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Abstract. In this paper, we study a multi-agent setting in which each agent is
aware of a set of arguments. The agents can discuss and persuade each other
by putting forward arguments and counter-arguments. In such a setting, what an
agent will do, i.e. what argument she will utter, may depend on what she knows
about the knowledge of other agents. For example, an agent does not want to
put forward an argument that can easily be attacked, unless she believes that she
is able to defend her argument against possible attackers. We propose a logi-
cal framework for reasoning about the sets of arguments owned by other agents,
their knowledge about other agents’ arguments, etc. We do this by defining an
epistemic logic for representing their knowledge, which allows us to express a
wide range of scenarios.

1 Introduction

Argumentation is the interdisciplinary study of how conclusions can be reached through
logical reasoning. In the area of artificial intelligence, argumentation is usually seen as
a reasoning approach based on construction and evaluation of arguments. The work
of Pollock [10], Vreeswijk [16], and Simari and Loui [13] gave rise to other proposi-
tions on how to conceptualise this process. Nowadays, much research on the topic of
argumentation is based on the argumentation theory proposed by Dung [4]. It allows to
abstract from the origin and the structure of arguments, by representing an argumen-
tation system as a directed graph, whose vertices correspond to arguments and arcs to
attacks between them.

It is common that argumentation takes place between multiple agents, having dif-
ferent information and different goals. In such a setting, agents present arguments in
order to persuade other agents. Their goal is often to make a certain argument accepted
(or rejected). Some efforts were done in studying argumentation dialogues [11, 12] by
applying game-theoretic notions. However, those approaches do not allow for reasoning
about agents’ knowledge, which is one of the essential factors in such a setting and in-
fluences agent’s behaviour in a major way. For example, when deciding which argument
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to utter, an agent may take into account his beliefs about whether another agent has an
attacker of that argument. Moreover, an agent may want to reason about the knowledge
of another agent. For example: what should I do if he knows that I know that he does
not have an attacker of this argument?

In this paper, we define a logical framework for this setting.To do so, we use the
epistemic modal logic. We define a logic which allows to formalise a broad spectrum
of scenarios concerning the knowledge of agents in form of arguments (e.g. attacks
between them) but also the knowledge of agents about the knowledge of other agents,
and so on. We also provide a method to speak about the fact thatan agent is aware of
the existence of an argument.

The remainder of the paper is organised as follows. Section 2introduces the setting
and stresses the importance of the notion of awareness. Section 3 provides a logic to ex-
press beliefs about awareness. Section 4 extends this logicfor expressing beliefs about
the structure of the argumentation graph. Section 5 provides a solution for expressing
beliefs about properties of a given argument. The last section concludes.

2 Setting

Since we represent the basic knowledge of agents in form of arguments, we first intro-
duce the notion of an argumentation theory [4] which is used in our formalisation.

Definition 1 (Argumentation system).An argumentation framework is a pairA =
(A, ) whereA is a set of arguments and ⊆ A×A a binary relation. For each pair
(a, b) ∈ , we say thata attacksb. We will also sometimes use notationa  b instead
of (a, b) ∈ .

We model a situation where a set of agents{1, . . . , n} have different knowledge (in
terms of arguments) and beliefs (about the knowledge of other agents). We can model
this situation in abstract argumentation theory by representing the arguments and the
attack relation between them by what we will call abig argumentation framework.
We denote this framework byBAF = (AB, B). The big argumentation framework
contains all arguments relevant to a particular discourse.Here we may imagine, for
example, thatBAF is constructed from all available knowledge and beliefs on asubject
such as nuclear energy, and the issue of whether or not we should build more nuclear
power plants, or instead close them. The knowledge and opinions inBAF may come, for
example, from books, internet, scientific publications, but they may also be completely
personal to an agent. Agents are resource bounded and are, ingeneral, not aware of
all arguments that belong to theBAF. An agent is aware of only those arguments that
she has acquainted herself with, or that she has formed, in some way, on the basis of
personal considerations or a priori knowledge.

