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Abstract. The question whether Dung’s abstract argumentation theanybe
instantiated with classical propositional logic has draveconsiderable amount
of attention among scientists in recent years. It was shoy@dyrol in 1995
that if direct undercutis used, then stable extensions of an argumentation system
correspond exactly to maximal (for set inclusion) consisseibsets of the knowl-
edge base from which the argumentation system was coreticudntil now, no
other correspondences were found between the extensiars afgumentation
framework and its knowledge base (except if preferenceslaegiven at the
input of the system). This paper’s contribution is twofdfitst, we identify four
intuitive conditions describing a class of attack relasiovhich return extensions
corresponding exactly to the maximal (for set inclusiomsistent subsets of the
knowledge base. Second, we show that if we relax those d¢onsljtit is possible
to instantiate Dung’s abstract argumentation theory wltissical propositional
logic and obtain a meaningful result which does not corredpim the maxi-
mal consistent subsets of the knowledge base used for notisyr arguments.
Indeed, we define a whole class of instantiations that retifferent results. Fur-
thermore, we show that these instantiations are sound Bettige that they satisfy
the postulates from argumentation literature (e.g. ctersiy, closure). In order
to illustrate our results, we present one particular inggion from this class,
which is based on cardinalities of minimal inconsistens seformula belongs to.

1 Introduction

The question how to reason in presence of inconsistencyas thre keywords of logic
and artificial intelligence. A notable example are paraisiest logics [11] where one
is able to draw some (but not all) conclusions from an incstesit set of formulae. As
another example take belief revision, belief merging omg{8]. Generally speaking,
an inference relation is a way to go from a (possibly incdesi knowledge base to a
set of subsets of that knowledge base. For example, giveowl&dge basgy, —p A
¥}, an inference relation could return two sefgi} and{—¢ A }. One of the simplest
inference relations is a function returning the set of allximeal (for set inclusion)
consistent subsets of a knowledge base. It has been showhmafghe result obtained
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by this inference relation can be also obtained by an insti@o of Dung’s abstract

argumentation theory [7]. Namely, whelirect undercutis used as attack relation on
the set of all the arguments built from a knowledge base, stwnle extensions of the
resulting argumentation framework correspond exacthéoset of maximal consistent
subsets of the knowledge base. This is the first result wiiolvs that Dung’s abstract
argumentation theory can be instantiated in a way to capiuieference relation.

An important question is whether Dung’s theory can be usedyg@mneral framework
for nonmonotonic logic, and if so, which class of inferenetations can be studied
as instances of Dung’s theory. Indeed, only a very smallnfraxgt of logics has been
represented in such a way. This may also not be very surgrigiven the richness of
the logic literature and the strong constraints imposed toyd™s theory. This raises two
important questions for the community. First, which clakbgics can be captured by
Dung’s theory? Second, how to generalize Dung’s theoryRitndaper we address the
first question, whereas the second question is a part of agrterm research agenda.

The starting point of our work is to note that since the firsufe[6] showing how
to capture an inference relation in Dung’s theory, not muchkahas been done in
this direction. Indeed, no “reasonable” logic-based im&ions of Dung’s abstract
theory were found that capture another inference relaBgrf'reasonable”, we mean
that they satisfy at least some basic postulates proposéustantiated argumentation
frameworks [5] like consistency, closure, and so on.

The challenges of this paper are: First, is it possible tcndefonditions that char-
acterize the circumstances when a semantics returns miecamsistent subsets under
subset relation? Second, how to define a class of attackoreddh terms of the knowl-
edge base such that the stable extensions of the obtaineth@ngation framework do
not correspond to exactly to the maximal for set inclusionsistent subsets of the
knowledge base? Third, how to ensure that those instam&tf Dung’s theory still
return a reasonable result?

The layout of this paper is as follows: After introducing thetions of argumen-
tation framework and formally defining its logic-based argtations (Section 2), we
identify four conditions describing a class of attack rielas returning extensions cor-
responding to maximal consistent subsets of a knowledge (&ection 3). Then, we
show that if two conditions are dropped, it is possible tdantiate Dung’s abstract
argumentation theory in a meaningful way and obtain a sobatly different result
(Section 4). The last section concludes and reviews queskidt for future work. The
proofs are omitted due to the space restrictions.

