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Abstract—An argumentation system consists mainly of a set
of interacting arguments and a semantics for evaluating them.
In this paper, we study when two argumentation systems are
equivalent. We focus on argumentation systems defined around
a Tarskian logic. We propose different equivalence criteria,
study their links and finally show under which conditions two
systems are equivalent wrt each of the proposed criteria.
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I. INTRODUCTION

Argumentation is a reasoning process in which interact-
ing arguments are built and evaluated using a semantics.
It is widely studied in Artificial Intelligence, namely for
reasoning about defeasible information and modeling agents
interactions ([1]).

The most abstract argumentation system was proposed
by Dung ([4]). It takes as inputs a set of arguments and
a binary relation encoding attacks among them, and returns
acceptable subsets of arguments, called extensions. Knowing
when two such systems are equivalent is important. For
instance, when building an argumentation system over a
given knowledge base, it is very common that several attack
relations may be used. Thus, knowing which relations induce
equivalent systems may be useful. Under some logics, like
propositional logic, an infinite number of arguments is built
from (a finite) knowledge base. It would be convenient to
know whether such a system can be exchanged with an
equivalent finite sub-system.

Recently, a study on when two Dung’s abstract systems
are equivalent has been carried out and three particular
criteria have been proposed ([5]). According to those cri-
teria, two systems are equivalent if they return exactly the
same extensions (resp. skeptical or credulous arguments)
even after being extended by the same arbitrary set of
arguments. While these criteria are meaningful, they are
too rigid that generally two systems are equivalent only if
they are equal. Let us consider two argumentation systems
built under propositional logic: the first system has the set
{({x}, x)} as its unique extension while the second system
has {({x}, x ∧ x)} as extension. These two systems will
never be considered as equivalent by the two above criteria
since the two arguments ({x}, x) and ({x}, x ∧ x) are

considered different. However, they are almost the same and
they return logically equivalent results. Thus, in order to
define more accurately the notion of equivalence between
two systems, the structure of arguments should be taken into
account. In a recent paper ([3]), we focused on logic-based
instantiations of Dung’s argumentation system, particularly
those defined under a Tarskian logic ([6]). We proposed
three criteria of equivalence which are themselves based on
a particular relation of equivalence between arguments.

In this paper, we extend that work and propose new
criteria of equivalence. Some of them are based on two new
relations of equivalence between arguments while others
are defined on other intuitive outputs of an argumentation
system. We study the interdependencies between the criteria
and identify conditions under which two argumentation
systems are equivalent wrt a given equivalence criterion. We
focus on two particular cases: the case of infinite systems
to which we identify equivalent finite sub-systems, and the
case of two argumentation systems which may be built
from distinct knowledge bases but use the same definition
of attack relation (like rebut, undercut, . . .).

The paper is structured as follows: Section II introduces
the logic-based systems that will be studied. Section III
defines different equivalence criteria whose links are in-
vestigated in Section IV. Section V shows under which
conditions two systems are equivalent wrt each of the
proposed criteria. The last section concludes. Due to space
limitation, only some proofs are included in the paper.

II. LOGIC-BASED SYSTEMS

This section describes the logical argumentation systems
we are interested in. They use Tarski’s monotonic logic
in order to build the two components of a system: the
arguments and the attacks among them.

According to Tarski ([6]), a monotonic logic is a pair
(L,CN) where L is a set of well-formed formulae and CN is
a consequence operator, i.e. a function from 2L to 2L that
satisfies the following axioms:

• X ⊆ CN(X) (Expansion)
• CN(CN(X)) = CN(X) (Idempotence)



• CN(X) =
⋃

Y⊆fX
CN(Y )1 (Finiteness)

• CN({x}) = L for some x ∈ L (Absurdity)
• CN(∅) 6= L (Coherence)

Intuitively, CN(X) returns the set of formulae that are
logical consequences of X according to the logic at hand.
Almost all well-known logics (classical logic, intuitionistic
logic, modal logics etc.) are special cases of Tarski’s notion
of monotonic logic. In such a logic, a set X of formulae is
consistent iff its set of consequences is not the whole set L.

Arguments are built from a knowledge base Σ which is
a finite subset of L.

Definition 1 (Argument): An argument is a pair (X,x)
s.t. X ⊆ Σ, X is consistent, x ∈ CN(X), and @X ′ ⊂ X
s.t. x ∈ CN(X ′). X is the support of the argument and x
its conclusion.

Notations: For an argument a = (X,x), Conc(a) = x
and Supp(a) = X . For a set S ⊆ L, Arg(S) = {a | a
is an argument (in the sense of Definition 1)
and Supp(a) ⊆ S}. For any E ⊆ Arg(L),
Base(E) =

⋃
a∈E Supp(a).

An argumentation system defined over a given knowledge
base is defined as follows.

Definition 2 (Argumentation system): An argumentation
system (AS) defined over a knowledge base Σ is a pair
F = (A,R) where A ⊆ Arg(Σ) and R ⊆ A × A is an
attack relation. The writing aRb means that argument a
attacks argument b.

In the previous definition, we did not consider the whole
set Arg(Σ) of arguments that may be built from Σ. The
reason is that we are looking for equivalent systems. Thus,
we may be interested by a sub-system which is equivalent
to the global system (i.e. the one using Arg(Σ)). We may
also need to compare two sub-systems of the global one.

