {a,c} is the unique stable
extension of the corresponding rich PAF.

Example 4 (Cont): The PAF extending F; has no critical attacks.
Moreover, F4 has a unique stable/preferred extension. Thus, this is also the
unique stable/preferred extension of the corresponding rich PAF whatever
refinement relation is considered.

Example 8 (Cont): Recall that the repaired framework of 7g has two

19



stable extensions: {a,c} and {b,d}. Moreover, Max({{a,c}, {b,d}},=q) =
{{a,c}}. Thus, {a,c} is the unique stable extension of the rich PAF that
uses the democratic relation.

5. Coherence-based approach for handling inconsistency

Coherence-based approach for handling inconsistency in a propositional
knowledge base X follows two steps: At the first step, some subsets of X are
chosen. These subsets can be, for example, maximal for set inclusion con-
sistent subsets of the knowledge base [38]. At the second step, an inference
mechanism is chosen. This later defines the inferences to be made from .
An example of inference mechanism is the one that infers a formula if and
only if it is a classical conclusion of all the chosen subsets. Several works
have been done on choosing the subsets, in particular when 3 is equipped
with a (total or partial) preorder > (> C ¥ x ¥). Recall that when > is
total, X is stratified into ¥1U...UX,, such that Vi, j with ¢ # j, X,N3; = 0.
We suppose that 31 contains the most important formulas while 3, contains
the least important ones.

In [27], a knowledge base is equipped with a total preorder and the chosen
subsets privilege the most important formulas.

Definition 16 (Preferred sub-theory [27]). Let ¥ be stratified into ¥1U
...UX,. A preferred sub-theory is a set S = S1U...US,, such that Vk € [1,n],
S1U...USk is a mazimal (for set inclusion) consistent subset of ¥1U...UXy.

Example 2 (Cont): The knowledge base ¥ = ¥; U X9 with £; = {x}
and Y9 = {z — y, -y} has two preferred sub-theories: Sy = {z,z — y} and
82 = {.%', _'y}

Brewka [27] has shown that the preferred sub-theories of a knowledge
base ¥ are maximal (with respect to set inclusion) consistent subsets of X.

Property 13 ([27]). Each preferred sub-theory of a knowledge base 3 is a
maximal (for set inclusion) consistent subset of X.

The above definition has been extended to the case where X is equipped
with a partial preorder > [28]. The basic idea was to define a preference
relation on the powerset of . The best elements according to this relation
are the preferred theories , called also democratic sub-theories. The relation
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that generalizes preferred sub-theories is the democratic relation (see Defi-
nition 12). In this context, A is ¥ and > is the relation . In what follows,
> denotes the strict version of >. Thus:

Let $,8' C . 8=, 8 iff Vo' € &'\ S,3z € S\ &' such that z > 2.

Definition 17 (Democratic sub-theory [28]). Let ¥ be propositional
knowledge base and > C ¥ x 3 be a (partial od total) preorder. A democratic
sub-theory is a set S C X such that S is consistent and AS' C ¥ such that
S’ is consistent and S’ =4 S.

Example 10. Let ¥ = {x,~x,y, ~y} be such that ~x >y and -y > x. Let
S = {z,y}, So = {z,~y}, S3 = {—~x,y}, and Sy = {—x,~y}. The three
subsets So, S3 and Sy are the democratic sub-theories of X. However, Sy is
not a democratic sub-theory since Sq =4 S1.

It is easy to show that the democratic sub-theories of a knowledge base
Y. are maximal (for set inclusion) consistent subsets of X.

Property 14. Each democratic sub-theory of a knowledge base ¥ is a max-
imal (for set inclusion) consistent subset of 3.

6. Computing sub-theories with argumentation

We have already shown in [37] that the first role of preferences (i.e.
handling critical attacks) is sufficient to capture the preferred sub-theories
of Brewka by a particular argumentation framework. We now show that
our rich PAF generalises this result as it allows to recover the democratic
sub-theories. Recall that democratic sub-theories are a generalisation of pre-
ferred sub-theories. In Subsection 6.1, we recall the results about the link
with the preferred sub-theories. Subsection 6.2 presents new results which
generalise these results. The two instances (i.e., the two frameworks that
recover respectively preferred sub-theories and democratic sub-theories) use
all the arguments that can be built from ¥ using Definition 2 (i.e. the
set Arg(X)). Similarly, they both use the attack relation “Undercut” given
also in Definition 2. However, as we will see next, they are grounded on
distinct preference relations between arguments. The last component of a
rich PAF is a preference relation on the powerset of Arg(¥). Both instances
will use the democratic relation »=4. To sum up, for recovering preferred
and democratic sub-theories, we will use two instances of the rich PAF
(Arg(X), Undercut, >, =4). Before presenting the formal results, let us first
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introduce some basic properties.

It can be shown that when the preference relation > is a total preorder, then
the stable extensions of the PAF (Arg(X), Undercut, >) are all incomparable
with respect to the democratic relation >,.

Property 15. Let T = (Arg(X), Undercut,>) be a PAF. For all stable ex-
tensions € and E' of T with € # &', if > is a total preorder, then —(€ =4 &').

From the previous property, it follows that the stable extensions of
(Arg(X), Undercut, >) coincide with those of the rich PAF (Arg(X¥), Undercut,
>, =a).

Property 16. If > is a total preorder, then the stable extensions of (Arg(X),
Undercut, >, =4) are exactly the stable extensions of (Arg(X), Undercut, >).

Let us now introduce some useful notations.