2 Dung’s Abstract Argumentation Theory and its Instantiation
with Classical Propositional Logic

In this section, we present the most common way of instangjddbung’s abstract ar-
gumentation theory [7] with classical propositional lagit denotes the set of well-
formed formulael- stands for classical entailment, asdfor logical equivalence. We
denote by}’ a finite set of classical propositional formulae from whichuanents are
constructed. We use the notatina(X’) for the set of all maximal (for set inclusion)



consistent subsets d&f, andMinConf (X) for the set of minimal (for set inclusion) in-
consistent subsets &f. A formulay is called a free formula of a knowledge basef
and only if does not belong to any minimal (for set inclusion) incorsissubset of
Y. A'logical argument is defined as a péitupport, conclusion).

Definition 1 (Argument). Let £ be a classical propositional language withits asso-
ciated logical consequence, I& C £ anda € £. An argument is a paif®, o) such
that® C X' is a minimal (for set inclusion) consistent set of formulaetsthatd - «.

Example 1.Let ¥ = {p,¢ = ¢, w}. ({p,0 = ¥} ¥), {¢ = ¥}, -9 V) and
({p, ¥}, ¢ + ) are some of the arguments that can be constructed fom

For an argument = (&, «), we write Supp(a) = @ to denote its support and
Conc(a) = arto denote its conclusion. For a set of argumeéhtse denote bgoncs(&)
the set of conclusions of all the arguments frénin other wordsg¢oncs(€) = {Conc(a)
| a € £}. Foragiven set of formulag C £, we denote byrg(S) the set of arguments
constructed front. Formally, Arg(S) = {a | a is an argument anflupp(a) C S}.
LetArg(L) denote the set of all arguments that could be made from pitigoee logic
formulae. For a given set of argumestswe denotease(&) = (J,. Supp(a). Now
we provide a definition of argumentation framework.

Definition 2 (Argumentation framework). An argumentation framework is a pair
(A, R) where A C Arg(L) is a set of arguments arl®@ C A x A a binary rela-
tion. For each pair(a, b) € R, we say that attacksh. We also sometimes use notation
aRb instead of(a, b) € R.

In the rest of the paper, we suppose that all the arguments ft@re constructed,
i.e. thatA = Arg(X). We now introduce the notions of conflict-freeness and defen
used to define different semantics.

Definition 3 (Conflict-free, defence).Let 7 = (A, R) be an argumentation frame-
work, & C Aanda € A.

— & is conflict-freeif and only if there exist no two argumentsh € € s.t.(a,b) € R
— & defends: if and only if for everyb € A we have that ibRa then there exists
¢ € & such thaicRb.

Let us now define the most commonly used acceptability seosant

Definition 4 (Acceptability semantics).Let F = (A, R) be an argumentation frame-
work andB C A. We say that a séf is admissiblef and only if it is conflict-free and
defends all its elements.

— B is acompleteextension if and only i defends all its arguments and contains
all the arguments it defends.

— Bis apreferrecextension if and only if it is a maximal (with respect to setuision)
admissible set.

— B is astableextension if and only i is conflict-free and for alb € A\ B, there
existsh € B such that R a.



— Bis asemi-stablextension if and only i is a complete extension and the union of
the set3 and the set of all arguments attacked®ys maximal (for set inclusion).

— Bis agrounded extensioifiand only if B is a minimal (for set inclusion) complete
extension.

— B is anidealextension if and only iB is a maximal (for set inclusion) admissible
set contained in every preferred extension.

For an argumentation framewoik = (A, R) we denote byExt,(F); or, by a
slight abuse of notation, Bkt (A, R) the set of its extensions with respect to seman-
tics . We use abbreviations p, s, ss, g andi for respectively complete, preferred,
stable, semi-stable, grounded and ideal semantics. Fon@ggExt, (F) denotes the
set of preferred extensions argumentation framewgrk

Example 2.Let F = (A, R) be an argumentation framework with= {a, b, ¢, d} and
R ={(b,¢),(c,b),(b,d), (c,d)}. The graph is visualised below.

@ ()
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There are three complete extensiofs:b}, {a, ¢} and{a}, and two preferred/ sta-
ble / semi-stable extensionsz, b} and{a, c}. The grounded extension of this frame-
work coincides with its ideal extension, which is the &e}.

We now introduce the most common ways in which attack retatare defined in
terms of (i.e. as functions of) the knowledge base in arguatiem literature [9].