Recently, a study on how to choose an appropriate attack
relation has been carried out ([2]). Some basic properties
of an attack relation have also been discussed. Examples of
such properties are recalled below.

C1 ∀a, b, c ∈ A, if Conc(a) = Conc(b) then (aRc iff bRc)
C1’ ∀a, b, c ∈ A, if Conc(a) ≡ Conc(b) then (aRc iff bRc)
C2 ∀a, b, c ∈ A, if Supp(a) = Supp(b) then (cRa iff cRb)
C2’ ∀a, b, c ∈ A, if Supp(a) ≡ Supp(b) then (cRa iff cRb)

The two first properties say that two arguments having
the same (resp. equivalent) conclusions attack exactly the
same set of arguments. The two remaining properties say
that arguments having the same (resp. equivalent) supports

1The notation Y ⊆f X means that Y is a finite subset of X .

are attacked by the same set of arguments.

Property 1: Let R be an attack relation.
• If R satisfies C1′ then it satisfies C1.
• If R satisfies C2′ then it satisfies C2.
If not mentioned otherwise, we do not assume that the

attack relation enjoys the above properties. Arguments are
evaluated using stable semantics. Note that this is not a
substantial limitation since the main purpose of this paper
is to explore general ways to define equivalence in logical
argumentation and not to study the subtleties of different
semantics. For all the main results of this paper, similar ones
can be proved for all well-known semantics.

Definition 3 (Acceptability semantics): Let F = (A,R)
be an AS and E ⊆ A.
• E is conflict-free iff @a, b ∈ E s.t. aRb.
• E is a stable extension iff it is a conflict-free set that

attacks wrt R all arguments in A \ E .
Let Ext(F) denote the set of all extensions of F .

In general, an argumentation system may have an infinite
number of extensions even if the knowledge base Σ is finite.
Let us consider the following example.

Example 1: Let (L,CN) be a Tarski’s logic s.t. L =
{x0, x1, x2, . . .}, CN(∅) = ∅ and ∀X ⊆ L, if X 6= ∅
then CN(X) = {xi, xi+1, xi+2, . . .}, where i is the minimal
number s.t. xi ∈ X . Let Σ = {x1} and A = Arg(Σ).
Assume that aRb iff Conc(a) 6= Conc(b). It is clear that
there are infinitely many stable extensions: {({x1}, x1)},
{({x1}, x2)}, {({x1}, x3)}, . . ..

The following result shows that under some reasonable
conditions, an argumentation system built from a knowledge
base Σ has a finite number of extensions.

Proposition 1: Let (A,R) be an argumentation system
built from Σ. If Σ is finite and R satisfies C2, then (A,R)
has a finite number of extensions.

A status is assigned to each argument as follows.
Definition 4 (Status of arguments): Let F = (A,R) be

an AS and a ∈ A.
• a is skeptically accepted iff Ext(F) 6= ∅ and ∀E ∈
Ext(F), a ∈ E

• a is credulously accepted iff ∃ E ∈ Ext(F) s.t. a ∈ E
• a is rejected iff @E ∈ Ext(F) s.t. a ∈ E
Any sceptical argument is also credulous. However, there

are exactly three disjunct cases, since an argument can be: i)
sceptical (and credulous), ii) credulous and not sceptical iii)
rejected. Let Status(a,F) be a function which returns the
status of an argument a in argumentation system F . This
function simply returns three different values in those three
disjunct cases. In addition to extensions and the status of
arguments, other outputs are returned by an AS. These are
summarized in the next definition.

Definition 5 (Outputs of an AS): Let F = (A,R) be an
AS defined over a knowledge base Σ.



• Sc(F) = {a ∈ A | a is skeptically accepted }
• Cr(F) = {a ∈ A | a is credulously accepted }
• Outputsc(F) = {Conc(a) | a is skeptically accepted }
• Outputcr(F) = {Conc(a) | a is credulously accepted }
• Bases(F) = {Base(E) | E ∈ Ext(F)}

The first four sets contain the skeptically and credulously
accepted arguments (resp. conclusions). Bases(F) contains
the subbases of Σ which are returned by the extensions of
F .

III. EQUIVALENCE CRITERIA
Throughout this section, we assume a fixed Tarskian

logic (L,CN) and two arbitrary argumentation systems
F = (A,R) and F ′ = (A′,R′) that are defined using
this logic. Note that the two systems may be built from
different knowledge bases. We study when F and F ′
are equivalent. We propose two families of equivalence
criteria. The first family compares directly the outputs of
the two systems while the second family takes advantage
of similarities between arguments and logical equivalence
between formulae. The following definition introduces the
criteria of the first family.

Definition 6 (Equivalence criteria): Let F = (A,R) and
F ′ = (A′,R′) be two argumentation systems built using the
same Tarski’s logic (L,CN). The two systems F and F ′ are
EQi-equivalent iff criterion EQi below holds:

EQ1: Ext(F) = Ext(F ′)
EQ2: Sc(F) = Sc(F ′)
EQ3: Cr(F) = Cr(F ′)
EQ4: Outputsc(F) = Outputsc(F ′)
EQ5: Outputcr(F) = Outputcr(F ′)
EQ6: Bases(F) = Bases(F ′)

Note that the first three criteria were mentioned but not
studied by Oikarinen and Woltran ([5]). Let us consider
again the example from the introduction.

