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Abstract. In this paper, we study a multi-agent setting in which eactnags
aware of a set of arguments. The agents can discuss and ¢ersaeh other
by putting forward arguments and counter-arguments. Ih susetting, what an
agent will do, i.e. what argument she will utter, may dependvbat she knows
about the knowledge of other agents. For example, an agerst miot want to
put forward an argument that can easily be attacked, unhesbelieves that she
is able to defend her argument against possible attackezsprdpose a logi-
cal framework for reasoning about the sets of arguments dwgether agents,
their knowledge about other agents’ arguments, etc. We iddothdefining an
epistemic logic for representing their knowledge, whiclowas us to express a
wide range of scenarios.

1 Introduction

Argumentation is the interdisciplinary study of how corsstins can be reached through
logical reasoning. In the area of artificial intelligencegumentation is usually seen as
a reasoning approach based on construction and evaludtiamwments. The work
of Pollock [10], Vreeswijk [16], and Simari and Loui [13] gavise to other proposi-
tions on how to conceptualise this process. Nowadays, mesgrarch on the topic of
argumentation is based on the argumentation theory prdgmsBung [4]. It allows to
abstract from the origin and the structure of arguments elpyasenting an argumen-
tation system as a directed graph, whose vertices corrddpaarguments and arcs to
attacks between them.

It is common that argumentation takes place between meligents, having dif-
ferent information and different goals. In such a settirggrds present arguments in
order to persuade other agents. Their goal is often to maketaitc argument accepted
(or rejected). Some efforts were done in studying arguntiemtaialogues [11, 12] by
applying game-theoretic notions. However, those appmresdh not allow for reasoning
about agents’ knowledge, which is one of the essential fagtosuch a setting and in-
fluences agent’s behaviour in a major way. For example, wheitlthg which argument
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to utter, an agent may take into account his beliefs abouthven@nother agent has an
attacker of that argument. Moreover, an agent may want soreabout the knowledge
of another agent. For example: what should | do if he knowsltkaow that he does
not have an attacker of this argument?

In this paper, we define a logical framework for this settifg.do so, we use the
epistemic modal logic. We define a logic which allows to foliseaa broad spectrum
of scenarios concerning the knowledge of agents in form gfiments (e.g. attacks
between them) but also the knowledge of agents about thelkdge of other agents,
and so on. We also provide a method to speak about the facinhegent is aware of
the existence of an argument.

The remainder of the paper is organised as follows. Sectintr@uces the setting
and stresses the importance of the notion of awarenes#®8girovides a logic to ex-
press beliefs about awareness. Section 4 extends thisfayggpressing beliefs about
the structure of the argumentation graph. Section 5 prevédsolution for expressing
beliefs about properties of a given argument. The last@ecincludes.

2 Setting

Since we represent the basic knowledge of agents in forngoiaents, we first intro-
duce the notion of an argumentation theory [4] which is usealir formalisation.

Definition 1 (Argumentation system).An argumentation framework is a pat =
(A, ~) whereA is a set of arguments andC A x A a binary relation. For each pair
(a,b) e~, we say that attacksb. We will also sometimes use notatior~ b instead
of (a,b) e~.

We model a situation where a set of agefits. . ., n} have different knowledge (in
terms of arguments) and beliefs (about the knowledge ofr@bents). We can model
this situation in abstract argumentation theory by repriisg the arguments and the
attack relation between them by what we will calbey argumentation framework
We denote this framework bBAF = (Ag,~~3). The big argumentation framework
contains all arguments relevant to a particular discoudsze we may imagine, for
example, thaBAF is constructed from all available knowledge and beliefs esnlgect
such as nuclear energy, and the issue of whether or not weédshoild more nuclear
power plants, or instead close them. The knowledge andamnnBAF may come, for
example, from books, internet, scientific publicationg,they may also be completely
personal to an agent. Agents are resource bounded and ayenémal, not aware of
all arguments that belong to tlaF. An agent is aware of only those arguments that
she has acquainted herself with, or that she has formednie seay, on the basis of
personal considerations or a priori knowledge.