Definition 5. For a set of formula& = {¢1,..., ¢k}, let A @ denotep; A ... A k.
Leta,b € Arg(L). We define the following attack relations:

— defeat aR b if and only ifConc(a) F — A Supp(b)

— direct defeataR 440 if and only if there exist® € Supp(b) s.t.Conc(a) - —¢
undercutaR,b if and only if there exist$ C Supp(b) such thaConc(a) =~ A P
direct undercutaR 4,,b if and only if there exist® € Supp(b) s.t.Conc(a) = —p
canonical undercutR.,,b if and only ifConc(a) = = /\ Supp(b)

rebut aR,b if and only ifConc(a) = —Conc(b)

— defeating rebutaR 4,0 if and only ifConc(a) - ~Conc(b)

Note that all the attack relations from the previous definitire defined ofirg(L£) x
Arg(L). For a givenY, one can just use the restriction of the relation friorg(L£) x
Arg(L) to Arg(X) x Arg(X). This is not the case with all the attack relations we
use in this paper. Namely, for some attack relations we Usmetexist arguments
a,b € Arg(L), such that whethet attacksb or not depends also on the knowledge



baseX. Formally, the more general case is when an attack relaidefined by spec-
ifying its behaviour on everyrg(X) x Arg(X') for every finiteX C L. In the rest of
the paper, when we use the term “attack relation”, we reféhéomore general case.
Formally, one should writéa, b, ) € R. However, since it is always clear to which
X7 we refer to, there is no danger of confusion and in order tgkfythe notation we
write (a,b) € R or aRb throughout the paper.

3 Some Hypotheses Leading to Maximal Consistent Subsets bt
Knowledge Base

In this section, we identify four simple and intuitive cotidins such that every instantia-
tion which satisfies all of them returns the extensions apwading exactly to maximal

consistent subsets of the knowledge base arguments arteLszied from. Namely, sim-

ilar to the principles that can be satisfied by an acceptgtsémantics [4], there exist
principles that an attack relation can satisfy [1, 5]. An @rtant requirement is that an
attack relation should return consistent extensions @t¥énedCE).

Definition 6 (CE). Let’R be an attack relation. We say thRtreturns consistent exten-
sions under semantiesif and only if for every®X C L, for everyF = (Arg(X),R),
for every extensio& of 7 under semantics, it holds thatBase(£) is a consistent set.

Example 3.R 4, andR 4, satisfyCE under stable, semi-stable, preferred, and complete
semantics, whered®,,, R.., R, R4, do not satisfyCE under neither of those seman-
tics [9].

Another requirement in logic-based argumentation is thatrgument should not
attack another one if the union of their supports is consisthis property of an attack
relation is called conflict-dependence [1] for what we useahbreviatior€D.

Definition 7 (CD). LetR be an attack relation. We say th&t is conflict-dependent if
and only if for everyX C L, for everya,b € Arg(X), if (a,b) € R thenSupp(a) U
Supp(b) - L.

Example 4.Attack relationsR 4, Ru, Rau, Reu, R, Ra» are conflict-dependent.

The next requirement specifies that the arguments havingaime support are at-
tacked by the same arguments. We call #tig"assumption attack”).

Definition 8 (AS). Let R be an attack relation. We say th& satisfiesAs if and only
if for every X’ C L, for everya, b, c € Arg(XY), if Supp(b) = Supp(c) thenaRb if and
only if aRec.

Note thatAs is already present in argumentation literature [3, 9].

Example 5.Attack relationsR 44, R, Raw @andR., satisfyAS, whereask,. and R,
do not.



The last property we consider in this paper specifies thahvaime constructs a set
Arg(S) containing all the arguments made from a maximal consiseettt, then every
argument outside dfrg(.S) is attacked by at least one argument frang(S). We call
the resulting conditiotS, which is an abbreviation telling that the intuition behihis
that any maximal consistent set should be stable.

Definition 9 (MS). Let R be an attack relation. We say th&t satisfiesus if and only
if for every X C L, for everyS € MC(X), for everya’ € Arg(X) \ Arg(S), there exists
a € Arg(S) such that(a,a’) € R.

To the best of our knowledge, this property was not formatyesi until now.
Example 6.Attack relationsR 44, R, Rau, Rey SatisfyMs.

