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Abstract. Argumentation is a promising approach for handling incstesit knowl-
edge bases, based on the justification of plausible conclsi&ly arguments. Due
to inconsistency, arguments may be attacked by counteremgts. The problem

is thus to evaluate the arguments in order to select the mosptable ones.

The aim of this paper is to make a bridge between the arguniemtaased and
the coherence-based approaches for handling inconsyst@iecare particularly
interested by the case where priorities between the fosmeflaan inconsistent
knowledge base are available. For that purpose, we willhiseith preference-
based argumentation framework (PAF) we have proposed iradierework. A
rich PAF has two main advantages: i) it overcomes the linfitsxisting PAFs,
and ii) it encodes two different roles of preferences betwaaguments (handling
critical attacks and refining the evaluation of argumentgg. show that there
exist full correspondences between particular cases setRAF and two well
known coherence-based approaches, namely the prefeietthenries and the
democratic ones.

1 Introduction

An important problem in the management of knowledge-bagstéms is the handling
of inconsistency. Inconsistency may be present for mahrge reasons:

— The knowledge base includes default rules. Let us considéngtance the general
rules ‘birds fly’, ‘penguins are birds’ and the specific rubehguins do not fly’. If
we add the fact ‘Tweety is a penguin’, we may conclude thatélweoes not fly
because it is a penguin, and also that Tweety flies becaussa hird.

— In model-based diagnosis, a knowledge base contains aitestiof the normal
behavior of a system, together with observations made arsftstem. Failure de-
tection occurs when observations conflict with the normatfioning mode of the
system and the hypothesis that the components of the systaroeking well; that
leads to diagnose which component fails;

— Several consistent knowledge bases pertaining to the sameid, but coming
from different sources of information, are available. Faostance, each source is
a reliable specialist in some aspect of the concerned dobaiis less reliable in
other aspects. A straightforward way of building a globadéo¥ is to concatenate
the knowledge bases; provided by each source. Even if each basds consis-
tent, it is unlikely that their concatenation will be consis also.



Classical logic has many appealing features for knowledgessentation and rea-
soning, but unfortunately when reasoning with inconsisteformation, i.e. drawing
conclusions from an inconsistent knowledge base, the sdassical consequences is
trivialized. To solve this problem, two kinds of approaclhese been proposed. The
first one, calledcoherence-basedpproach and initiated in [10], proposes to give up
some formulas of the knowledge base in order to get one oraasansistent subbases
of the original base. Then plausible conclusions may beilddsby applying classical
entailment on these subbases. The second approach actapisistency and copes
with it. Indeed, it retains all the available informationtprohibits the logic from de-
riving trivial conclusions. Argumentation is one of theggeoaches. Its basic idea is
that each plausible conclusion inferred from the knowledase is justified by some
reason(s), calledrguments), for believing in it. Due to inconsistency, those arguatse
may be attacked by other arguments (called counterargsindie problem is thus to
evaluate the arguments in order to select the most accepiabk.

In [7], it has been shown that the results of the coherensedapproach proposed
in [10] can be recovered within Dung’s argumentation framew9]. Indeed, there is
a full correspondence between the maximal consistent selshiz a given inconsistent
knowledge base and the stable extensions of the arguman&tstem built over the
same base. In [10], the formulas of the knowledge base avengskto be equally pre-
ferred. This assumption has been discarded in [6] and inrj8ged, in the former work,
a knowledge base is equipped with a total preorder. Thugaddf computing the max-
imal consistent subbasgweferred sub-theorieare computed. These sub-theories are
consistent subbases that privilege the most importantutasn In [8], the knowledge
base is rather equipped with a partial reorder. The idea wvdgfine a preference re-
lation, calleddemocratic relationbetween the consistent subbases. The best subbases,
calleddemocratic sub-theoriewrt this relation are used for inferring conclusions from
the knowledge base.