Notations: Let a = (H,h) be an argument (in the sense of Definition 2).
The functions Supp and Conc return respectively the support H and
the conclusion h of the argument a. For § C X, Arg(S) is the set of
all arguments that may be built from & in the sense of Definition 2.
For &€ C Arg(X), Base(€) = |JSupp(a) where a € B.

The following result summarizes some useful properties of the above
functions.

Property 17.
e For any consistent subset S C 3, we have S = Base(Arg(S)).
e For any € C Arg(X), we have £ C Arg(Base(E)).

Another property that is important for the rest of the paper relates the
notion of consistency of a set of formulas to that of conflict-freeness of a set
of arguments.

Property 18. If “Undercut” is used as attack relation, then for every S C
Y we have that S is consistent iff Arg(S) is conflict-free.

The following example shows that the previous property does not hold
for an arbitrary set of arguments.

Example 11. Let £ = {({z},z),{z — y},z = vy), {~y},~y)}. It is ob-
vious that & is conflict-free with respecct to “Undercut” whereas Base(E) is
not consistent.
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6.1. Recovering preferred sub-theories

In this subsection, we recall the results we proved in [37] and which show
that there is a full correspondence between the preferred sub-theories of a
knowledge base ¥ and the stable extensions of the PAF (Arg(X), Undercut,
>uwip)- Recall that the relation >, is based on the weakest link principle
and privileges the arguments whose the least important formulas are more
important than the least important formulas of the other arguments. This
relation is a total preorder and is defined over a knowledge base that is itself
equipped with a total preorder. According to Property 16, the stable exten-
sions of (Arg(X), Undercut, >,,;,) coincide with those of (Arg(X), Undercut,

Zwlp, td)

The first result shows that from every preferred sub-theory, it is possible
to build a unique stable extension of the PAF (Arg(X), Undercut, >).
The next three results come from [37]. However, we include their proofs in
the appendix since the reader may be interested in them.

Theorem 1 ([37]). Let ¥ be a stratified knowledge base. For all preferred
sub-theory S of %, it holds that:

o Arg(S) is a stable extension of (Arg(X), Undercut, >;)
e S = Base(Arg(S))

Similarly, each stable extension of (Arg(3), Undercut, >,,,) is built from
a unique preferred sub-theory of >.

Theorem 2 ([37]). Let ¥ be a stratified knowledge base. For all stable
extension € of (Arg(X), Undercut, > ), it holds that:

e Base(&) is a preferred sub-theory of ¥

o & = Arg(Base(&))

From the two above results, we see that there exists a one-to-one corre-
spondence between preferred sub-theories of ¥ and the stable extensions of
(Arg(X), Undercut, >p).

Theorem 3 ([37]). Let T = (Arg(X), Undercut, >u,) be a PAF over a
stratified knowledge base Y. The stable extensions of T are exactly the sets
Arg(S) where S ranges over the preferred sub-theories of X.
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From the above result it follows that the PAF (Arg(X), Undercut, > ;)
has at least one stable extension.

Corollary 1. If¥ has at least one consistent formula, then the PAF (Arg(X),
Undercut, >,,) has at least one stable extension.

Example 2 (Cont): Figure 1 shows the two preferred sub-theories of ¥
as well as the two stable extensions of the corresponding PAF. Note that
there are other arguments in £; as well as in &,.

Figure 1: Preferred sub-theories of ¥ vs. Stable extensions of (Arg(X), Undercut, >uip)

S1 &

So &

6.2. Recovering democratic sub-theories

Recall that the democratic sub-theories of a knowledge base ¥ general-
ize the preferred sub-theories when ¥ is equipped with a partial preorder
>. Thus, in order to capture the democratic sub-theories, we will use the
generalized version of the preference relation >,,;,, C Arg(X) x Arg(X). The
idea behind the new relation, denoted by >y, is that an argument is pre-
ferred to another if every formula used in the support of the former is strictly
preferred in the sense of &> to at least one formula in the support of the later.
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Definition 18 (Generalized weakest link principle [21]). Let ¥ be a
knowledge base which is equipped with a partial preorder . For two argu-
ments (H, h),(H', ') € Arg(X), (H,h) >guwip (H', 1) iff Vk € H, 3k" € H'
such that k> k' (i.e. k> k' and not (K' > k)).

Note that >4, as defined in [21], is not reflexive. This is not very
important in our case. If necessary, one could use its reflexive closure, which
would not change any of our results nor considerations.

It can be shown that from each democratic sub-theory of a knowledge
base ¥, a stable extension of (Arg(X), Undercut, > g,;,) can be built.

Theorem 4. Let ¥ be a knowledge base which is equipped with a partial
preorder . For all democratic sub-theory S of 3, it holds that Arg(S) is a
stable extension of (Arg(X), Undercut, > gup).

The following result shows that each stable extension of the PAF (Arg(X),
Undercut, >4,,) returns a maximal consistent subset of 3.

Theorem 5. Let ¥ be a knowledge base which is equipped with a partial
preorder . For all stable extension £ of (Arg(X), Undercut ,> gyip), it
holds that:

e Base(&) is a mazimal (for set inclusion) consistent subset of .
o £ = Arg(Base(f)).

The following example shows that the stable extensions of (Arg(X),
Undercut, >44,) do not necessarily return democratic sub-theories.

Example 10 (Cont): Recall that ¥ = {z, ~x,y, 7y}, ~z > y and —y > z.
Let S = {x,y}. It can be checked that the set Arg(S) is a stable extension
of (Arg(X), Undercut, >g,,). However, S is not a democratic sub-theory
since {—z, -y} =4 S.