We can thus represent the knowledge of an ageét a setA; C Ap of argu-
ments. We assume, however, that all agents use the samalltagiguage in order
to understand each other and that they agree on the attatlorelThat is, for every
pair of arguments, b € Ag, all agents agree on whether or rots a valid counter-
argument ta (or whethera attacksb). So we have a model where all arguments of a
particular discourse, and their attack relations, areasgmted by the big argumentation



frameworkBAF = (Ag, ~»3), and the knowledge of an ageinis represented by a set
A; C Ag. This induces, for an ageita framework( A;, ~~;), with ~»;=~- | 4,. Note
that the formalisation we use, namely the hypothesis thetetkxists a big argumen-
tation framework and that agents are aware of some argurtentghis framework is
already present in argumentation literature [11, 14]. lrest of the paper, we develop
logics for reasoning in this setting.

3 The First Attempt of an Epistemic Argumentation Logic

In this section, we propose a framework for representingdbethat different agents
are aware of different arguments. L&ET = {1,...,n} be a finite set of agents. The
language of this logic, denoted I8 is generated by the following BNF:

@ u=owns(i,a) |~ [ o Ap | Bip

wherei € AGTis an agent, and € Ag is an argument. For a finite st C A,
with S = {as,...,as}, we define an abbreviatianuns(i, S) < owns(i,a;) A...A
owns(i,ay).

A formulaowns(i, a) means that agertis aware of the argument The meaning
of =, A and derived connectiveg —, «— are as usual. A formul®;» means that agent
i believes thap holds. Some examples of statements that we can express are:

— owns(1,{a,b,c})AByowns(2,{a,b}) (Agent 1 is aware of, b andc and believes
that agent 2 is aware afandb.)

— owns(1,{a}) AB1Ba—owns(1, {a}) (Agent 1 is aware of but believes that agent
2 believes he is not.)

The interpretation of the language is based on Kripke sirestwhere states de-
scribe possible configurations of argument awareness faigahts. Formally, a state
w and an agent map to a sefD; C A, whereD; is the set of arguments that agent
i is aware of in statev. For every agent, the accessibility relatiod; captures the
‘considers possible’ relation. Formally:

Definition 2. An £, -epistemic argumentation model is a Kripke structwe= (W, R, D)
where:

— W is a non-empty set dftates

— R maps each ageritto anaccessibility relatior; overW;

— D maps each worldy and each agentto a set of argumentd;(w) such that:
1. for all agents;, for all w, v € W, wR;u impliesD;(u) = D;(w).
2. for all agents, j, for all w,u € W, wR;u impliesD;(u) C D;(w).

We use the familiar interpretation of belief by taking evé&yto be a KD45 relation
[8]. Thatis,R; is

— serial:Vs € W,3t € W s.t.t € Ri(s),
— transitive:vs, t,u € W, t € R;(s) andu € R;(t) impliesu € R;(s),



— and Euclideanys,t,u € W, t € R;(s) andu € R;(s) impliest € R;(u),

The truth conditions are as follows:

- M, w = owns(i,a) iff a € Di(w);

- M,w = Bipiffforall u € R;(w), we haveM, u = ¢;
- M,wEeAYiff MwE pandM,w = ¢;

— M, w | —giffitis not the case that, w = ¢

The two conditions from Definition 2 crucially capture outuition behind aware-
ness of arguments, as described in the previous sectionfirBheondition says that
in every world an agent considers possible, she is awareecfdme set of arguments
that she is aware of in the actual world. This condition cgpmnds to the following
‘argument awareness introspection’ axioms:

— owns(i,a) — Bowns(i,a);
— —owns(i,a) — B;—owns(i,a)

The second condition stipulates that, if an agent is not awéian argument, she
believes that no agent is aware of that argument. This donditorresponds to the
following axiom:

— —owns(i,a) — B;—owns(j, a).