We can thus represent the knowledge of an agenti by a setAi ⊆ AB of argu-
ments. We assume, however, that all agents use the same logical language in order
to understand each other and that they agree on the attack relation. That is, for every
pair of argumentsa, b ∈ AB, all agents agree on whether or nota is a valid counter-
argument tob (or whethera attacksb). So we have a model where all arguments of a
particular discourse, and their attack relations, are represented by the big argumentation



frameworkBAF = (AB, B), and the knowledge of an agenti is represented by a set
Ai ⊆ AB. This induces, for an agenti, a framework(Ai, i), with i= |Ai

. Note
that the formalisation we use, namely the hypothesis that there exists a big argumen-
tation framework and that agents are aware of some argumentsfrom this framework is
already present in argumentation literature [11, 14]. In the rest of the paper, we develop
logics for reasoning in this setting.

3 The First Attempt of an Epistemic Argumentation Logic

In this section, we propose a framework for representing thefact that different agents
are aware of different arguments. LetAGT = {1, . . . , n} be a finite set of agents. The
language of this logic, denoted byL1 is generated by the following BNF:

ϕ ::= owns(i, a) | ¬ϕ | ϕ ∧ ϕ | Biϕ

wherei ∈ AGT is an agent, anda ∈ AB is an argument. For a finite setS ⊆ AB,

with S = {a1, . . . , ak}, we define an abbreviationowns(i, S)
def

= owns(i, a1)∧ . . .∧
owns(i, ak).

A formulaowns(i, a) means that agenti is aware of the argumenta. The meaning
of ¬,∧ and derived connectives∨,→,↔ are as usual. A formulaBiϕ means that agent
i believes thatϕ holds. Some examples of statements that we can express are:

– owns(1, {a, b, c})∧B1owns(2, {a, b}) (Agent 1 is aware ofa, b andc and believes
that agent 2 is aware ofa andb.)

– owns(1, {a})∧B1B2¬owns(1, {a}) (Agent 1 is aware ofa but believes that agent
2 believes he is not.)

The interpretation of the language is based on Kripke structures where states de-
scribe possible configurations of argument awareness for all agents. Formally, a state
w and an agenti map to a setDi ⊆ A, whereDi is the set of arguments that agent
i is aware of in statew. For every agenti, the accessibility relationRi captures the
‘considers possible’ relation. Formally:

Definition 2. AnL1-epistemic argumentation model is a Kripke structureM = (W,R,D)
where:

– W is a non-empty set ofstates;
– R maps each agenti to anaccessibility relationRi overW ;
– D maps each worldw and each agenti to a set of argumentsDi(w) such that:

1. for all agentsi, for all w, u ∈W , wRiu impliesDi(u) = Di(w).
2. for all agentsi, j, for all w, u ∈ W , wRiu impliesDj(u) ⊆ Di(w).

We use the familiar interpretation of belief by taking everyRi to be a KD45 relation
[8]. That is,Ri is

– serial:∀s ∈W, ∃t ∈W s.t.t ∈ Ri(s),
– transitive:∀s, t, u ∈ W , t ∈ Ri(s) andu ∈ Ri(t) impliesu ∈ Ri(s),



– and Euclidean:∀s, t, u ∈W , t ∈ Ri(s) andu ∈ Ri(s) impliest ∈ Ri(u),

The truth conditions are as follows:

– M, w |= owns(i, a) iff a ∈ Di(w);
– M, w |= Biϕ iff for all u ∈ Ri(w), we haveM, u |= ϕ;
– M, w |= ϕ ∧ ψ iff M, w |= ϕ andM, w |= ψ;
– M, w |= ¬ϕ iff it is not the case thatM, w |= ϕ

The two conditions from Definition 2 crucially capture our intuition behind aware-
ness of arguments, as described in the previous section. Thefirst condition says that
in every world an agent considers possible, she is aware of the same set of arguments
that she is aware of in the actual world. This condition corresponds to the following
‘argument awareness introspection’ axioms:

– owns(i, a) → Biowns(i, a);
– ¬owns(i, a) → Bi¬owns(i, a)

The second condition stipulates that, if an agent is not aware of an argument, she
believes that no agent is aware of that argument. This condition corresponds to the
following axiom:

– ¬owns(i, a) → Bi¬owns(j, a).

Figure 1 shows a modelM whereM, s |= owns(1, {a, b, c})∧B1owns(2, {a, b}).
Notice that agent 1 has no belief as to whether or not agent 2 knowsc, and agent 2 has
no beliefs as to whether agent 1 knowsa.

s
1 : {a, b, c}
2 : {a}

t
1 : {a, b, c}
2 : {a, b}

u
1 : {a, b, c}
2 : {a, b, c}

v
1 : {a}
2 : {a}

w
1 : {∅}
2 : {a}

1 1

11

2 2

22

Fig. 1.An L1-epistemic argumentation logic model.