It can also be shown that the converse of the above theorem is not true.
Indeed, a knowledge base may have a maximal consistent subset S such
that Arg(S) is not a stable extension of (Arg(X), Undercut, >gy). Let us
consider the following example.

Example 12. Let ¥ = {z,—z} and = > —x. It is clear that {-x} is a
maximal consistent subset of ¥ while Arg({—z}) is not a stable extension of
(Arg(X), Undercut, > guip)-
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The following result establishes a link between the ‘best’” maximal con-
sistent subsets of ¥ with respect to the democratic relation =4 and the ‘best’
sets of arguments with respect to the same relation >,.

Theorem 6. LetS,S" C X be mazimal (for set inclusion) consistent subsets
of . It holds that S =4 8" iff Arg(S) =4 Arg(S’).

We also show that from each democratic sub-theory of 3, one can build
a stable extension of the corresponding rich PAF, and each stable extension
of the rich PAF is built from a democratic sub-theory.

Theorem 7. Let ¥ be equipped with a partial preorder >.

e For each democratic sub-theory S of ¥, Arg(S) is a stable extension
of the rich PAF (Arg(¥), Undercut, > guwip, =d)-

o For each stable extension £ of (Arg(X), Undercut, > gyip, =a), Base(E)
is a democratic sub-theory of 3.

Finally, we show that there is a one-to-one correspondence between the
democratic sub-theories of a base ¥ and the stable extensions of its corre-
sponding rich PAF.

Theorem 8. The stable extensions of (Arg(X), Undercut, >gyip, =d) are
exactly the Arg(S) where S ranges over the democratic subtheories of 3.

Figure 2 synthetizes the different links between the democratic sub-
theories of a knowledge base ¥ and the stable extensions of its corresponding

PAF and rich PAF.

7. Related work

Introducing preferences in argumentation frameworks goes back to Simari
and Loui [6]. In that work, the authors defined an argumentation frame-
work in which arguments are built from a propositional knowledge base.
The arguments grounded on specific information are considered as stronger
than the ones built from more general information. This preference is used
to solve dilemmas between any pair of conflicting arguments. Thus, it is
used for handling critical attacks. The idea of this paper has been gener-
alized in [17, 18] to any argumentation framework and to any preference
relation. Unfortunately, these approaches deliver correct results only when
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Figure 2: Democratic sub-theories of ¥ vs. Stable extensions of (Arg(X), Undercut,

Zwlpy id)
Democratic table extensions of (Arg(X),
sub-theories of \\ / ( Undercut, > guip, =d)

/ \

Stable extensions of
(Arg(X), Undercut, >gy1p)

Maximal
consistent subsets of X

the attack relation is symmetric. When the attack relation is not symmet-
ric, the approach suffers from two main drawbacks: the first one is that it
may return conflicting extensions as shown in Example 1 since it may put
two conflicting arguments in the same extension. One of these arguments
is clearly undesirable. The second drawback is a consequence of the first
one. Indeed, since an undesirable argument may be accepted, then all the
arguments that are defended by this argument are accepted as well at the
detriment of good ones. Let us illustrate this issue on an example.

Example 5 (Cont): Let us consider the following arguments of Fj:
Expert: This violin is expensive since it was made by Stradivari (a).
Child;: This violin was not made by Stradivari (b).

Child,: This violin is very solid since it was made by Stradivari (c).

Child;: The violin is not interesting since it is not solid (d).

OmOmOaONNONOMONO

The corresponding argumentation framework is depicted in the left side of
the figure above. Assume that a > b. Using the PAF developed in [17] or the
VAF introduced in [18], one gets the framework depicted in the right side
of the same figure. Its grounded extension is the set {a,b,d}. This result is
incorrect for two reasons: The first one is that child; and the expert cannot
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be both right. It is natural to have the argument of the expert as accepted
while the argument b of the child as rejected. The second reason is that the
argument b (which should be rejected) defends d against ¢, leading thus to
an undesirable result. Indeed, d is defended by a “bad” argument! It is easy
to check that our approach returns {a,c} as the grounded extension and it
rejects the two arguments of Child;.

Our approach overcomes the limits of existing argumentation frameworks
which deal with preferences or values. Furthermore, it is more general since
it models even the second role of preferences (i.e., the refinement).

The first limit of existing models, namely the violation of conflict-freeness,
has been pointed out in [37]. The authors proposed a new approach for
handling critical attacks. It consists of defining a preference relation on the
whole powerset of the set of arguments. The best elements of this relation
are the extensions. The preference relation encodes the fact that an attack
is privileged when it is not critical while the preference takes precedence
when it is. Thus, that approach introduces preferences at the semantics
level while ours does that at the level of the attack relation. Indeed, we
repair this latter. It is worth mentioning that the approach in [37] neglects
the refinement. To the best of our knowledge, there is only one work on
refinement [23]. The authors proposed a particular refinement relation for
symmetric argumentation frameworks [39] that use stable semantics. In
this sense, our work is more general since it accepts any refinement relation.
Moreover, there is no restriction to particular semantics or to particular
attacks relations.