Figure 1 shows a model whereM, s = owns(1, {a, b, c}) A Biowns(2, {a, b}).
Notice that agent 1 has no belief as to whether or not agenb@&n and agent 2 has
no beliefs as to whether agent 1 knows

" 1:{a,b,c} . " 1:{a,b,c}
2: {a,b} - 2:{a,b,c}
5 1:{a,b,c}
2:{a}
1:{a} A w 1:{0}
2: {a} “ 2: {a}

Fig. 1. An £, -epistemic argumentation logic model.

We say thaty is £;-satisfiable iff there exists afy; -argumentation epistemic model
M and a worldw such thatM, w = ¢. The satisfiability problem of a formula af,
is the following decision problem:

— input: a formulay € £4;



— output: yes iff the formula is £;-satisfiable.

Having an algorithm to solve the satisfiability problem dralus to check consistency
automatically. We now study the computational propertighe satisfiability problem
of a formula ofZ; .

Theorem 1. If there are more than 3 agents, the satisfiability problera édrmula of
L, is PSPACE-hard.

Proof. When there is more than three agents, we can embed the $ditgfiaroblem
of K D45, into the satisfiability problem of a formula a;. Let ¢ be a formula of
K D45,. Leti, j be two distinct agents such all agents appearingane in{i, j}. Letk
be athird distinct agent. We suppose the set of argumenésttetset of all propositions
appearing inp. We then define a polynomial translationfrom the K D45, language
to £, as follows:

— tr(p) = owns(k, p);
— tr(B;p) = Bitr(p);
= tr(B;¢) = Bjtr(p).

We have thatp is K D45,, satisfiable ifftr(y) is satisfiable in an epistemic argumen-
tation model. Note that we must take care to verify the cooliof Definition 2 in the
sense ‘left to right’. We need the extra agénh order to be able to construct such a
epistemic argumentation model. Technical details ard¢defte reader.

Theorem 2. The satisfiability problem of a formula df; is in PSPACE.

Proof. We can embed; into K D45,, and call an optimal procedure féf D45,, plus
distributed beliefwhich is in PSPACE [8]. Lety be a formula ofZ,. Let m be the
modal depth of the formula. The embedding works as follows. We add also an oper-
ator calleddistributed beliefin the language, noteB,;;. This operator enables us to
express the properties of Definition 3 up to the depthith a formula of polynomial
size in the length of. The semantics is defined as follows:

— M,w | Byt iff for all ¢ € AGT, for all u € R;(w) we haveM, u = 1.

We denote byBg;s: x the formulay A By;sex A B2, x A+ - - A BT, x. It corresponds to
common knowledge up to level, wheren is the modal depth op. We then consider
tr(y) as the conjunction op and the following formulas:

— Bygist(owns(i,a) — Bowns(i,a))
— Baist(—owns(i,a) — B;—owns(i,a))
- Bdist(ﬂowns(i, CL) — Bi_‘OU)TLS(j, CL))

In that way,tr(¢) imposes thd{ D45,,-model to satisfy the properties of Definition
3 up to levelm. The formulay is satisfiable in an epistemic argumentation model iff
the formulatr(y) is satisfiable ink" D45, plus distributed belief, where constructions
of the formowns(i, a) are considered as atomic propositiongim45,,.



4 Expressing Belief About Properties of Arguments

The formalisation presented until now is only the first stepetrds describing an argument-
based dialogue. There are still simple facts that cannoipeessed in the proposed
logic. For example, imagine a non-expert person having ea id some area. She can
believe that her idea is interesting, and she is not awareyohtiacker of her argument,
but she also believes that there is an argument (from an&xgtercking her argument.
The problem here is that to express a property about an argilone is not aware of.
The next example formalises this consideration.