We say thatϕ isL1-satisfiable iff there exists anL1-argumentation epistemic model
M and a worldw such thatM, w |= ϕ. The satisfiability problem of a formula ofL1

is the following decision problem:

– input: a formulaϕ ∈ L1;



– output: yes iff the formulaϕ isL1-satisfiable.

Having an algorithm to solve the satisfiability problem enables us to check consistency
automatically. We now study the computational properties of the satisfiability problem
of a formula ofL1.

Theorem 1. If there are more than 3 agents, the satisfiability problem ofa formula of
L1 is PSPACE-hard.

Proof. When there is more than three agents, we can embed the satisfiability problem
of KD452 into the satisfiability problem of a formula ofL1. Let ϕ be a formula of
KD452. Let i, j be two distinct agents such all agents appearing inϕ are in{i, j}. Letk
be a third distinct agent. We suppose the set of arguments to be the set of all propositions
appearing inϕ. We then define a polynomial translationtr from theKD452 language
toL1 as follows:

– tr(p) = owns(k, p);
– tr(Biϕ) = Bitr(ϕ);
– tr(Bjϕ) = Bjtr(ϕ).

We have thatϕ is KD45n satisfiable ifftr(ϕ) is satisfiable in an epistemic argumen-
tation model. Note that we must take care to verify the condition of Definition 2 in the
sense ‘left to right’. We need the extra agentk in order to be able to construct such a
epistemic argumentation model. Technical details are leftto the reader.

Theorem 2. The satisfiability problem of a formula ofL1 is in PSPACE.

Proof. We can embedL1 intoKD45n and call an optimal procedure forKD45n plus
distributed beliefwhich is in PSPACE [8]. Letϕ be a formula ofL1. Let m be the
modal depth of the formulaϕ. The embedding works as follows. We add also an oper-
ator calleddistributed beliefin the language, notedBdist. This operator enables us to
express the properties of Definition 3 up to the depthn with a formula of polynomial
size in the length ofϕ. The semantics is defined as follows:

– M, w |= Bdistψ iff for all i ∈ AGT, for all u ∈ Ri(w) we haveM, u |= ψ.

We denote byBdistχ the formulaχ∧Bdistχ∧B2
distχ∧· · ·∧Bmdistχ. It corresponds to

common knowledge up to leveln, wheren is the modal depth ofϕ. We then consider
tr(ϕ) as the conjunction ofϕ and the following formulas:

– Bdist(owns(i, a) → Biowns(i, a))
– Bdist(¬owns(i, a) → Bi¬owns(i, a))
– Bdist(¬owns(i, a) → Bi¬owns(j, a)).

In that way,tr(ϕ) imposes theKD45n-model to satisfy the properties of Definition
3 up to levelm. The formulaϕ is satisfiable in an epistemic argumentation model iff
the formulatr(ϕ) is satisfiable inKD45n plus distributed belief, where constructions
of the formowns(i, a) are considered as atomic propositions inKD45n.



4 Expressing Belief About Properties of Arguments

The formalisation presented until now is only the first step towards describing an argument-
based dialogue. There are still simple facts that cannot be expressed in the proposed
logic. For example, imagine a non-expert person having an idea in some area. She can
believe that her idea is interesting, and she is not aware of any attacker of her argument,
but she also believes that there is an argument (from an expert) attacking her argument.
The problem here is that to express a property about an argument one is not aware of.
The next example formalises this consideration.

Example 1.Let us consider the followingBAF:

a b c

Imagine that agent1 is not an expert and she has only argumentb. The framework
proposed in the previous section does not allow to representa situation in which she
has no beliefs about whether this argument is attacked or not. Namely, according to
Definition 2, for every modelM, for every worldw in M such that agent1 has exactly
the argumentb, i.e. whereD1(w) = {b}, for every worldu in M such thatwR1u, for
every agentj, it holds thata /∈ Dj(u). That is, in every world of every possible model
where agent1 is aware, agent1 believes thatb is not attacked.