Modgil and Prakken proposed a preference-based argumentation frame-
work in [40]. The framework is an instantiation of Dung’s framework which
considers preferences between arguments and supposes the attack relation
which is the union of rebutting, assumption attack and undercutting. This
framework differs from our rich PAF in several aspects. First, it uses one
particular attack relation whereas our frameworks works with any attack
relation. Second, it only deals with one role of preferences: handling critical
attacks. Thus, it may return non-refined results. Hence, our framework is
richer since it captures both roles of preferences. Regarding the first role,
the framework of Modgil and Prakken presents two limitations: First, a lot
of complex conditions are assumed in order to ensure some basic properties
whereas our results hold for every argumentation framework. Second, the
authors solved the problem of critical attacks only for symmetric relations
like rebutting. However, undercutting may be in conflict with the preference
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relation and still always wins. Our approach is much more general and is
suitable for both symmetric and non-symmetric attack relations.

8. Conclusion

This paper has presented a comprehensive study on the role that prefer-
ences can play in an argumentation framework. Two roles are distinguished.
The first one consists of repairing the critical attacks. We have proposed
a new approach for modeling this role which overcomes the limitations of
existing approaches. The basic idea is to invert the arrow of each critical
attack instead of removing it. We have shown that such an approach is
well-founded. The second role of preferences consists of refining the results
of an argumentation framework. Indeed, we have shown that a refinement
amounts to compare (using a preference relation, called a refinement rela-
tion) the extensions under a given semantics of an argumentation framework.
It is clearly argued in the paper that the two roles are completely indepen-
dent and should be modeled in different ways and at different steps of the
evaluation process.

We have proposed the first abstract framework, called rich PAF, which
models the two roles. The idea is to repair first the critical attacks, then to
apply Dung’s acceptability semantics on the repaired framework, and finally
to apply a refinement relation on the extensions. In the general case, these
steps are mandatory; otherwise counter-intuitive results can be found.

We have also shown that the approach is well-founded since it allows
to recover well known works on handling inconsistency in knowledge bases,
namely the ones that restore consistency of knowledge bases. Indeed, we
have shown full correspondences between instances of the new rich PAF and
respectively the preferred sub-theories defined by Brewka in [27] and the
democratic sub-theories proposed by Cayrol, Royer and Saurel in [28]. It is
worth recalling that the same instance but without considering preferences
was already used by Cayrol in [41] for making a bridge between stable ex-
tensions of an argumentation framework and the maximal consistent subsets
of a propositional knowledge base.
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Appendix

Proof of Property 1. Follows directly from Definition 9.

Proof of Property 2. Let T = (A, R,>) be a PAF and £ one of its
extensions under one of the semantics recalled in Definition 5. Thus, £ is
conflict-free with respect to R,. Assume now that Ja,b € £ such that aRb.
There are two cases:

e b > a: In this case (b,a) € R,. This contradicts the fact that £ is an
extension, thus conflict-free.

e not b > a: In this case (a,b) € R,. This contradicts the fact that £ is
an extension, thus conflict-free.

Proof of Property 3. Let A, = {z € A | a and x are related in (A, R)}.
Let Ro = {(z,y) € R [ (z,9) € Aa x Aa}-

e Preferred semantics. We will first prove that for every preferred ex-
tension & of (A, R) there exists a preferred extension &’ of (A, R,) s.t.
ENA, =& NA,. Let € be a preferred extension of (A, R) and let
&, =ENA,. The set &, is conflict-free and admissible in (Ay, R,). It
is also admissible in (A, R,). Thus, there exists a preferred extension
E of (A, R,) st. €, C &' Let £ = &' N A,. Tt holds that &, C &/.
Let us prove that & C &!. By means of contradiction, suppose that
&, C &), Thus, since &, is admissible in (A, R) and (€ \ A,) is ad-
missible in (A, R) and those two sets do not attack one another, then
ELU(E\ A,) is admissible in (A, R). Contradiction with the fact that
€ is a preferred extension in (A, R). By using exactly the same rea-
soning, we prove that for every preferred extension &£ of (A, R, ) there
exists a preferred extension &£ of (A, R) s.t. ENA, =& N A,.
Suppose now that a € A, is rejected in (LA, R). This means that there
is no preferred extension & of (A, R) such that a € £. From the previ-
ous fact, there is no preferred extension &£ of (A, R,) s.t. a € £, so a
must be rejected in (A, R,). The same reasoning yields the conclusion
that the contrary is also true. By similar reasoning, we obtain that a is
credulous in (A, R) iff a is credulous in (A, R, ). From these two facts,
we conclude that a is skeptically accepted in (A, R) iff it is skeptically
accepted in (A, R;).

e Stable semantics. Throughout the proof, we suppose that there exists
at least one stable extension in (A, R) and that there exists at least one
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stable extension in (A, R,). We will first prove that for every stable
extension & of (A, R), there exists a stable extension £ of (A4, R;), s.t.
ENA,=ENA,.

Let £ be a stable extension of (A, R). Let & = €N A,. The set &, is
a stable extension of (A4, R,). Let £ be an arbitrary stable extension
of (A\ Az, Rr|a\4,) - it is easy to see that there must exist such an
extension. Then, £,U¢& is a stable extension of (A, R,). To prove that
for every stable extension £’ of (A, R,), there exists a stable extension
of (A, R) s.t. ENA, =& N A, is similar.

By using this property, we can easily see that the status of an arbitrary
argument x € A, is the same in (A, R) and (A, R,).

Grounded semantics. Let, for an arbitrary set S C A, F (S)( AR) =

{r e A| (Vy € A) if yRx then (32 € S) zRy}. Let .Fi(S)(A’R) —
i times

—

f(f(f(---(s)---)(A,R); We will prove by induction on ¢ that (Vi € N)

]:Z((D)(A,R) NA, = }"(@)(A,Rr) NA,.