Example 2: Assume two argumentation systems F and
F ′ having respectively {({x}, x)} and {({x}, x ∧ x)} as
extensions. These two systems are equivalent wrt criterion
EQ6 since Bases(F) = Bases(F ′) = {{x}}. However,
they are not equivalent wrt the remaining criteria.

Let us now consider another tricky example.

Example 3: Assume two argumentation systems F
and F ′ built on propositional logic, having respectively
{({x}, x)} and {({x∧ y}, x∧x)} as extensions. These two
systems are not equivalent wrt any of the above criteria.
However, we would like to conclude that the systems are
equivalent since their conclusions are logically equivalent.

The following example shows two systems which return
equivalent subbases of Σ.

Example 4: Assume two argumentation systems F
and F ′ having respectively {({x,¬¬y}, x ∧ y)} and
{({x, y}, x ∧ y)} as extensions. The two systems are
equivalent wrt EQ4 and EQ5 but are not equivalent
wrt the remaining criteria, for example EQ6. However,
Bases(F) = {{x,¬¬y}} and Bases(F) = {{x, y}}
contain equivalent formulae.

In order to have more refined notions of equivalence
of argumentation systems, we take advantage of logical
equivalence between formulae and between sets of formulae.

Definition 7 (Equivalence between sets and formulae):
Let x, y ∈ L and X,Y ⊆ L.
• x and y are equivalent, denoted by x ≡ y, iff

CN({x}) = CN({y}).
• X and Y are equivalent, denoted by X ∼= Y , iff
∀x ∈ X , ∃y ∈ Y s.t. x ≡ y and ∀y ∈ Y,∃x ∈ X s.t.
x ≡ y. We write X 6∼= Y iff X and Y are not equivalent.

In case of propositional logic, this allows to say that the
two sets {x,¬¬y} and {x, y} are equivalent. Note that if
X ∼= Y , then CN(X) = CN(Y ). However, the converse
is not true. For instance, CN({x ∧ y}) = CN({x, y})
while {x ∧ y} 6∼= {x, y}. One may ask why not to use the
equality of CN(X) and CN(Y ) in order to say that X and
Y are equivalent? The answer is given by the following
counter-example of two AS whose credulous conclusions
are respectively {x,¬x} and {y,¬y}. It is clear that
CN({x,¬x}) = CN({y,¬y}) while the two sets are in no
way similar.

In order to define an accurate notion of equivalence
between argumentation systems, we also take advantage of
equivalence of arguments. Two arguments are equivalent
if they have the same or equivalent supports and conclusions.

Definition 8 (Equivalence between arguments): For two
arguments a, a′ ∈ Arg(L).
• a ≈1 a′ iff Supp(a) = Supp(a′) and Conc(a) ≡ Conc(a′)
• a ≈2 a′ iff Supp(a) ≡ Supp(a′) and Conc(a) = Conc(a′)
• a ≈3 a′ iff Supp(a) ≡ Supp(a′) and Conc(a) ≡ Conc(a′)

Note that each relation ≈i is an equivalence relation
(i.e. reflexive, symmetric and transitive). The equivalence
between two arguments is extended to equivalence between
sets of arguments as follows.

Definition 9 (Equivalence between sets of arguments):
Let E , E ′ ⊆ Arg(L) and ≈i be an equivalence relation
between arguments with i ∈ {1, 2, 3}. E ∼i E ′ iff



∀a ∈ E ,∃a′ ∈ E ′ s.t. a ≈i a′ and ∀a′ ∈ E ′,∃a ∈ E s.t.
a ≈i a

′.

We are now ready to introduce the second family of
equivalence criteria.

Definition 10 (Equivalence criteria cont.): Let
F = (A,R) and F ′ = (A′,R′) be two argumentation
systems built using the same Tarski’s logic (L,CN). Let
∼i with i ∈ {1, 2, 3}. The two systems F and F ′ are
EQi-equivalent iff criterion EQi below holds:

EQ1i: ∃f : Ext(F) → Ext(F ′) s.t. f is a bijection and
∀E ∈ Ext(F), E ∼i f(E)

EQ2i: Sc(F) ∼i Sc(F ′)
EQ3i: Cr(F) ∼i Cr(F ′)
EQ4b Outputsc(F) ∼= Outputsc(F ′)
EQ5b Outputcr(F) ∼= Outputcr(F ′)
EQ6b ∀S ∈ Bases(F), ∃S′ ∈ Bases(F ′) s.t. S ∼= S′

and ∀S′ ∈ Bases(F ′), ∃S ∈ Bases(F) s.t.
S ∼= S′

Each of the above criteria refines a criterion in Definition
6 by considering equivalences either between sets of
arguments or sets of formulae. The three first criteria use
an index i since they are built upon an equivalence relation
∼i between sets of arguments (with i ∈ {1, 2, 3}). For
instance, EQ11 stands for a criterion which use relation ∼1.

Example 2 (Cont): The two argumentation systems F
and F ′ of Example 2 are equivalent wrt criteria EQ11 and
EQ13 since the two arguments ({x}, x) and ({x}, x∧x) are
equivalent wrt relations ≈1 and ≈3. The two systems are
also equivalent wrt criteria EQ21 and EQ23 for the same
reasons. Finally, they are equivalent wrt EQ4b since the two
conclusions x and x ∧ x are logically equivalent.

Example 3 (Cont): The two argumentation systems F and
F ′ of Example 3 are equivalent wrt criterion EQ4b.