The previous example shows the formalism from the previous section is not ex-
pressive enough since it cannot represent the situation where an agent believes that
there exists an attacker of one of her arguments, without being able to construct an at-
tacker herself. We start by defining a new language which is richer and allows to speak
about attacks between arguments. The solution we propose consists in mixing epistemic
modal logic (that we proposed in the previous section) and a logical framework to speak
about argumentation graphs, initially proposed by Grossi [7]. LetATM be a countable
set of atomic propositions. The new language is defined as a combination of those two
languages:

ϕ ::= 〈U〉ψ | ¬ϕ | ϕ ∧ ϕ | Biϕ
ψ ::= p | ¬ψ | ψ ∧ ψ | isarg(a) | ownedby(i) | [attacks]ψ | [is_attacked]ψ

wherep ∈ ATM , a is an argument of theBAF and i is an agent. We define the
languageL2 as the set of formulas obtained with the ruleϕ. ϕ-formulas are epis-
temic modal logic formulas expressing beliefs about facts.The construction〈U〉ψ is
read as ‘there exists an argument verifying the propertyψ’. Then aψ-formula de-
scribes the property of a given argument. Propositionsp are used to describe prop-
erty of arguments, as for instance ‘the current argument is about politics’. isarg(a)
states that the argument of which we speak now is argumenta. ownedby(i) means
that the current argument is owned byi. The construction[attacks]ψ means that all
arguments that the current argument attacks verify the property ψ. The construction
[is_attacked]ψ means that all arguments that the current argument is attacked by ver-
ify the propertyψ. We define the following abbreviations:〈attacks〉ψ = ¬[attacks]¬ψ
and〈is_attacked〉ψ = ¬[is_attacked]¬ψ.



Example 2.Now, we can say that agent1 does not have beliefs about whether argu-
ment b is attacked or not. We can write this as ’agent1 does not believe thatb is
attacked and agent1 does not believe thatb is not attacked’:¬B1(〈U〉(isarg(b) ∧
〈is_attacked〉⊤)) ∧ ¬B1(〈U〉(isarg(b) ∧ ¬〈is_attacked〉⊤)). As another example,
take the following formula which says that agent1 believes that there exists an argu-
ment about global warming owned by the second agent:B1(〈U〉(global_warming ∧
ownedby(2))). We can also say that agent1 does not have an attacker ofb but agent
1 believes that agent2 has an attacker ofb on the subject of global warming. It is written
as:
〈U〉(isarg(b)∧[is_attacked]¬ownedby(1))∧B1isarg(b)∧〈is_attacked〉(ownedby(2)∧
global_warming).

We now define how to interpret formulas of languageL2.

Definition 3. AL2−epistemic argumentation model is a Kripke structureM = (W,R,A)
based on aBAF = (AB, B) where:

– W is a non-empty set of epistemic worlds;
– R maps each agent to a serial, transitive and Euclidean relation overW ;
– A maps each worldw to a labelled argumentation graphAw = (Aw, w, Lw)

where:
• Aw is a finite subset ofAB ∪ {?0, ?1, . . . };
•  w⊆ Aw×Aw is a binary relation such that fora, b ∈ AB, a Bb if and only

if a w b;
• Lw is a map fromAw to 2AGT∪ATM .

Furthermore, we impose:

1. for all agentsi, for allw, u ∈W ,wRiu implies that{a ∈ Au ∩AB | i ∈ Lu(a)} =
{a ∈ Aw ∩AB | i ∈ Lw(a)};

2. for all agentsi, for all w, u ∈ W , wRiu implies that
{a ∈ Au ∩ AB} ⊆ {a ∈ Aw ∩ AB | i ∈ Lw(a)}.

An example of a model is depicted in Figure 2. The model is still a Kripke model but
now, each worldw contains an argumentation graphAw = (Aw, w). Each argument
of Aw is either an argument fromAB, or an element of a set{?0, ?1, . . . }. A “question
mark argument” denotes an argument the agent is not aware of,that is to say, they can
not argue by using it, but they can imagine its existence. Theidea is to represent facts
like “there is an attacker of argumenta” without being able to identify an actual attacker
of this argument. w is the attack relation inAw.  w is compatible with the attack
relation of theBAF in the following sense: if two argumentsa andb of theBAF appear in
the argumentation graphAw of the worldw, then the attack relation inAw is the same
as in theBAF. Intuitively, it says that there is no uncertainty concerning the attack of
arguments of theBAF [11].L is a valuation function that specifies the atomic properties
of a (this can be anything, for example a subject of an argument) and the agents that
own argumenta, for all argumentsa ∈ Aw. For example, in Figure 2, in worldsw and
u, argumentb, owned by agent1 is about global warming. Condition (1) and condition
(2) have the same meaning as condition (1) and (2) in Definition 2.