Example 1.Let us consider the followinBAF:

@i DD

Imagine that agent is not an expert and she has only argumienthe framework
proposed in the previous section does not allow to represaituation in which she
has no beliefs about whether this argument is attacked orNahely, according to
Definition 2, for every modeM, for every worldw in M such that agent has exactly
the argumend, i.e. whereD; (w) = {b}, for every worldu in M such thatw R, u, for
every ageny, it holds thate ¢ D;(u). Thatis, in every world of every possible model
where agent is aware, agernit believes thab is not attacked.

The previous example shows the formalism from the previ@etian is not ex-
pressive enough since it cannot represent the situatiomendne agent believes that
there exists an attacker of one of her arguments, withouigbehle to construct an at-
tacker herself. We start by defining a new language whicleckeriand allows to speak
about attacks between arguments. The solution we proposést®in mixing epistemic
modal logic (that we proposed in the previous section) aindEél framework to speak
about argumentation graphs, initially proposed by Gro&siljet ATM be a countable
set of atomic propositions. The new language is defined ashdication of those two
languages:

p = U)o Ae|Bip
Y u=pl| Y | AP |isarg(a) | ownedby(i) | [attacks]y | [is_attacked]y

wherep € ATM, a is an argument of th8AF andi is an agent. We define the
languagel, as the set of formulas obtained with the ryte p-formulas are epis-
temic modal logic formulas expressing beliefs about fatke constructionU ) is
read as ‘there exists an argument verifying the propértyThen a-formula de-
scribes the property of a given argument. Propositiprzse used to describe prop-
erty of arguments, as for instance ‘the current argumenbd@igpolitics’. isarg(a)
states that the argument of which we speak now is argumeninedby(i) means
that the current argument is owned hyThe constructiofattacks]y means that all
arguments that the current argument attacks verify thegstpp). The construction
[is_attacked]t) means that all arguments that the current argument is atazk ver-
ify the property). We define the following abbreviationgittacks)y = —lattacks]—
and(is_attacked)y = —[is_attacked)—p.



Example 2.Now, we can say that agemtdoes not have beliefs about whether argu-
mentb is attacked or not. We can write this as 'agéntioes not believe that is
attacked and agerit does not believe thdt is not attacked':—B; ((U)(isarg(b) A
(is_attacked)T)) A ~B1((U)(isarg(b) A —(is_attacked)T)). As another example,
take the following formula which says that agdnbelieves that there exists an argu-
ment about global warming owned by the second agént{U)(global_warming A
ownedby(2))). We can also say that agehtloes not have an attacker ipbut agent

1 believes that agerthas an attacker @fon the subject of global warming. Itis written
as:
(U)(isarg(b)Alis_attacked]—~ownedby(1))ABiisarg(b)A(is_attacked)(ownedby(2)A
global_warming).

We now define how to interpret formulas of languale

Definition 3. A £, —epistemic argumentation model is a Kripke structivie= (W, R, A)
based on @8AF = (Ag, ~>) Where:

— W is a non-empty set of epistemic worlds;
— R maps each agent to a serial, transitive and Euclidean refativeriv;
— A maps each worldv to a labelled argumentation grapd.,, = (Aw, ~>w, Lw)
where:
e A, isafinite subset aflz U {?¢, 71,... };
e ~,C A, x A, is abinary relation such that fat, b € Ag, a~gb if and only
if @~y b;
e L, is amap fromA,, to 2ACTVATM

Furthermore, we impose:

1. forallagents, forall w,u € W,wR;uimpliesthat{a € A, N Ap | i € L,(a)} =
{a€ Ay NAg | i€ Ly(a)};

2. for all agents;, for all w,uw € W, wR;u implies that
{a€eAyNAp} C{ac Ay NAp|i€ Ly(a)}.