Example 4 (Cont): The two argumentation systems F and
F ′ of Example 4 are equivalent wrt criterion EQ6b since the
two bases {x,¬¬y} and {x, y} are equivalent wrt relation
∼=.

Notation: If two argumentation systems F and F ′ are
equivalent wrt criterion c, then we write F ≡c F ′.
It is easy to check that each criterion is an equivalence
relation, that is reflexive, symmetric and transitive.

Property 2: Each criterion is an equivalence relation.

Note that rejected arguments are not considered when
comparing two argumentation systems. The reason is
that rejected arguments are not an important output of a
system compared to skeptical arguments which support
the conclusions to infer from a knowledge base. Let us
consider the following example.

Example 5: Let (L,CN) be propositional logic, let a1 =
({t ∧ ¬x},¬x), a2 = ({x, y}, x ∧ y), a3 = ({w ∧
¬y},¬y), A = {a1, a2}, A′ = {a2, a3}, R = {(a1, a2)},
R′ = {(a3, a2)}. It is easy to see that F = (A,R) and
F ′ = (A′,R′) would be equivalent if we compare rejected
arguments, since their sets of rejected arguments coincide,
i.e. for both systems that is the set {a2}. However, those
two systems have almost nothing in common since neither
their conclusions nor their arguments coincide. Note also
that arguments of those systems are not equivalent wrt any
reasonable equivalence relation.

IV. LINKS BETWEEN CRITERIA

It is clear that not all criteria are equally demanding and
that they are not completely independent. For example,
it is easy to see that when two argumentation systems
are equivalent wrt EQ1, then they are also equivalent wrt
EQ11, EQ12 and EQ13. In this section, we investigate all
dependencies between the criteria proposed so far.

Theorem 1: Let F and F ′ be two AS built on the same
logic (L,CN). Table I summarizes the dependencies in the
following form: (F ≡c F ′)⇒ (F ≡c′ F ′).

Note that if two argumentation systems are equivalent
wrt EQ1, then they are equivalent wrt any of the other
criteria. This is not the case for its refined versions, i.e. for
EQ11, EQ12 and EQ13. For instance, if two systems are
equivalent wrt to EQ11, they are not necessarily equivalent
wrt EQ21, EQ23 and EQ4b. The following result shows
that under some reasonable constraints, these implications
exist. Indeed, if two argumentation systems are equivalent
wrt to EQ11, then they are also equivalent wrt the three
criteria EQ21, EQ23 and EQ4b provided that the two
systems use attack relations which verify properties C1′ and
C2. Before presenting formally this result, let us show how
the two properties C1′ and C2 of an attack relation are
related to the equivalence relation ≈1 between arguments
which is used in criterion EQ11.

The following property shows that equivalent arguments
wrt relation ≈1 behave in the same way wrt attacks in case
the attack relation enjoys the two properties C1′ and C2.

Property 3: Let (A,R) be an argumentation system
s.t. R enjoys C1′ and C2. For all a, a′, b, b′ ∈ A,
(a ≈1 a′ and b ≈1 b′) ⇒ (aRb iff a′Rb′).



EQ1 EQ11 EQ12 EQ13 EQ2 EQ21 EQ22 EQ23 EQ3 EQ31 EQ32 EQ33 EQ4 EQ4b EQ5 EQ5b EQ6 EQ6b
EQ1 + + + + + + + + + + + + + + + + + +

EQ11 + + + + + + +
EQ12 + + + + + + +
EQ13 + + + +
EQ2 + + + + + +

EQ21 + + +
EQ22 + + + +
EQ23 + +
EQ3 + + + + + +

EQ31 + + +
EQ32 + + + +
EQ33 + +
EQ4 + +

EQ4b +
EQ5 + +

EQ5b +
EQ6 + +

EQ6b +

Table I
IF TWO SYSTEMS ARE EQUIVALENT WRT CRITERION c IN ROW i THEN THEY ARE EQUIVALENT WRT CRITERION c′ IN COLUMN j .

The next result shows that equivalent arguments wrt
relation ≈1 belong to the same extensions.

Property 4: Let (A,R) be an argumentation system s.t.
R enjoys C1′ and C2. For all a, a′ ∈ A, if a ≈1 a′, then
∀E ∈ Ext(F), a ∈ E iff a′ ∈ E .

It can also be checked that when two argumentation
systems are equivalent wrt EQ11, then if we consider two
equivalent arguments (one from each system), then the two
arguments have the same status.

Property 5: Let F = (A,R), F ′ = (A′,R′) be two
argumentation systems built using the same logic (L,CN),
and let R and R′ verify C1′ and C2, and F ≡EQ11 F ′.
For all a ∈ A and for all a′ ∈ A′, if a ≈1 a′ then
Status(a,F) = Status(a′,F ′).

In general, when two argumentation systems are
equivalent wrt EQ11, they are not necessarily equivalent
wrt EQ21, EQ23 and EQ4b. The following result shows
that when the attack relations of both systems verify C1′

and C2, the previous implications hold.

Theorem 2: Let F = (A,R), F ′ = (A′,R′) be two
argumentation systems built using the same logic (L,CN),
R and R′ verify C1′ and C2. If F ≡EQ11 F ′, then
F ≡x F ′ with x ∈ {EQ21, EQ23, EQ4b}.