— Base. Follows from the fact that non-attacked arguments in
}'i(@)( AR) N Ag are exactly the non-attacked arguments in
F (D) ar,) N Aa

— Step. Let F*(0)(a.r)NAa = F () (ar,)NAa- It is easy to see that
an arbitrary argument in A, is defended by F*(0)47)NA, if and
only if it is defended by F*(0)(4r,)NAa. Thus, F*1(0) 4 )N Aa
= fi—i_l(@)(A,RT) NA,.

By induction, (Vi € N) F/(0)(A,R) N A, = F(0)(A,R,) NA,. Let
us use the notation GE(A,R) for the grounded extension of argu-
mentation framework (A, R). It has been shown in [16] that GE(A, R)
= U2y FU(0)(A, R). Let j be such that F7(0)(A, R) = F/T1(0)(A,R)
and F7(0)(A,R,) = F/THD)(A,R,). From those facts, we have that
GE(A,R)NA, = GE(A, R,)NA,. This means that status of arguments
in A, do not change.

Proof of Property 4. Let Max (A, >) be conflict-free with respect to R and
let a be an arbitrary element of Max(.A, >). We prove that a is not attacked
with respect to R,. On the one hand, since Max(.A, >) is conflict-free, a could
only be attacked (with respect to R,) by some argument b not belonging to
Max(A,>), i.e. from an argument b such that ¢ > b. On the other hand,
from the definition of R,., we see that there can exist no arguments a,b € A
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s.t. bRra A a > b. So, a cannot be attacked by an argument b such that
a > b. Those two facts imply that (b € A) bR,a.

e Since a is not attacked, it is in the grounded extension and in all
preferred extensions of (A, R,).

e Let £ be a stable extension of 7 and suppose that a ¢ £. Since & is
stable, then it attacks with respect to R, any argument which does
not belong to £. Contradiction with the fact that a is not attacked in
T.

Proof of Property 5. Let us consider the following algorithm.

input:

A: set of arguments

R: attack relation

>=: preference relation

output:
in: the only stable/preferred/grounded ext.

out: rejected arguments with respect to those semantics

/* Put all arguments in und. */

in = {};
out = {};
und = A;

/* While und is not empty,
sort arguments from und to in and out. */
while (not (und == {}) {

/* Select the best argument in und,
and move it to in. */

let a be the only argument in the set
{x in und | for all x’ in und, x > x};
in = in union {a};

und = und - {a};

/* Since a is accepted, all arguments being

in conflict with it must be rejected. */
del = {x inund | x Ra or a R x};
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out = out union del;
und = und - del;
}

Let us prove that in is a stable extension of 7. It is clear that in is conflict-
free. Let 2’ ¢ in. From the previous algorithm, it is easy to see that there
exists x € in s.t. x > 2’ and (zRz’ or 2'Rx). In other words, xR,2’. Thus,
in is a stable extension of T .

Every stable extension is a preferred and a complete extension [16]. Thus,
in is a preferred and complete extension of 7.

Let us prove that in is the only complete extension. By means of con-
tradiction, suppose that £ C A, with £ # in is another complete extension.
Since none of the arguments of in is attacked (with respect to R;), it is clear
that every complete extension must contain those arguments, i.e., in C .
But, since in is a stable extension, it cannot be a proper subset of a complete
extension, contradiction. So, we have shown that in is the only complete
extension.

Grounded extension is exactly the intersection of all complete extensions
[16]. Hence, in is the grounded extension of 7.

Let us now prove that in is the only stable and the only preferred exten-
sion. Suppose not, thus there exists another stable or preferred extension
&, such that £ # in. Since we suppose that £ is stable or preferred, then
& is complete [16]. But we have already shown that in was a unique com-
plete extension, contradiction. Thus, in is the unique stable and preferred
extension of 7.

The while loop is executed at most n times, where n is the number of
arguments, and its execution contains at most n comparisons. Thus, algo-
rithm’s time complexity is O(n?).

Proof of Property 6. It is easy to see that when R is symmetric then
R, = R'. Thus, extensions of the two frameworks must coincide as well.

Proof of Property 7. It is easy to see that a set is a stable extension of
(A, R) iff it is a preferred extension of (A, R) iff it is a maximal conflict-free
set, since every maximal conflict-free set attacks all arguments in its exte-
rior in this framework. Let us now suppose that £ is a preferred (stable)
extension of 7. This means that £ is maximal conflict-free set in 7. It is
immediate that £ is maximal conflict-free in (A, R).

Proof of Property 8. Let £ C A be a stable extension of (A, R) which is

33



not a stable extension of 7. This can be true iff £ is a maximal conflict-free
set but that it is not stable in 7. Formally, (32’ ¢ &) (Az € £) 2R,2’. This
is equivalent to (32’ ¢ &) (Vax € £) —~(zR,2’). It is obvious that —(zR,2’)
is equivalent to 2R, 2’ = =’ > x.

Proof of Property 9. Property 6 shows that in the case when R is sym-
metric, extensions of 7 coincide with extensions of framework (A, R’), where
R’ is defined as in Property 6. Theorems 1 and 2 from [42] imply that T is
coherent and that it has at least one stable extension.

Proof of Property 10. We will first study the democratic relation =g4.
e From the definition of democratic relation we see that it is reflexive.

e Let us prove that democratic order is a transitive relation. Let X =4 Y
and Y =4 Z. We will prove that X =4 Z. Let z € Z\ X'. Let us study
two possible cases.