An example of a model is depicted in Figure 2. The model issKlripke model but
now, each worldv contains an argumentation gragh, = (A, ~+ ). Each argument
of A, is either an argument frotd z, or an element of a sét’y, 71, ... }. A “question
mark argument” denotes an argument the agent is not awatteabis to say, they can
not argue by using it, but they can imagine its existence.idiba is to represent facts
like “there is an attacker of argumaeritwithout being able to identify an actual attacker
of this argument-~,, is the attack relation im,,. ~~,, is compatible with the attack
relation of theBAF in the following sense: if two argumenisandb of theBAF appear in
the argumentation graph,, of the worldw, then the attack relation id,, is the same
as in theBAF. Intuitively, it says that there is no uncertainty concamthe attack of
arguments of theAF [11]. L is a valuation function that specifies the atomic properties
of a (this can be anything, for example a subject of an argumemnt)tlhe agents that
own argument, for all arguments € A,,. For example, in Figure 2, in worlds and
u, argumenb, owned by agent is about global warming. Condition (1) and condition
(2) have the same meaning as condition (1) and (2) in Definio

The truth conditions fop-formulas are defined as follows:



— M,w [ By iffforall u € R;(w), we haveM, u = ¢;
- M, w = (U)% iff there exists an argumente A,, such thatd,,, a = .

The truth conditions for)-formulas are defined as follows:

— Ay,a Epiff pe ATM andp € L, (a);

— Ay, a =isarg(d) iff a = b;

— Ay, a | ownedby(i) iff i € AGTandi € L,,(a);

— Ay, a | [attacks]y iff for all b such that ~,, b we haved,,, b E v;

— Ay, a = [is_attacked)y iff for all b such thab ~,, a we haveA,,,b = v;

Example 3 (Example 1 ContJhe logic L is expressive enough to overcome prob-
lems of Example 1. Let = —B; ((U) (isarg(b)A(is_attacked) T))A—~B1({U)(isarg(b)A
—(is_attacked)T)). This formula says that agehtloes not have beliefs about whether
argument is attacked or not. Let be the model from Figure 2, the, w = «. This
means that in modeM and worldw, agentl does not have beliefs about whether ar-
gument is attacked or not.

1 1
w u
{1, global_warming} 0 {1,global_warming}

O, L | ®&—O

Fig. 2. An L»-epistemic argumentation logic model.

The languagel, is a conservative extension of the languaye Indeed, we can
embed.; into Lo by preserving validities with the following translation:

— tr(owns(i, a)) = (U)(ownedby(i) Aisarg(a)).

We define the notion of,-satisfiable formula. A formulg is L»-satisfiable iff
there exists a big argumentation framewad& = (Ag,~5) and aL,—epistemic
argumentation modeM = (W, R, .A) based orBAF, and a worlde W, such that
M, w E ¢. In the same way, we define the satisfiability problent of

Theorem 3. Even if there are no occurrences of arguments in the formelawant to
check, the satisfiability problem @f, is EXPTIME-hard.

Proof. The global satisfiability problem of modal logic K is definesifallows:

— input: two formulasp, 1 where there is only one modal operafayr



— output: yes iff there exists a pointed modet, w for logic K such thatM, u = ¢
forallu € W andM,w = .

Itis EXPTIME-hard. We polynomially reduce the global shibility of logic K to
the satisfiability of a formula of, in the following way:¢ =, ¢ iff —=(U)=tr(¢) A
(U)tr(y) satisfiable wherer(Op) = [attacks]p. So the satisfiability problem af
is EXPTIME-hard. All of this works because of the presencé-afguments.

Now, concerning the satisfiability problem 6%, we have a tableau method deci-
sion procedure in [3] dealing with nominals (or argumentsuncase), a K-operatat
(or [attacks] in our case) universal modality. In [1], the author expladhe the satisfia-
bility problem of the hybrid logic where we add the converpemtor and the universal
operator is EXPTIME-complete. In our case, it means tha¢mifinite setsA, B of
formulas of the form(U)¢, checking whethep\ i1y, 4(U)¥ A A iy ypep ~(U)Y IS
satisfiable can be solved with an EXPTIME procedure. If we loim@ with a tableau
procedure foiK D45,, [8] we obtain the following result.

Theorem 4. The satisfiability problem of; is in EXPTIME.