When two argumentation systems are equivalent wrt
EQ12, they are also equivalent wrt EQ22, EQ23, EQ4
and EQ4b in case the attack relations of the two systems
enjoy properties C1 and C2′. The reason is that there is a
correlation between an attack relation which satisfies these
two properties and the equivalence relation ≈2 between
arguments. Indeed, equivalent arguments wrt ≈2 behave in
the same way wrt an attack relation satisfying C1 and C2′.

Property 6: Let (A,R) be an argumentation system

s.t. R enjoys C1 and C2′. For all a, a′, b, b′ ∈ A,
(a ≈2 a′ and b ≈2 b′) ⇒ (aRb iff a′Rb′).

Equivalent arguments wrt ≈2 belong to the same exten-
sions of an argumentation system.

Property 7: Let (A,R) be an argumentation system s.t.
R enjoys C1 and C2′. For all a, a′ ∈ A, if a ≈2 a′ then
∀E ∈ Ext(F), a ∈ E iff a′ ∈ E .

Finally, two equivalent arguments pertaining to two
systems whose attack relations satisfy C1 and C2′ have the
same status.

Property 8: Let F = (A,R), F ′ = (A′,R′) be
two argumentation systems built from the same logic
(L,CN), R and R′ verify C1 and C2′, and F ≡EQ12 F ′.
For all a ∈ A and for all a′ ∈ A′, if a ≈2 a′ then
Status(a,F) = Status(a′,F ′).

From the above properties, it follows that two
argumentation systems which are equivalent wrt EQ12 are
also equivalent wrt EQ22, EQ23, EQ4 and EQ4b.

Theorem 3: Let F = (A,R), F ′ = (A′,R′) be two
argumentation systems built using the same logic (L,CN),
R and R′ verify C1 and C2′. If F ≡EQ12 F ′, then
F ≡x F ′ with x ∈ {EQ22, EQ23, EQ4, EQ4b}.

Finally, similar results can be shown when considering
an attack relation satisfying the two properties C1′ and C2′

and the equivalence relation ≈3 between arguments.

Property 9: Let (A,R) be an argumentation system
s.t. R enjoys C1′ and C2′. For all a, a′, b, b′ ∈ A,
(a ≈3 a′ and b ≈3 b′) ⇒ (aRb iff a′Rb′).

The following property shows that equivalent arguments
wrt ≈3 belong to the same extensions in an argumentation
system whose attack relation satisfies C1′ and C2′.



Property 10: Let (A,R) be an argumentation system s.t.
R enjoys C1′ and C2′. For all a, a′ ∈ A, if a ≈3 a′ then
∀E ∈ Ext(F), a ∈ E iff a′ ∈ E .

A similar result as Property 8 is found in case of
argumentation systems with attack relations satisfying C1′

and C2′ and using the equivalence relation ≈3.

Property 11: Let F = (A,R), F ′ = (A′,R′) be
two argumentation systems built from the same logic
(L,CN), R and R′ verify C1′ and C2′, and F ≡EQ13 F ′.
For all a ∈ A and for all a′ ∈ A′, if a ≈3 a′ then
Status(a,F) = Status(a′,F ′).

Finally, we show that if two argumentation systems
whose attack relations enjoy C1′ and C2′ are equivalent
wrt EQ13, then they are also equivalent wrt EQ23 and
EQ4b.

Theorem 4: Let F = (A,R), F ′ = (A′,R′) be two
argumentation systems built using the same logic (L,CN),
R and R′ verify C1′ and C2′. If F ≡EQ13 F ′, then
F ≡x F ′ with x ∈ {EQ23, EQ4b}.

In sum, the comparative study revealed that the most
general equivalence criteria are EQ1, EQ11, EQ12 and
EQ13. Indeed, if two systems are equivalent wrt to one of
these criteria, then they are so with most of the remaining
criteria.

V. CONDITIONS FOR EQUIVALENCE

In section III, we have proposed different intuitive criteria
for the equivalence of two argumentation systems built from
the same logic. An important question now is “are there
conditions under which two distinct argumentation systems
may be equivalent wrt to those criteria?” Recall that the
answer is no in case of the criteria used by Oikarinen and
Woltran ([5]). In that paper, it has been shown that two
systems are equivalent if they coincide. This means that the
notion of equivalence defined in that paper is useless. In
this section, we show that our refined criteria, in particular
EQ11, EQ12 and EQ13, make it possible to compare
different systems.

We study two particular situations. In the first one, we
focus on the global argumentation system that may be built
from a knowledge base Σ, that is the system which uses
the whole set Arg(Σ) of arguments. Since generally this
set is infinite, we identify a finite subset A of Arg(Σ)
such that the corresponding system is equivalent to the
global one. Such a result is of great importance from a
computational point of view. Instead of working with an
infinite set of arguments, we only handle its finite subset.

Before presenting the formal result, let us first introduce
some useful notations.

Notation: For an arbitrary set X , an arbitrary equivalence
relation ∼ on X , and x ∈ X , [x] = {x′ ∈ X | x′ ∼ x}
and X/ ∼ = {[x] | x ∈ X }. For any X ⊆ L, Cncs(X) =
{x ∈ L | ∃Y ⊆ X s.t.CN(Y ) 6= L and x ∈ CN(Y )}.

We show that if the attack relation used in
F = (Arg(Σ),R) verifies properties C1′ and C2 and
Cncs(Σ) has a finite number of equivalence classes, then
there exists a finite sub-system (i.e. with a finite set of
arguments) of F which is equivalent to F wrt most of the
proposed criteria.