Those conditions seem as properties one would like an atédaton to satisfy (at
least in some contexts). The goal of this section is to anshequestion: is it pos-
sible to define an instantiation of Dung’s theory that caggureasoning substantially
different from the approach which returns maximal consisseibsets and at the same
satisfieCE, CD, AS andMS? The answer is no, as shown by Proposition 3.

We start by defining a notion of independence of a set of foamulvhich is used to
describe the extensions of attack relations satisfyiigrhe idea is that no formula in
a set can be derived from other formulae of that set.

Definition 10 (Independent set of formulae)A setS C L is independent if and only
if there exists no formulg € S s.t.5\ {¢} F ¢.

Our first goal is to show that for the class of attack relatisassfyingAs, conclu-
sion of an argument has no impact on its acceptability. leotiords, the membership
to an extension is uniquely determined by argument’s suppormrove this result, we
need the following lemma.

Lemma 1. LetR be an attack relation satisfyings, let ' C £ be a knowledge base,
F = (Arg(X),R) and let€ C Arg(A) an admissible set. Let,b € Arg(X') be two
arguments such th&@upp(a) = Supp(b), a € £ andb ¢ £. Then,& U {b} is also an
admissible set.

We can now show that if two arguments have the same suppdrgraattack rela-
tion satisfyingAs is used, those two arguments are exactly in the same extmnsio

Proposition 1. Let R be an attack relation satisfyings, let X C £ be a knowledge
base,F = (Arg(X),R) and& € Ext,(F) withx € {s,ss,p, g,i}. Leta,b € Arg(X)
andSupp(a) = Supp(b). Thena € £ ifand only ifb € £.

We can now show that for attack relations satisfyitj every extension can be
characterised by a collection of sets of formulae.

Proposition 2. Let R be an attack relation satisfyings, let X C £ be a knowledge
base F = (Arg(X),R) and& € Ext,(F) withx € {s, ss,p, g,i}. Then: there exists
a unique collection of setS, ..., S, C X such that:



1. everys; is consistent
2. everysS; is independent
3. £ ={a € Arg(L) | there existsS; such thatSupp(a) = S;}.

The significance of the previous result lays in the fact that a step forward to-
wards understanding the expressivity of attack relatiatisfyingAS. Namely, is shows
that every extension can be fully characterised by a uniglleation of consistent and
independent sets. Roughly speaking, every attack relsgitisfyingAS provides us with
no more or less information than a function which separatésa finite number of col-
lections of consistent and independent sets.

We can now prove that if an attack relation satis@ieg, CD, AS andVMS, then its ex-
tensions are exactly the sets of arguments constructedrfraximal consistent subsets
of the knowledge base. In other words, for any maximal coasisubset of X, the
set of all arguments constructed frofnis an extension, and for any extension, there
exists a maximal consistent setC X' such that = Arg(S).

Proposition 3. Let R be an attack relation satisfyingg,, CD, AS andMS. Then, for
everyX C L, extensions ofArg(X), R) under stable semantics are exacflyrg(S)
| SeMc(X)}.

The previous result shows that the attack relations saig$f§E,, CD, AS andMS
simply mimic the result obtained by selecting the maximaisistent subsets of the
knowledge base. This proposition is proved under stabl@asgos, but we believe that
similar results can be obtained for other acceptabilityaains, which will be a part of
our future work.

4 A New Class of Instantiations: Beyond Maximal Consistent &ts

In this section, we show that if conditions andMS are dropped, it is possible to define
a new instantiation of Dung’s abstract argumentation thednich captures a result
different from maximal consistent subsets of a knowledgeebay and at the same
time: i) uses only the information from the knowledge base (o external data about
the preferences, values...), ii) and satisfies postulabes the argumentation literature
(e.g. consistency, closure).

In general, it is possible to go from a knowledge base to afsettensions in two
steps. First, we define a measure, attaching to each eleffreekihowledge base a value;
second, we define a procedure using that measure to calextetgsions. First, one can
define different measures on the set of formulae of a prapasit knowledge base.
Second, once we have a measure, there are still many waysftorgaghe knowledge
base and the measure to the sets of extensions. We can foplexayro define an attack
relation such that an extension contains the elements gpaminimal sum of values.
In this paper, we use the approach inspired by the work of Ardgmd Vesic [2]. The
idea is to construct an attack relation which makes extassiontain as much elements
having low values as possible, until a maximal consistebsstiof a knowledge base is
reached.