Proof. We give the idea of algorithm to solve the satisfiability desb of £5. Let us
considerp € Lo. Letarg(y) be the set of arguments that appear in the formuld/e
add also an operator calléistributed beliefto the language, denotéds);; ., in order to
be able to express the properties of Definition 3. The serwmistidefined as follows:

— M,w | Bgiss iff for all + € AGT, for all u € R;(w) we haveM, u = .

We denote byBg;s: x the formulay A Baisex AB2, ., XA+ - -AB™ . x. It corresponds
to common knowledge up to level, wherem is the modal depth op. We denote by
(U)SF(p) the set of all subformulas of of the form (U)y. Let Att € 20r9(#)*,
We defineT 4::(¢) as the following conjunction, which imposes the constrainthe
Definition 3 up to depthn;:

-

— Buaist(((U)isarg(a) A ownedby(i)) — B;({U)isarg(a) A ownedby(i))) fori €
AGT,

Now we define the algorithm.



for Att € 20m9(#)°
for A, B C (U)SF(Tau(y))
PROP[A,B] =
Satsolver_KU’co””e”e(/\<U>¢,GA<U>1/) A A(U}gaEB —(U)¢))
endFor
if (modi fied_K D45,,_tableau_method(T a:(¢), PROP))
| return sat
endIf

endFor
return unsat

We loop on all possible attack relatiodst over arguments that appear in the for-
mulay. Somehow, we browse all possilH&F. Our aim is then to check if'4+:(¢) is
satisfiable.

The first step consists in computing which subformulgB gt (¢) of the form(U )«
are consistent. Thus, PROP[A, B] will contain ‘sat’ if
NwypealU)¥0 A Niryyes ~(U)Y is satisfiable and ‘unsat’ otherwise. The procedure
satsolver KU-converse is an EXPTIME procedure to solve the satisfiability problem
of K plus converse, plus universal modality and hybrid logidded, arguments are
considered as nominals (it is impossible to have two differeodes labelled by the
same arguments).

The second step is now to run a tableau methodf@45,, logic on the formula
Ta:(). For that, we use the tableau method described in [8]. Thiega method runs
as usual for the Boolean connectives and beliefs operatnis ¢donsiders formulas of
the form(U)« as atoms. We extend this tableau method with a new rule abpliea
nodew, when all the other rules have already been applied:

— Let A be the set ofU )y formula written in the nodev. Let B be the set ofU)v)
such that=(U ). If PROP[A, B] is unsat, we close the current tableau branch.

This modified version of the tableau method runs in PSPACEXPTIME. So the
global algorithm runs in EXPTIME. The proof of completenassl soundness of this
algorithm are classical.

5 Expressing Properties of Arguments Containing Belief

The logical language developed in Section 4 is powerful ghaiw enable to speak
about arguments without specifying them, but some factatthe framework we study
in this paper still cannot be expressed in it. Consider tHeviing example.

Example 4.Agent: ownsa and believes that there exists an argument attacked by
which is owned by agerit, but agenyj believes that this argument is not ownediy

Language<; andZ> do not allow to express statement from the previous example.

We now present a preliminary but promising approach for @sging properties
over arguments but also beliefs about those propertiesappmach we present here is
inspired by other applied logics mixing:



— knowledge and time [5], [9]: the author speaks about momiaritme and knowl-
edge about properties of the moment;
— time and space [2]: the author speaks about evolution ottbje the time.

The languagée; is defined by the following rule:
== p | isarg(a) | ownedby(i) | Biy | (U)y | [attacks]y | [is_attacked]y

wherep € ATM, a € Ag andi € {1,...,n} is an agent. InC3, we can mix
doxastic operatoB; and speaking about arguments. The reading.gf is now ‘agent
i believesp about the current argument’.

Example 5.The formula(U) (isarg(a) A ownedby(i) A B;{attacks)(ownedby(k) A
Bj—-ownedby(k)) is in L3 and captures the sentence of Example 4.