Theorem 5: Let F = (Arg(Σ),R) be an argumentation
system built from a knowledge base Σ. If R satisfies
C1′ and C2 and Cncs(Σ)/ ≡ is finite, then there exists
A ⊆ Arg(Σ) s.t. A is finite and F ′ = (A,R|A)2 ≡x F
with x ∈ {EQ11, EQ13, EQ21, EQ23, EQ31, EQ33,
EQ4b, EQ5b, EQ6, EQ6b}.

The second situation we are interested in is the case of two
argumentation systems that may be built from two distinct
knowledge bases but use the same attack relation. For
instance, both systems use ‘rebut’ relation or both systems
use ‘assumption attack’, etc. Recall that Arg(L) is the set of
all arguments that can be built from a fixed logical language
L using a fixed consequence operator CN. We denote by
RL the attack relation which is used in the two systems
with RL ⊆ Arg(L) × Arg(L). The following result shows
when two systems F = (A,R) and F ′ = (A′,R′), where
R,R′ ⊆ RL, are equivalent wrt EQ11.

Theorem 6: Let (L,CN) be a fixed logic, Arg(L) a set
of arguments and RL ⊆ Arg(L)×Arg(L). Let F = (A,R)
and F ′ = (A′,R′) be two AS s.t. A,A′ ⊆ Arg(L) and
R = RL|A,R′ = RL|A′ . If RL satisfies C1′ and C2 and
A ∼1 A′, then F ≡EQ11 F ′.

The following result follows from Theorem 2.
Corollary 1: Let (L,CN) be a fixed logic, Arg(L) a set

of arguments and RL ⊆ Arg(L)×Arg(L). Let F = (A,R)
and F ′ = (A′,R′) be two AS s.t. A,A′ ⊆ Arg(L) and
R = RL|A,R′ = RL|A′ . If RL satisfies C1′ and C2 and
A ∼1 A′, then F ≡x F ′ with x ∈ {EQ13, EQ21, EQ23,
EQ31, EQ33, EQ4b, EQ5b, EQ6, EQ6b}.

A similar result is shown for argumentation systems which
use the same attack relation provided that this latter satisfies
properties C1 and C2′.

Theorem 7: Let (L,CN) be a fixed logic, Arg(L) a set
of arguments and RL ⊆ Arg(L)×Arg(L). Let F = (A,R)
and F ′ = (A′,R′) be two AS s.t. A,A′ ⊆ Arg(L) and
R = RL|A,R′ = RL|A′ . If RL satisfies C1 and C2′ and

2R|A = {(a, b) ∈ R s.t. a, b ∈ A}.



A ∼2 A′, then F ≡EQ12 F ′.
Due to the dependencies between criterion EQ12 and

some other equivalence criteria, the next result holds.
Corollary 2: Let (L,CN) be a fixed logic, Arg(L) a set

of arguments and RL ⊆ Arg(L)×Arg(L). Let F = (A,R)
and F ′ = (A′,R′) be two AS s.t. A,A′ ⊆ Arg(L) and
R = RL|A,R′ = RL|A′ . If RL satisfies C1 and C2′ and
A ∼2 A′, then F ≡x F ′ with x ∈ {EQ13, EQ22, EQ23,
EQ32, EQ33, EQ4, EQ4b, EQ5, EQ5b, EQ6b}.

The following result shows under which conditions two
systems are equivalent wrt EQ13.

Theorem 8: Let (L,CN) be a fixed logic, Arg(L) a set
of arguments, RL ⊆ Arg(L) × Arg(L). Let F = (A,R)
and F ′ = (A′,R′) be two AS s.t. A,A′ ⊆ Arg(L) and
R = RL|A,R′ = RL|A′ . If RL satisfies C1′ and C2′ and
A ∼3 A′, then F ≡EQ13 F ′.

The following corollary follows from Theorem 4.
Corollary 3: Let (L,CN) be a fixed logic, Arg(L) a set

of arguments and RL ⊆ Arg(L)×Arg(L). Let F = (A,R)
and F ′ = (A′,R′) be two AS s.t. A,A′ ⊆ Arg(L) and
R = RL|A,R′ = RL|A′ . If RL satisfies C1′ and C2′ and
A ∼3 A′, then F ≡x F ′ with x ∈ {EQ23, EQ33, EQ4b,
EQ5b, EQ6b}.

VI. CONCLUSION

In this paper, we have tackled the problem of equivalence
between two argumentation systems. We have shown the
benefits that can be obtained when the internal structure of
arguments is taken into account. We have proposed different
equivalence criteria for argumentation systems that use the
same underlying logic. We have provided conditions under
which two systems are equivalent wrt a given criterion. We
have also shown how an infinite system may be exchanged
by an equivalent, finite system.