4.1 Shapley Inconsistency Value of a Formula

The main idea behind the class of instantiations we propodet the arguments made
from “less inconsistent” formulae have “more chance” tomextensions. This means
that we need a tool for indicating how inconsistent a set @rmfilae is. In this paper,
we use Shapley Inconsistency Values, introduced by Humeérkaonieczny [10], to
obtain that measure. This concept for measuring incomsigtis inspired by a Shapley
Value, which was originally developed by Shapley [12] fofidi@g merits of each
individual of a coalition in a cooperative game theory.

The idea behind the class of instantiations we proposeisithser is free to choose
a basic inconsistency measure, under the condition thatigfies the four properties
we state in the following definition. The corresponding Sbgpnconsistency Value
can then be calculated automatically. Thus, differentdiasionsistency measures give
different Shapley Inconsistency Values.

Note that we present only the most important concepts linketie definition of
a Shapley Inconsistency Value, for more details the readezferred to the paper in
which they were introduced [10].

Definition 11 (Basic inconsistency measure [10]A basic inconsistency measufe
is a function that for every finite set of formulae returns alreumber and satisfies the
following properties for all finite set&, ¥’ C £ and all formulaep, ¢ € L:

— I(X¥) =0ifand only if Y is a consistent set (Consistency)
- I(XuX)>1(%) (Monotony)

— If pis afree formula o U ¢, thenI (X' U ¢) = I(X) (Free Formula Independ.)
—Ifpkyandpt/ L, thenI(X U {p}) > I(X U{¢}) (Dominance)

A basic inconsistency measure gives a number indicatingdomilicting a knowl-
edge base is. Let us give an example of a basic inconsisteeagure.

Definition 12 (Ml inconsistency measure [10])TheMI inconsistency measure is de-
fined as the number of minimal inconsistent subsefs, éfe.

Iyr(¥) = | MinConf(XY) |

Example 7.Let ¥ = {¢, —p, » — ¥, ), w}. ThenMinConf(X) = {Cy,C2}, with
C1 = {p,~p}andCy = {p,p — ¥, }. Thus MI(X) = 2.

TheMI inconsistency measure is a basic inconsistency measure.

Originally, Shapley’s idea was to measure the merit of afviddal in a coalition.
Here, the idea is to use it to measure the “blame” of a formaidHe inconsistency of
a knowledge base. To do that, the identical mathematicakssfpn from Shapley [12]
is used, but with different interpretation.

Definition 13 (Shapley Inconsistency Value [10])Let X C £ and let] be a basic
inconsistency measure. We define the corresponding SHaptaysistency Value (SIV),
notedS’, as follows. For every € X:

spm = 3o BRI ) r(s o).

|2
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Beside the fact that this measure gives very sensible sediutias also been shown
that the previous formula is the only one which satisfies asattuitive axioms for
measuring inconsistency [10]. This SIV gives a value fotheflacmula of the basé.
Thus, the previous definition allows us to define to what ebdgiormula is concerned
with the inconsistencies. Note that for a formuyla SIV depends essentially on the
sum of differences of inconsistencies of all subset§' @bgether and withoup. Those
values are then just multiplied with coefficients which degphenly on the cardinalities
of the corresponding sets. So, the main intuition can bemeslun: “How much does
inconsistency decrease wheris removed?”

It has been shown [10] that the SIV corresponding to basigrisistency measure
MI Is:

som- Y L
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In other words, the inconsistency blame of a formulis obtained by summing up
the values%| for all minimal conflictsC' such thaty € C.

Example 8 (Example 7 Cont.yIV values of the formulae front’ are as follows:
Shvi(¥) =3, 8M1(x) = 1, Sizirw(g) =1, S%’(E) = 1, andSl¥1 (%) = 0.

On the one hand, this measure takes into account the faca tleainula being in
more minimal inconsistent sets is more inconsistent (whaoh be justified by saying
that to obtain consistency, one has to remove at least oneufarfrom every minimal
conflict, thus by removing a formula which is in more minimahdlicts, one obtains
consistency “faster”). On the other hand, this measurestake account the intuition
that, for example, a formula is in a minimal inconsistent lsating 1000 formulae
makes it “less inconsistent” than if it were in a minimal imsistent sets having 2
formulae.

HoweverMI is just one possible basic inconsistency value, which wegired in
order to illustrate the idea. In the rest of the paper, we egefthat an arbitrary basic
inconsistency measure and the corresponding SIV are used.