— Let z ¢ Y. Since Y =4 Z then (Jy € Y\ 2) st. y > 2. If
y € X then the proof is over. If it is not the case, then y € Y\ X.
So, (3x € X\ Y) s.t. > y. If © ¢ Z then the proof is over.
Ifz € X, x € Z and z ¢ ) then, since x € Z we have that
(Fy1 € Y\2) s.t. y1 >z Ify; € X, then wehavey; >z >y > 2
and the proof is over. If that is not the case, it must be that
y1 ¢ X. Thus, (3x; € X\ V) s.t. 1 > y1. If z1 ¢ Z, from the
transitivity of preference relation, we have zo > z. In the case
when z; € Z, since it is not in Y, we have that (Jy2 € Y\ 2Z)
s.t. yo > z1. From yo > y1, we have that ys # y;. Either we will
end the proof or we continue by constructing an infinite sequence
of different arguments y1,...¥yn,... while we supposed that Y is
finite. Contradiction.

—Let 2 ¢ X, z2€ )Y, z€ Z If (3x € X\ 2) st. x> z the
proof is over. Else, Jx s.t. € X NZ, x ¢ YV, > z. Then, it
must be that (Jy € Y\ Z) y > z. From the previous facts, we
have also that y ¢ X, since in that case, from the transitivity of
preference relation, we would have y > z, contradiction. Thus,
yg¢ X, ye)Y, y¢ Z. From all those facts and from X =4 Y,
dry € (XN Z)\Y st x> y. Similarly, 3y; € Y\ (XY U 2)
s.t. y1 > x1. It is obvious how an infinite sequence of different
arguments can be constructed, despite the fact that we supposed
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that the set A, and, consequently, the sets X, ), Z are finite.
Contradiction.

e The third property required by the definition of refinement relation is
trivially satisfied by >=g4.

Now, we prove that =, is also a refinement relation.
e It is trivial that the relation >, is reflexive.

e Let us prove that this relation is transitive. Let X >, Y and Y >, Z
and let us prove that X =, Z must hold. Let z € X \ Z. We study
two cases.

— 2 € Y. In this case, from Y =, Z, it holds that (32’ € Z\ )
st.x>2. It (37 € Z\Y) st. ¢ > 2 and 2/ ¢ X, the proof
is over. We now study the second possible case, the one when
(A2 € Z\ (X UY)) st. o> 2. Thus, (21 € Z\ V) s.t. > 2/
and z; € X. Since z; € X\ Y and X =, Y, then (Jy; € Y\ &)
s.t. z1 > y1. Note that transitivity of preference relation implies
that > y;. If y; € Z the proof is over. Else, let y; ¢ Z. Thus,
we have y; € Y\ (X U Z). From Y . Z, we obtain 320 € Z\ Y
s.t. y1 > z9. If 29 ¢ X, then the fact that > 29 ends the proof,
since it means that X >, Z. Else, z0 € X. By following this idea,
we will either find an element z € Z\ X s.t. x > z, which will end
the proof or we will construct the chain z; > 29 > 23 > ... which
contains infinitely many arguments. Contradiction with the fact
that A is finite.

— 2 ¢ Y. In this case, from X >, ), we have that (Jy € Y\ X) s.t.
x >y. If y € Z, the proof is over, since we obtain X >, Z. Else,
let y ¢ Z. Now, the rest of the proof is similar to the proof of
previous item.

e It is easy to see that the third item of Definition 14 is satisfied in the
case of =,.

Proof of Property 11. It is easy to see why the first and the second item
of this property hold. The third one follows from Property 5.

Proof of Property 14. Let S be a democratic sub-theory. From Defi-

nition 17, S is consistent. Assume now that S is not a maximal (for set
inclusion) consistent set. Thus, 3z € ¥\ S s.t. SU {z} is consistent. It is
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clear that SU{z} >4 S. This contradicts the fact that S is a democratic
sub-theory.

Proof of Property 15. Let £,&’ be two stable extensions of the system
(Arg(X), Undercut ,>). By means of contradiction, suppose & =4 £ with
E #E'. Ttis clear that ~(€ C &) and —~(£' C &). Let «’ € &\ € be such
that Va” € &\ € it holds that @’ > a” (this is possible since > is a total
preorder). From & >4 &', we have that Ja € £\ £’ s.t. a > a/. This means
that Vo' € &'\ &, a > b'. Since &' is a stable extension, then Ja’ € &’ s.t.
a'Rra, ie. (dRa and —(a > @) or (aRa’ and o’ > a). Sets £ and & are
both conflict-free, so a’ € £\ €. Contradiction, since Va' € £\ £ we have
a>d.

Proof of Property 18. Let S C 3.

e Assume that Arg(S) is not conflict-free. This means that there exist
a,a’ € Arg(S) s.t. a undercuts a’. From Definition 2 of undercut,
it follows that Supp(a) U Supp(a’) is inconsistent. Besides, from the
definition of an argument, Supp(a) C S and Supp(a’) € S. Thus,
Supp(a) U Supp(a’) € S. Then, S is inconsistent.

e Assume now that S is inconsistent. This means that there exists a
finite set 8" = {h1,..., hi} s.t.

-§8cCS
- Skl
— &’ is minimal (with respect to set inclusion) s.t. previous two
items hold.
Since &’ is a minimal inconsistent set, then {hy,...,hx_1} and {hs}

are consistent. Thus, ({h1,...,hg—1}, ~hi), ({hr}, hi) € Arg(S). Fur-
thermore, those two arguments are conflicting (the former undercuts
the latter). This means that Arg(S) is not conflict-free.