An extension of this work would be to study the con-
ditions under which two argumentation systems that use
different attack relations are equivalent wrt the proposed
criteria. This is important in order to compare the results
returned by different attack relations. Another natural exten-
sion of this work would be to consider the strong equivalence
as discussed by Oikarinen and Woltran ([5]), that is, two
argumentation systems are strongly equivalent if they are
equivalent wrt any of proposed criteria even after adding
the same set of arguments in both systems. Finally, we will
study the notion of equivalence between two systems based
on different logics.
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APPENDIX
Proof of Proposition 1. Let S1, . . . , Sn ⊆ Σ be all the

consistent subsets of Σ. We will use the notation Ai =
{a ∈ A | Supp(a) = Si}. (Note that some of the sets in
A1, . . . ,An may be empty, but that is not important for the
proof.) We will now prove that for every stable extension
E , for any i, for any a, a′ ∈ Ai we have a ∈ E iff a′ ∈ E .
Let us suppose that a ∈ E and a′ /∈ E . Since E is a stable
extension, then ∃b ∈ E s.t. bRa′. This means that bRa which
contradicts the fact that E is a stable extension. The case
a /∈ E and a′ ∈ E is symmetric. This means that for any i,
any extension either contains all elements of Ai or neither
of them. Formally, for any extension E , ∀i ∈ {1, . . . , n}, we
have E ∩ Ai = Ai or E ∩ Ai = ∅. Consequently, there is at
most 2n different extensions.

Proof of Theorem 2. Let us prove that EQ21 is verified.
If Ext(F) = ∅, then from EQ11, Ext(F ′) = ∅. In this
case, EQ21 is trivial, since Sc(F) = Sc(F ′) = ∅. Else, let
Ext(F) 6= ∅.

Let Sc(F) = ∅. We will prove that Sc(F ′) = ∅. Suppose
the contrary and let a′ ∈ Sc(F ′). Let E ′ ∈ Ext(F ′).
Argument a′ is skeptically accepted, thus a′ ∈ E ′. Let f
be a bijection from EQ11, and let us denote E = f−1(E ′).
From F ≡EQ11 F ′, we obtain E ∈ Ext(F). Furthermore,
E ∼1 E ′, and, consequently, ∃a ∈ E s.t. a ≈1 a′. Property 5
implies that a is skeptically accepted in F , contradiction.

Let Sc(F) 6= ∅ and let a ∈ Sc(F). Since EQ11 is
verified, and a is in at least one extension, then ∃a′ ∈ A′
s.t. a′ ≈1 a. Since EQ11 is verified then, from Property
5, a′ is skeptically accepted in F ′. Thus ∀a ∈ Sc(F),
∃a′ ∈ Sc(F ′) s.t. a′ ≈1 a. To prove that ∀a′ ∈ Sc(F ′),
∃a ∈ Sc(F) s.t. a ≈1 a′ is similar.
Since EQ21 implies EQ23 and EQ4b in the general case,
as shown in Theorem 1, then we conclude that F and F ′
must be equivalent wrt. EQ21, EQ23 and EQ4b.

Proof of of Theorem 5. Let A′ ⊆ A be a set such
that ∀a ∈ A, ∃!a′ ∈ A′ s.t. a ≈1 a′. Let R′ = R|A′

and F ′ = (A′,R′). From Theorem 6 and Corollary
1 applied on F and F ′, we obtain that F ≡x F ′



with x ∈ {EQ11, EQ13, EQ21, EQ23, EQ31, EQ33,
EQ4b, EQ5b, EQ6, EQ6b}. There are two remarks that
should be made here. The first one is purely a technical
issue: namely, we use Theorem 6 and Corollary 1 in the
proof of Theorem 5. Note, however, that this is not a
problem, since Theorem 6 and Corollary 1 are proved
without a reference to the present result. We decided to
present Theorem 5 before Theorem 6 and Corollary 1 since
we estimated that it is easier to follow Section V that way.
The second remark is more complex. Recall that, at one
hand, we supposed that set A and attack relation R on that
set are given. On the other hand, Theorem 6 and Corollary
1 require an attack relation RL ⊆ Arg(L) × Arg(L)
s.t. R = RL|A where RL verifies C1’ and C2. We
will now show that, given a relation R on set A which
enjoys C1’ and C2, we can always define (at least one)
relation RL ⊆ Arg(L) × Arg(L) s.t. R = RL|A and
RL verifies C1’ and C2. It is clear that in our case,
the behavior of RL outside of A is not important, but
formally we must prove that such a relation exists. The
most obvious option is to define RL as follows: for
any x, y ∈ Arg(L), xRLy iff ∃x′ ∈ A, ∃y′ ∈ A s.t.
Conc(x) ≡ Conc(x′) and Supp(y) = Supp(y′) and xRy.
Let us verify that RL defined in this way verifies C1’
and C2. Let a, b, c ∈ Arg(L) and let Conc(a) ≡ Conc(b)
and aRLc. Since aRLc then ∃a′ ∈ A ∃c′ ∈ A s.t.
Conc(a) ≡ Conc(a′) and Supp(c) = Supp(c′) and a′Rc′.
Since Conc(b) ≡ Conc(a), then Conc(b) ≡ Conc(a′).
Thus, ∃a′ ∈ A, ∃c′ ∈ A s.t. Conc(a′) ≡ Conc(b) and
Supp(c) = Supp(c′) and a′Rc′. Thus, bRLc. Let us
suppose that ¬(aRLc). In that case, ¬(∃a′ ∈ A, ∃c′ ∈ A
s.t. Conc(a′) ≡ Conc(c) and Supp(c) = Supp(c′) and
a′Rc′). Since Conc(b) ≡ Conc(a) then ¬(bRLc). Thus,
C1’ is verified by RL. Let us see why RL enjoys
C2. Let a, b, c ∈ Arg(L) and let Supp(a) = Supp(b).
Let cRLa. This means that ∃c′ ∈ A, ∃a′ ∈ A s.t.
Conc(c) ≡ Conc(c′) and Supp(a′) = Supp(a) and cRa.
Since Supp(a) = Supp(b) then cRLb. It is easy to see that
if ¬(cRLa) then ¬(cRLb). All this guarantee that we can
apply Theorem 6 and Corollary 1. We obtain that F ≡x F ′
with x ∈ {EQ11, EQ13, EQ21, EQ23, EQ31, EQ33,
EQ4b, EQ5b, EQ6, EQ6b}.
In addition to that, we will show that A′ is finite.
Since Σ is finite, then {Supp(a) | a ∈ A′} must be
finite. If for any H ∈ {Supp(a) | a ∈ A′}, the set
{a ∈ A′ | Supp(a) = H}, is finite, then the set A′ is
clearly finite. Else, there exists H0 ∈ {Supp(a) | a ∈ A′},
s.t. the set AH0