4.2 Defining Instantiations

In this section, we use the method for measuring inconsigtefia formula to define an
instantiation of Dung’s abstract argumentation theorpfise that we are given a basic
inconsistency measure. We can obtain the correspondin@8tMuse it to compare the
formulae of the knowledge base. We first define how to constrgtratified version of
a knowledge base, where the least inconsistent formulaer@ag to a given measure)
are putinXy and the most inconsistent onesiihy.

Definition 14 (Inconsistency ordered version of a knowledgbase).Let I be a basic
inconsistency measure, asd the corresponding SIV. Leéf C £ be a knowledge base.
The inconsistency ordered version Bf(with respect tal) is a n-tuple(Xo, ..., X,)
such that



- oU...uX, =X,
— foreveryi,j € {0,...,n},ifi # jthenX; N X; =0,
— for any two formulaep, ¢ € X' such thatp € X; andy € X5, we have

SL(X) > S,,(X) ifandonlyif i > j.

Example 9 (Example 8 ContJhe inconsistency ordered versionXfwith respect to
MLis: X = {w}, 21 = {p — ¥, "}, To = {-p}, X3 = {4}

This order induces a preference @h which can be used to define a preference
relation onArg(X). Let us first define a level of a formula and of an argument.

Definition 15 (Level of formulae and arguments).Let I be a basic inconsistency
measureS’ the corresponding SIV, Ief C £ be a knowledge base atidly, . .., X))
its inconsistency ordered version with respect téor a formulay € X,

level(p) =iifand onlyifp € X;.
For an argument: € Arg(X),
level(a) = MaTyesupp(a)level(y).
We can now define an attack relation taking into account thed &f formulae.

Definition 16 (Direct undercut on the ordered knowledge basg Direct undercut on
the ordered knowledge basgy, . .., X)) is a relationR 4, defined asaR 4,0 if and
only if (aRg4,b andlevel(a) < level(d)) or (bRqya andlevel(a) < level(b)).

As an illustration we consider again our running example.

Example 10 (Example 9 Contheta = ({—¢, o — ¥}, ~), b = ({¢}, ¢), andc =
({—¢}, ~¢). ThenaR4,b, level(a) = 1 andlevel(b) = 3. Thus,aR 4.,b. However,
even ifbR 4,,c, we do not have thdtR 4,,.¢, sincelevel(b) = 3 andlevel(c) = 2.

Attack relationR 4., satisfieCD.

Proposition 4. For any basic inconsistency measurand the corresponding SI¥”,
R duo 1S CD.

We can also show that it returns consistent extensions wdrneltlosed fot and
for sub-arguments

Proposition 5. LetI be a basic inconsistency measure a@dhe corresponding Shap-
ley inconsistency measure. LBt C £ be a knowledge base ardy, ..., X)) its in-
consistency ordered version. L&be a stable extension ¢frg(X'), Rguo). Then:

— Base(€) andConcs(€) are consistent sets
— Concs(€) is closed fort, i.e. for everyp € L, if Concs(€) F ¢ thenyp €
Concs(&),

1 We suppose the definition of sub-argument by Gorogiannid-amder [9].



— Eisclosed for sub-arguments, i.eqite £ andb is an argument such th&upp(b) C
Supp(a), thenb € £.

Note that by following the approach we describe in this sectone obtains a re-
finement of the approach returning extensions correspgrdithe maximal consistent
subsets of the knowledge base. Namely, if a basic inconsigtmeasure is used to
order the knowledge base, afj;,,, is then applied to calculate the extensions under
stable semantics, every extension corresponds to exawlynaximal consistent subset
of X7, but there are some maximal consistent subsefs which do not correspond to
any extensions. Proposition 6 shows that for every extensigere exists a maximal
consistent subset df corresponding to that extension. Example 11 illustrateddht
that there can exist maximal consistent sets which do nategmond to any stable
extensions.

Proposition 6. Let I be a basic inconsistency measure &fdthe corresponding SIV.
Let X C L be a knowledge base aridy, ..., X,) its inconsistency ordered version.
Then:

Exts((Arg(X), Rauwo)) C {Arg(S) | S e MC(X)}

Example 11 (Example 10 ContTjhe setS = {y, ¢ — ¥, w} is @ maximal consistent
subset ofX. Letd = ({-%},—). Itis clear thatd ¢ Arg(S). However, no argu-
ment fromArg(S) attacksd with respect toR,.,. There exists only one argument
e = ({e, ¢ — ¥}, ¢), such thake € Arg(S) andeR ., d, butlevel(e) > level(d),
thuse is more inconsistent thath and, according to the definition ®&,,,, does not
attackd.