The truth conditions forϕ-formulas are defined as follows:



– M, w |= Biϕ iff for all u ∈ Ri(w), we haveM, u |= ϕ;
– M, w |= 〈U〉ψ iff there exists an argumenta ∈ Aw such thatAw, a |= ψ.

The truth conditions forψ-formulas are defined as follows:

– Aw, a |= p iff p ∈ ATM andp ∈ Lw(a);
– Aw, a |= isarg(b) iff a = b;
– Aw, a |= ownedby(i) iff i ∈ AGTandi ∈ Lw(a);
– Aw, a |= [attacks]ψ iff for all b such thata w b we haveAw, b |= ψ;
– Aw, a |= [is_attacked]ψ iff for all b such thatb w a we haveAw, b |= ψ;

Example 3 (Example 1 Cont.).The logicL2 is expressive enough to overcome prob-
lems of Example 1. Letα = ¬B1(〈U〉(isarg(b)∧〈is_attacked〉⊤))∧¬B1(〈U〉(isarg(b)∧
¬〈is_attacked〉⊤)). This formula says that agent1 does not have beliefs about whether
argumentb is attacked or not. LetM be the model from Figure 2, thenM, w |= α. This
means that in modelM and worldw, agent1 does not have beliefs about whether ar-
gumentb is attacked or not.

u

?0

∅

b

{1, global_warming}

w

b

{1, global_warming}
1

1 1

Fig. 2.An L2-epistemic argumentation logic model.

The languageL2 is a conservative extension of the languageL1. Indeed, we can
embedL1 intoL2 by preserving validities with the following translation:

– tr(owns(i, a)) = 〈U〉(ownedby(i) ∧ isarg(a)).

We define the notion ofL2-satisfiable formula. A formulaϕ is L2-satisfiable iff
there exists a big argumentation frameworkBAF = (AB, B) and aL2−epistemic
argumentation modelM = (W,R,A) based onBAF, and a world∈ W , such that
M, w |= ϕ. In the same way, we define the satisfiability problem ofL2.

Theorem 3. Even if there are no occurrences of arguments in the formula we want to
check, the satisfiability problem ofL2 is EXPTIME-hard.

Proof. The global satisfiability problem of modal logic K is defined as follows:

– input: two formulasϕ, ψ where there is only one modal operator�;



– output: yes iff there exists a pointed modelM, w for logic K such thatM, u |= ϕ
for all u ∈ W andM, w |= ψ.

It is EXPTIME-hard. We polynomially reduce the global satisfiability of logic K to
the satisfiability of a formula ofL2 in the following way:ϕ |=g ψ iff ¬〈U〉¬tr(ϕ) ∧
〈U〉tr(ψ) satisfiable wheretr(�ϕ) = [attacks]ϕ. So the satisfiability problem ofL2

is EXPTIME-hard. All of this works because of the presence of?-arguments.

Now, concerning the satisfiability problem ofL2, we have a tableau method deci-
sion procedure in [3] dealing with nominals (or arguments inour case), a K-operator�
(or [attacks] in our case) universal modality. In [1], the author explainsthat the satisfia-
bility problem of the hybrid logic where we add the converse operator and the universal
operator is EXPTIME-complete. In our case, it means that given finite setsA,B of
formulas of the form〈U〉ψ, checking whether

∧
〈U〉ψ∈A〈U〉ψ ∧

∧
〈U〉ψ∈B ¬〈U〉ψ is

satisfiable can be solved with an EXPTIME procedure. If we combine with a tableau
procedure forKD45n [8] we obtain the following result.

Theorem 4. The satisfiability problem ofL2 is in EXPTIME.

Proof. We give the idea of algorithm to solve the satisfiability problem ofL2. Let us
considerϕ ∈ L2. Let arg(ϕ) be the set of arguments that appear in the formulaϕ. We
add also an operator calleddistributed beliefto the language, denotedBdist, in order to
be able to express the properties of Definition 3. The semantics is defined as follows:

– M, w |= Bdistϕ iff for all i ∈ AGT, for all u ∈ Ri(w) we haveM, u |= ϕ.