= {a ∈ A′ | Supp(a) = H0} is
infinite. By the definition of A′, one obtains that
∀a, b ∈ AH0 , Conc(a) 6≡ Conc(b). It is clear that
∀a ∈ AH0

, Conc(a) ∈ Cncs(Σ). This implies that there
are infinitely many different formulae having logically
non-equivalent conclusions in Cncs(Σ), formally the set
Cncs(Σ)/ ≡ is infinite, contradiction.

Proof of Theorem 6. Let us first suppose that Ext(F) 6= ∅
and let us define the function f ′ : 2A → 2A

′
as follows:

f ′(B) = {a′ ∈ A′ | ∃a ∈ B s.t. a′ ≈1 a}.
Let f be the restriction of f ′ to Ext(F). We will prove

that the image of this function is Ext(F ′) and that f is
a bijection between Ext(F) and Ext(F ′) which verifies
EQ11. First, we will prove that for any E ∈ Ext(F),
f(E) ∈ Ext(F ′). Let E ∈ Ext(F) and let E ′ = f(E). We
will prove that E ′ is conflict-free. Let a′, b′ ∈ E ′. There
must exist a, b ∈ E s.t. a ≈1 a′ and b ≈1 b′. Since E is an
extension, ¬(aRb) and ¬(bRa). By applying Property 3 on
(Arg(L),RL), we have that ¬(a′R′b′) and ¬(b′R′a′). Let
x′ ∈ A′\E ′. Then ∃x ∈ A s.t. x ≈1 x′. Note also that it must
be that x /∈ E . Since E ∈ Ext(F), then ∃y ∈ E s.t. yRx.
Note that ∃y′ ∈ E ′ s.t. y′ ≈1 y. From Property 3, y′R′x′.
We have shown that the image of f is the set Ext(F ′). We
will now prove that f : Ext(F)→ Ext(F ′) is injective. Let
E1, E2 ∈ Ext(F) with E1 6= E2 and E ′ = f(E1) = f(E2).
We will show that if E1 ∼1 E2 then E1 = E2. Without
loss of generality, let ∃x ∈ E1 \ E2. Then, from E1 ∼1 E2,
∃x′ ∈ E2, s.t. x′ ≈1 x. Then, since x ∈ E1 and x /∈ E2, from
Property 4 we obtain that x′ ∈ E1 and x′ /∈ E2. Contradiction
with x′ ∈ E2. This means that ¬(E1 ∼1 E2). Without loss
of generality, ∃a1 ∈ E1 \ E2 s.t. @a2 ∈ E2 s.t. a1 ≈1 a2.
Let a′ ∈ A′ s.t. a′ ≈1 a1. Recall that E ′ = f(E2). Thus,
∃a2 ∈ E2 s.t. a2 ≈1 a′. Contradiction.

We show that f : Ext(F) → Ext(F ′) is surjective. Let
E ′ ∈ Ext(F ′), and let us show that ∃E ∈ Ext(F) s.t. E ′ =
f(E). Let E = {a ∈ A | ∃a′ ∈ E ′ s.t. a ≈1 a′}. From
Property 3 we see that E is conflict-free. For any b ∈ A\E ,
∃b′ ∈ A′\E ′ s.t. b ≈1 b′. Since E ′ ∈ Ext(F ′), then ∃a′ ∈ E ′
s.t. a′R′b′. Now, ∃a ∈ E s.t. a ≈1 a′; from Property 3, aRb.
Thus, E is a stable extension in F .

We will now show that f : Ext(F) → Ext(F ′) verifies
the condition of EQ11. Let E ∈ Ext(F) and E ′ = f(E). Let
a ∈ E . Then, ∃a′ ∈ A′ s.t. a′ ≈1 a. From the definition of
f , it must be that a′ ∈ E ′. Similarly, if a′ ∈ E ′, then must
be an argument a ∈ A s.t. a ≈1 a′, and again from the
definition of the function f , we conclude that a ∈ E .

We conclude that F ≡EQ11 F ′. Let us take a look at
the case when Ext(F) = ∅. We show that Ext(F ′) = ∅.
Suppose not and let E ′ ∈ Ext(F ′). Let us define E = {a ∈
A | ∃a′ ∈ E ′ s.t. a ≈1 a′}. From Property 3, E must be
conflict-free. The same property shows that for any b ∈ A\
E , ∃a ∈ E s.t. aRb. Thus, E is a stable extension in F .
Contradiction with Ext(F) = ∅.