We see from Propositions 4 and 5 thay,,, satisfiesCD andCE;. We now show
that this attack relation falsifigss andMS. To show thatR 4., falsifiesAS, consider the
following example.

Example 12.Let X' = {—p, 7 (¢ AY), o A}, and let us use thel inconsistency mea-
sure and the corresponding Shapley Inconsistency \&ltie. Then, X = {—p, ~(oA
)} andS; = {pAd}. Leta = ({—p},~¢). b= ({pAv}, @), ande = ({p A}, ).
Then,Supp(b) = Supp(c), but at the same tim&R 4,0 and—(aR guoc). ThUS, R guo
does not satisfys.

By examining Example 10 one can observe that no argumeckatiagument =
({—¢}, —¢p) in this example. Thusk 4., does not satisfys.

5 Summary

This paper advances the state of the art in instantiatinggBuabstract argumentation
theory in several ways. First, we identify four simple cdiudis describing a wide class
of attack relations based on attacking premises of an argtaviéch return extensions
corresponding to exactly maximal consistent subsets optbpositional knowledge
base. Second, we show that when two of the conditions arepdhit is possible to
instantiate Dung’s abstract argumentation theory witksital propositional logic and



to obtain a result substantially different from the extensiwhich correspond to max-
imal consistent subsets of the knowledge base, withoutnhagkternal information
such as preferences or values. We use Shapley Inconsistahms [10] to measure
inconsistency of a particular formula in the knowledge base use that value to define
attack relations which select extensions madiess inconsisterformulae. Third, we
show that this whole class of instantiations satisfies thalustionality postulates: its
extensions have consistent bases, they are closed forgubants, etc.

We identified a new class of inference relations that can p&icad in Dung’s the-
ory, which is a first step towards a better understanding s$ipdities and constraints
imposed by this abstract theory. Our next goal is to charigetéhe class of all inference
relations that can be represented in such a way.

To capture different results from simply returning the e@siens corresponding to
maximal consistent sets, we use an original attack relatitwch has several features
deserving some comments. First, this attack relation isdeéent on the knowledge
basel.. In other words, whether an argument attacks another ometae determined
without knowing what knowledge base they come from. Thisegisome conceptually
and technically interesting questions which will be parioaf future work. Second,
the procedure we use rank-orders arguments on the basisnef kind of preference
on the formulae in their supports. Our attack relation in eamay “simulates” what is
done in preference-based argumentation [2], and protesssihconsistent arguments
from more inconsistent ones. An important difference ig thahe present paper, we
do not suppose any preferences at the input of our systerhe Iptoposed class of
instantiations selects some maximal consistent sets aralraf them, it comes from
the fact that they have different degrees of inconsistency.

Obviously, the result of our work depends on the acceptgtsBmantics used for
evaluating arguments. Our main results were shown undelessgmantics. We plan
to examine whether similar results can be obtained under attmantics, and more
generally, to determine the role played by a semantics whptuang different results
as instantiations of Dung’s abstract theory. Our goal isudysa large class of semantics
satisfying some minimal requirements [4] (e.g. confligeiness, syntax independence).

This paper shows that the class of attack relations satigfy, CD, AS andMS is
rather narrow, in the sense that they always return a refaritical to that obtained from
maximal consistent sets of the knowledge base. Thus, if am@smo subsume richer
approaches, at least one of those four conditions has todppéd. For example, Sec-
tion 4 of the current paper uses attack relations satisfgingndCE and violatingAS
andVs. First, note that we present the first attack relation whiokatesAs and returns
sound results. Considering violatiMg, it does not seem surprising, since this condi
tion basically says that every maximal consistent set shgigld a stable extension.
Violating conflict-dependency and keeping some good ptaseof the system looks
like a difficult task, although we do not claim that is impdssi However, it would be
hard to justify attack relations returning extensions viftbonsistent bases. The only
possible explanation for that could be that argumentasaseen just as the first step
of some longer process, and it resolgesne(but not necessarily all) conflicts. Then,
another mechanism is used to reason with the set of obtaktedsons.
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