Proof of Theorem 1. Throughout the proof, we use the notation §; =
SNY;. Let S be a preferred sub-theory of a knowledge base Y. Thus, S is
consistent. From Property 18, it follows that Arg(S) is conflict-free. Assume
that a ¢ Arg(S). Since a ¢ Arg(S) and S is a maximal consistent subset of
¥ (according to Property 13), then 3h € Supp(a) s.t. SU{h} - L. Assume
that h € ¥;. Thus, Level(Supp(a)) > j.
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Since S is a preferred sub-theory of ¥, then S§;U...US; is a maximal (for
set inclusion) consistent subset of £;U...UX;. Thus, S;U...US;U{h} - L.
This means that there exists an argument o' = (§',-h), s.t. d' € Arg(S)
and 8’ C §1U...US;. Thus, Level(S’) < j. Consequently, a’ >, a. From
this fact, together with a/Ra, we obtain a'R,a.

The second part of the theorem follows directly from Property 17.

Proof of Theorem 2. Let X be a stratified knowledge base. Throughout
the proof, we will use the notation S; = S N'Y; and PST(X) denotes the
set of preferred sub-theories of . Let £ be a stable extension of (Arg(X),
Undercut, >,,,). Let S = Base(€).

e We will first show that S € PST(X). By means of contradiction, sup-
pose that S ¢ PST(X). If S is not consistent, then Property 18 implies
that & is not conflict-free. This contradicts the fact that £ is a sta-
ble extension. Thus § is consistent but it is not a preferred subtheory.
Consequently, there exists ¢ € {1,...,n} such that S;U...US; is not a
maximal consistent set in 1, ...,%;. Let ¢ be minimal s.t. S1U...US;
is not a maximal consistent set in Xq,...,3;. This means that there
exists ¢ ¢ S s.t. x € ¥; and S U...US; U{x} is consistent. Thus,
a = ({z},z) is an argument. Thus, (Ja € &) s.t. aR,a’. Since
S1U...US;U{z} is consistent then no argument in £ having level at
most 7 cannot be in conflict with a/. Thus, we have that fa € € s.t.
aR,a’, which proves that £ is not a stable extension. Contradiction.

e We will now prove that £ = Arg(S). Suppose the contrary. From
Property 3, £ C Arg(Base(£)), thus £ C Arg(Base(£)).

— Let us suppose that S is consistent. Since S is consistent, then
Property 18 implies that Arg(S) is conflict-free. Since we sup-
posed that £ C Arg(S), then & is not maximal conflict-free, con-
tradiction.

— Let us study the case when S is inconsistent. This means that
there can be found a set S’ = {h},...,h}} s.t.
*xS'CS
* S'H L
* &’ is a minimal s.t. the previous two conditions are satisfied.

Let us consider the set £ containing the following k arguments:
& ={a},...,a,}, where a} = (S’'\ h},—h}). Since (Vh, € §')(Fa €
&) s.t. k. € Supp(a) and since & is conflict-free then (b € &) s.t.

37



Conc(b) € {—h],...-h}}. Hence, (Va; € £') we have that a} ¢ £.
Formally, £ N £ = (). This also means that, with respect to R,
no argument in £ attacks any of arguments af, ..., a;. Formally,
(Va' € £")(Pa € €) s.t. aRa’. Since £ is a stable extension then
arguments of & must be attacked with respect to R,.. We have
just seen that they are not attacked with respect to R. This
means that:

(Vl S {1, e ,k:})(EIai € 5)(&;7?,&@) A (CLZ' > a;)
For undercuts to exist, it is necessary that:
(Vi € {1,...,k}) (ki € Supp(a;)) A (ai > az).

From (Vi € {1,...,k})a; > a}, we have that (Vi € {1,...,k})
Level(h;) < Level(a;) < Level(a}). This means that:

(Vi € {1,...,k}) Level(h}) < maxz;,Level(h)).

Let I; = Level(h}), for all ¢ € {1,...,k} and let [,,, € S’ be s.t.
Iy, = max{ly,...,lx}. Then, from the previous facts, we have:

ll < lm

I < mazx({li,...,lx} \ {ln})

lk < lm
The row m, ie. Il < maz({l1,...,lk} \ {lm}) is an obvious
contradiction since we supposed that [,, is the maximal value in

A

Proof of Theorem 3. Let 7 = (Arg(X), Undercut, >,y,) be an argu-
mentation framework built over a stratified knowledge base ¥. Let PST(X)
denote the set of preferred sub-theories of X.

e For all S € PST(X), Theorem 1 shows that Arg(S) € Ext(T).
e [t is easy to see that Arg is injective.

o Let £ € Ext(T) and let S = Base(£). From Theorem 2, we have
& = Arg(S). Theorem 2 yields the conclusion that S € PST(X). Thus,
Arg : PST(X) — Ext(7) is surjective.
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Proof of Theorem 4. Let us denote the set of democratic sub-theories
by DMS(X). Let & = Arg(S) and let z > 2’ iff x > 2’ and not 2’/ > z. From
Property 18, we see that £ is conflict-free. We will prove that it attacks
(with respect to R,) any argument in its exterior. Let a’ € A\ € be an
arbitrary argument. Since o’ ¢ £ then 3h' € Supp(d’) s.t.h' ¢ S. From
S € DMS(X) we have that S is a maximal consistent set. It is clear that
SU{NW} F L. Let us identify all its minimal conflicting subsets. Formally,
let C1,...,C) be all sets which satisfy the following three conditions:

1. ¢;CS

2. C; U {h/} L

3. C; is minimal (with respect to set inclusion) s.t. the two previous
conditions are satisfied.

Those sets allow to construct the following k arguments: a; = (Cy,=h'), ...,
ar = (Ck,—h'). Tt is obvious that all of them attack o’ with respect to R.
If at least one of them attack a’ with respect to R,., then the proof is over.
By means of contradiction, suppose the contrary. This would mean that
Vie{1,...,k}, d > a;. Thus, (Vi € {1,...,k}) (3h; € C;) s.t. K> h;. In
other words, for every argument a;, there exists one formula h; € Supp(a;),
such that ' > h;. Let H = {hq,...,hs}.