We denote byBdistχ the formulaχ∧Bdistχ∧B2
distχ∧· · ·∧B

m
distχ. It corresponds

to common knowledge up to levelm, wherem is the modal depth ofϕ. We denote by
〈U〉SF (ϕ) the set of all subformulas ofϕ of the form 〈U〉ϕ. Let Att ∈ 2arg(ϕ)2 .
We defineTAtt(ϕ) as the following conjunction, which imposes the constraintof the
Definition 3 up to depthm:

– ϕ;

– Bdist((〈U〉isarg(a) ∧ ownedby(i)) → Bi(〈U〉isarg(a) ∧ ownedby(i))) for i ∈
AGT;

– Bdist((〈U〉isarg(a) ∧ ¬ownedby(i)) → Bi(¬〈U〉isarg(a))) for i ∈ AGT;

– Bdist([U ](isarg(a) → ¬isarg(b))) for all a, b ∈ A such thata 6= b.
– Bdist(〈U〉isarg(a) ∧ 〈U〉isarg(b)) → 〈U〉(isarg(a) → 〈attacks〉isarg(b)) for

all (a, b) ∈ Att;
– Bdist([U ](isarg(a) → [attacks]¬isarg(b)) for all (a, b) 6∈ Att;

Now we define the algorithm.



for Att ∈ 2arg(ϕ)2

for A,B ⊆ 〈U〉SF (TAtt(ϕ))
PROP [A,B] =
satsolver_KU,converse(

∧
〈U〉ϕ∈A〈U〉ψ ∧

∧
〈U〉ϕ∈B ¬〈U〉ϕ))

endFor
if (modified_KD45n_tableau_method(TAtt(ϕ), PROP ))

return sat
endIf

endFor
return unsat

We loop on all possible attack relationsAtt over arguments that appear in the for-
mulaϕ. Somehow, we browse all possibleBAF. Our aim is then to check ifTAtt(ϕ) is
satisfiable.

The first step consists in computing which subformulas ofTAtt(ϕ) of the form〈U〉ψ
are consistent. Thus, PROP [A,B] will contain ‘sat’ if∧

〈U〉ψ∈A〈U〉ψ ∧
∧

〈U〉ψ∈B ¬〈U〉ψ is satisfiable and ‘unsat’ otherwise. The procedure

satsolver_KU,converse is an EXPTIME procedure to solve the satisfiability problem
of K plus converse, plus universal modality and hybrid logic. Indeed, arguments are
considered as nominals (it is impossible to have two different nodes labelled by the
same arguments).

The second step is now to run a tableau method forKD45n logic on the formula
TAtt(ϕ). For that, we use the tableau method described in [8]. This tableau method runs
as usual for the Boolean connectives and beliefs operators but it considers formulas of
the form〈U〉ψ as atoms. We extend this tableau method with a new rule applied on a
nodew, when all the other rules have already been applied:

– LetA be the set of〈U〉ψ formula written in the nodew. LetB be the set of〈U〉ψ
such that¬〈U〉ψ. If PROP [A,B] is unsat, we close the current tableau branch.

This modified version of the tableau method runs in PSPACE⊆ EXPTIME. So the
global algorithm runs in EXPTIME. The proof of completenessand soundness of this
algorithm are classical.

5 Expressing Properties of Arguments Containing Belief

The logical language developed in Section 4 is powerful enough to enable to speak
about arguments without specifying them, but some facts about the framework we study
in this paper still cannot be expressed in it. Consider the following example.

Example 4.Agent i ownsa and believes that there exists an argument attacked bya
which is owned by agentk, but agentj believes that this argument is not owned byk.

LanguagesL1 andL2 do not allow to express statement from the previous example.
We now present a preliminary but promising approach for expressing properties

over arguments but also beliefs about those properties. Theapproach we present here is
inspired by other applied logics mixing:



– knowledge and time [5], [9]: the author speaks about momentsin time and knowl-
edge about properties of the moment;

– time and space [2]: the author speaks about evolution of objects in the time.

The languageL3 is defined by the following rule:

ϕ ::= p | isarg(a) | ownedby(i) | Biϕ | 〈U〉ϕ | [attacks]ϕ | [is_attacked]ϕ

wherep ∈ ATM , a ∈ AB and i ∈ {1, . . . , n} is an agent. InL3, we can mix
doxastic operatorBi and speaking about arguments. The reading ofBiϕ is now ‘agent
i believesϕ about the current argument’.