Definition 4. F = (W, R) is a Kripke epistemic frame if and onlylif is a non-empty
set of possible worlds ar is a function mapping each agento a serial, transitive
and Euclidean relatiork; over W. MA = (M, A, L) is a world/argument model if
and only if:

- M = (W, R), is a Kripke epistemic frame;

— A = (A, ~) is an argumentation graph such thdt = Az U {79, ?1,...} such
thatforalla,b € Ag, a~pgb iff a ~ b;

— L maps all couplegw, a) € W x A to elements g#ACTUATM

The truth conditions are:

- MA, (w,a) Epiff pe ATM andp € L(w, a);

- MA, (w,a) [ isarg(b) iff a = b;

- MA, (w, a) = ownedby (i) iff i € {1,...,n} andi € L(w, a);

- MA, (w,a) |E By iffforall u € R;(w ) we haveMA, (u, a) = ¢;

- MA, (w, a) = (U)y iff there existsh € A, we haveMA, (w, b) = ¢;

- MA, (w,a) = [attacks]piffforall b € A, a ~ bimpliesMA, (w,b) = ¢;

— MA, (w,a) = [is_attacked]y iff forall b € A, b ~ a impliesMA, (w,b) |= ¢.

Example 6.Figure 3 shows a model for the formula from Examples 4 and Beha
(U)(isarg(a) Nownedby (i) A B; (attacks)(ownedby (k) A Bj—ownedby(k)). We con-
sider a model (on the right) built from the epistemic framelonleft and th&AF in the
middle.

In previous sentence, the context is a couplea) wherew is a possible epistemic
situation and: is an argument. Table 1 illustrates how to follow the nodes gfaph in
Figure 3 when analysing the formula from our running example

Note that this framework contaid§ D45 x K. The satisfiability problem of5 x K
is NEXPTIME-complete [6, page 339]. We conjecture that tites§iability of the logic
K D45 x K is also NEXPTIME-complete so the satisfiability problem ur getting
may be NEXPTIME-hard.



Fig. 3. Aworld / argument model.

Part of the sentence (syntax) context world/argument (s80s

i ownsa and (w,a)

1 believes that al(t, a) such thatwR;t, in our case: onlyu, a)
there exists an argumentattacked by:...  there existgu, x) such that ~~ z, here:(u, b)

agent;j believes that ... all¢, b) such thatuR;t, in our case: onlyv, b)

Table 1. A world / argument model.

6 Summary

In this paper, we provide three languages to deal with argasien and beliefs. The
first one(L£1) enables us to speak about beliefs about awareness of arturibe
second onéL,) is a conservative extension gf and enables to speak about beliefs
about the structure of the argumentation graph. The thigitloCs) enables to speak
about beliefs about a specific argument. The third logic hasynpromising features,
but is not a conservative extension®f. A part of our future work will be to investigate
whether it is possible to slightly chandgg in order to make it a conservative extension
of Ls.

This paper presents a landscape of incremental logicsgisghse that every logic
is more expressive than the previous one. As expected, theleity of consistency
checking of a formulaincreases. Hor itis PSPACE-complete, faf,, itis EXPTIME-
complete and for’; we conjecture it to be NEXPTIME-hard. As this complexity is
high, a part of our future work will be to study their syntadtiagments.

The paper presents the first attempt to formalise agentgfbéh a multi-agent ar-
gumentation setting. We are inspired by the work of GroskiTRat paper shows that
an argumentation framework can be seen as a Kripke strudtuoair paper, we “im-
port” those ideas on argumentation level (inside of eackiptesworld), and develop a
framework for reasoning about agents’ beliefs. The sotugicesented in this paper is
the first attempt to model awareness about arguments. Amuegtension of our work



is

to make a detailed comparison with the logic of awarenbesitapropositional facts

[15].

Growing interest in game theoretic investigations of argatrbased dialogues [11,

12, 14] shows that a logical framework is needed to reprdsewledge and beliefs of
agents in such a setting. We believe that our work is the tiegtis that direction.
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