Now, we can define a set S as follows: &' =SU{h'} \ H. We see that &' is
consistent. We can also notice that '\ & = {#'} and S\ &' = {hq,..., hi}.
Since &' is consistent, we see that &’ = S. Contradiction with S € DMS(X).

Proof of Theorem 5. Let 7 = (Arg(X), Undercut, >4,,) be an argu-
mentation framework built over a knowledge base Y. Let £ be a stable
extension of 7 and let S = Base(£).

e Let us suppose that S is consistent but that it is not a maximal con-
sistent set. This means that 3h € ¥\ S s.t. S U {h} is consistent.
From Property 18, &' = Arg(S U {h}) is consistent. From Property 3,
E C &'. The same result implies that £ # &'. Thus, £ C &', which
means that £ is not a maximal conflict-free set. Contradiction with
the fact that £ is a stable extension.

e Suppose now that S is inconsistent. This means that there can be
found a set S" = {h},... , hL} s.t.

-§cCS
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— &’ is a minimal s.t. the previous two conditions are satisfied.

Let us consider the set £ containing the following k arguments: £ =
{d},...,a}}, where a] = (S"\ h},—-h}). Since (Vh, € §')(Ja € €) s.t.
R. € Supp(a) and since £ is conflict-free then (#b € &) s.t. Conc(b) €
{=h!,...=h}}. Hence, (Va, € &) we have that a; ¢ £. Formally,
ENE = (. This also means that, with respect to R, no argument in
& attacks any of arguments a},...,a,. Formally, (Va’' € &)(fa € &)
s.t. aRa'. Since £ is a stable extension then arguments of £ must
be attacked with respect to R,. We have just seen that they are not

attacked with respect to R. This means that:

(Vi e {1,...,k})(Fa; € E)(a;Ra;) A (a; > a}).
For undercuts to exist, it is necessary that:

(Vi € {1,....k}) (ki € Supp(a;)) A (ai > a).

For i = 1, we have: 3i; € {1,...,k} s.t. hy> hy. For i = iy, we
have that Jiy € {1,...,k} s.t. hy, > hyy, thus, hy > h;, > hy,. After k
consecutive applications of the same rule, we obtain: hy>h;, >...>h;, .
It is clearly a contradiction since on one hand, all the formulas in the
chain are different because of the strict preference between them, and,
on the other hand, set {h1,...,h;} contains k formulas, thus at least
two of them in a chain of k + 1 formulas must coincide.

This ends the first part of the proof. Let us now prove that £ = Arg(S).
From Property 3, we have that £ C Arg(S). Suppose, by means of contra-
diction, that & C Arg(S). Since S is a maximal consistent set then Property
18, we have that Arg(S) is conflict-free. This means that £ is not a maximal
conflict-free set, contradiction.

Proof of Theorem 6. Let S,S8’ C ¥ be maximal (for set inclusion) con-
sistent subsets of X.

(=) Let S§ =4 S’ Let a/ € &\ €. Then 31’ € Supp(d’) s.t. ' € S\ S.
Since § =4 &’ then 3h € S\ &' s.t. A k. Let a = ({h},h). Tt is clear that
ac€S\S and a > da'. Thus, € =4 &

() Let £ =4 & Let ¥ € 8'\'S. Then o’ = ({W'},h') € &\ €. Thus,
da e E\E st. a>d. Since a € £\ &, then Ih € Supp(a) s.t. he S\ S
It is clear that h>h'.
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Proof of Theorem 7. Let us denote the set of democratic sub-theories by
DMS(X).

e From Theorem 4, we have that £ = Arg(S) is an extension of a basic
PAF (A, R,>). We will prove that it is also an extension of a rich PAF
(A, R,>,>4). By means of contradiction, suppose the contrary, i.e.
suppose that there exists £ s.t. £ is a stable extension and & =4 €.
Let &' = Base(&’). From Property 5, we have that &' is maximal
consistent set and from Property 6 that S’ =; S. Contradiction.

e Property 5 implies that S is a maximal conflict-free set. Suppose that
S ¢ DMS(Y). This means that 38’ C ¥ s.t. &’ € DMS(X) and &’ =4 S.
From Theorem 4, £ = Arg(S’) is a stable extension of a basic PAF.
Property 6 implies that & =4 £, contradiction.

Proof of Theorem 8.

Let us denote Ext(7) the set of all extensions of a rich PAF 7 and DMS(X)
the set of democratic sub-theories of 3. We will prove that Arg : DMS(X) —
Ext(7) is a bijection.

o Let S € DMS(X), Theorem 7 shows that Arg(S) € Ext(T).
e [t is easy to see that Arg is injective.

o Let £ € Ext(7) and let S = Base(£). From Theorem 5, we have
& = Arg(S). Theorem 7 yields the conclusion that S € DMS(X). Thus,
Arg : DMS(X) — Ext(7) is surjective.
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