Example 5.The formula〈U〉(isarg(a) ∧ ownedby(i) ∧ Bi〈attacks〉(ownedby(k) ∧
Bj¬ownedby(k)) is inL3 and captures the sentence of Example 4.

Definition 4. F = (W,R) is a Kripke epistemic frame if and only ifW is a non-empty
set of possible worlds andR is a function mapping each agenti to a serial, transitive
and Euclidean relationRi overW . MA = (M,A, L) is a world/argument model if
and only if:

– M = (W,R), is a Kripke epistemic frame;
– A = (A, ) is an argumentation graph such thatA = AB ∪ {?0, ?1, . . . } such

that for all a, b ∈ AB, a Bb iff a b;
– L maps all couples(w, a) ∈ W ×A to elements of2AGT∪ATM .

The truth conditions are:

– MA, (w, a) |= p iff p ∈ ATM andp ∈ L(w, a);
– MA, (w, a) |= isarg(b) iff a = b;
– MA, (w, a) |= ownedby(i) iff i ∈ {1, . . . , n} andi ∈ L(w, a);
– MA, (w, a) |= Biϕ iff for all u ∈ Ri(w), we haveMA, (u, a) |= ϕ;
– MA, (w, a) |= 〈U〉ϕ iff there existsb ∈ A, we haveMA, (w, b) |= ϕ;
– MA, (w, a) |= [attacks]ϕ iff for all b ∈ A, a b impliesMA, (w, b) |= ϕ;
– MA, (w, a) |= [is_attacked]ϕ iff for all b ∈ A, b a impliesMA, (w, b) |= ϕ.

Example 6.Figure 3 shows a model for the formula from Examples 4 and 5, namely:
〈U〉(isarg(a)∧ownedby(i)∧Bi〈attacks〉(ownedby(k)∧Bj¬ownedby(k)). We con-
sider a model (on the right) built from the epistemic frame onthe left and theBAF in the
middle.

In previous sentence, the context is a couple(w, a) wherew is a possible epistemic
situation anda is an argument. Table 1 illustrates how to follow the nodes ofa graph in
Figure 3 when analysing the formula from our running example.

Note that this framework containsKD45×K. The satisfiability problem ofS5×K
is NEXPTIME-complete [6, page 339]. We conjecture that the satisfiability of the logic
KD45 × K is also NEXPTIME-complete so the satisfiability problem in our setting
may be NEXPTIME-hard.
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Fig. 3. A world / argument model.

Part of the sentence (syntax) context world/argument (semantics)
i ownsa and (w, a)
i believes that all(t, a) such thatwRit, in our case: only(u, a)
there exists an argumentx attacked bya... there exists(u, x) such thata x, here:(u, b)
agentj believes that ... all(t, b) such thatuRjt, in our case: only(v, b)

Table 1.A world / argument model.

6 Summary

In this paper, we provide three languages to deal with argumentation and beliefs. The
first one(L1) enables us to speak about beliefs about awareness of arguments. The
second one(L2) is a conservative extension ofL1 and enables to speak about beliefs
about the structure of the argumentation graph. The third logic (L3) enables to speak
about beliefs about a specific argument. The third logic has many promising features,
but is not a conservative extension ofL2. A part of our future work will be to investigate
whether it is possible to slightly changeL3 in order to make it a conservative extension
of L2.

This paper presents a landscape of incremental logics, in the sense that every logic
is more expressive than the previous one. As expected, the complexity of consistency
checking of a formula increases. ForL1 it is PSPACE-complete, forL2, it is EXPTIME-
complete and forL3 we conjecture it to be NEXPTIME-hard. As this complexity is
high, a part of our future work will be to study their syntactic fragments.

The paper presents the first attempt to formalise agents’ beliefs in a multi-agent ar-
gumentation setting. We are inspired by the work of Grossi [7]. That paper shows that
an argumentation framework can be seen as a Kripke structure. In our paper, we “im-
port” those ideas on argumentation level (inside of each possible world), and develop a
framework for reasoning about agents’ beliefs. The solution presented in this paper is
the first attempt to model awareness about arguments. An urgent extension of our work



is to make a detailed comparison with the logic of awareness about propositional facts
[15].

Growing interest in game theoretic investigations of argument-based dialogues [11,
12, 14] shows that a logical framework is needed to representknowledge and beliefs of
agents in such a setting. We believe that our work is the first step in that direction.
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