The aim of this paper is to investigate whether it is posdiblecover the results of
these two works within an argumentation framework. Singerjies are available, it
is clear that we need a preference-based argumentatioavirark (PAF). Recently, we
have shown in [3] that existing PAFs (developed in [2, 4])raweappropriate since they
may return unintended results, especially when the attglekion is asymmetric. More-
over, their results are not optimal since they may be refirygttié available preferences
between arguments. Consequently, we have proposed inrtteesper (i.e. [3]) a new
family of PAFs, calledich PAF, that encodes two distinct roles of preferences between
arguments: handling critical attacks (that is an argumestrionger than its attacker)
and refining the result of the evaluation of arguments ustweptability semantics.
In this paper, we show that there is a full correspondenocsédesi the preferred sub-
theories proposed in [6] and the stable extensions of aannstof this rich PAF, and
also a full correspondence between the democratic subitisedeveloped in [8] and
another instance of the rich PAF. The two correspondeneesiarained by choosing
appropriately the main components of a rich PAF: the definitf an argument, the
attack relation, the preference relation between argusreamd the preference relation
between subsets of arguments.



The paper is organized as follows: Sections 2 and 3 recglentiwely the rich
PAF if [3] and the two works of [6, 8]. Section 4 shows how im&tas of the rich PAF
compute preferred and democratic sub-theories of a kn@elbdse. The last section is
devoted to some concluding remarks.

2 Preference-based argumentation frameworks

In [9], Dung has developed the most abstract argumentationdwork in the literature.
It consists of a set of arguments and an attack relation testtem.

Definition 1 (Argumentation framework [9]). Anargumentation frameworAF) is
aparr F = (A, R), whereA is a set of arguments ari is an attack relation R C
A x A). The notatioru’Rb means that the argumeatattacksthe argumend.

In the above definition, the arguments and attacks are absimtties since Dung’s
framework completely abstracts from the application. Hasvethe two components
can be defined as follows when handling inconsistency pnopositionalknowledge
baseX.

Definition 2 (Argument - Undercut). Let 3’ be a propositional knowledge base.

— Anarguments a paira = (H, h) such that:
e HC X
e [ is consistent
e HFh
e BH' C H suchthatd’ is consistent and’ +- h.
— An argument H, h) undercutan argument H' /') iff 3" € H' s.t.h = —-h".

Example 1.Let ¥ = {z, -y, z — y} be a propositional knowledge base. The follow-
ing arguments are built from this base:

t({z}, 2 ({~y}, )
t({z —>y} r—y) as: ({x,—y},x A -y)
c({w,r =y}, o) as: ({2 — y}hy)

The figure below depicts the attacks wrt “undercut”.
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O

Different acceptability semantictr evaluating arguments have been proposed in
the same paper [9]. Each semantics amounts to define setgeyftable arguments,
calledextensionsior the purpose of our paper, we only need to recall stalbhastcs.

Definition 3 (Conflict-free, Stable semantics [9])Let F = (A, R) be an AFB C A.
— Bis conflict-freeiff # a, b € B such thatzRb.



— Bis astableextension iff it is conflict-free and attacks any elemendin 5.

Example 1 (Cont): The argumentation framework of Example 1 has three stable ex
tensionszﬁ’l = {al, a9, a4}, Ey = {ag, as, a5} andé’g = {al, as, ag}.

The attack relation is the backbone of any acceptabilityss#ios in [9]. An attack
from an argument towards an argumert always wins unless is itself attacked by
another argument. However, this assumption is very streagise some attacks cannot
always ‘survive’. Especially when the attacked argumeatrignger than its attacker.

Throughout the paper, the relation A x A is assumed to be a preorder (reflexive

and transitive). For two argumentsndb, writing a > b (or (a,b) € >) means that is

at least as strong @s The relation> is the strict version of. Indeedga > biff a > b
and not § > a). Examples of such relations are those based on the cgrteirl of
the formulas of a propositional knowledge baseThe baseX is equipped with a total
preorder>. For two formulasc andy, writing x > y means that is at least as certain
asy. In this case, the bas® is stratified intoX; U ... U X, such that formulas oF;
have the same certainty level and are more certain than fasmu’; wherej > 1.
The stratification o’ enables to define a certainty level of each sulSseft Y. It is the
highest number of stratum met by this subset. Formally:

Level(S) =maxX(i |z € SN X;} (with Level(() = 0).

The above certainty level is used in [5] in order to define altpteorder on the set of
arguments that can be built from a knowledge base. The peetrdefined as follows:

Definition 4 (Weakest link principle [5]). LetX = X, U...U X, be a propositional
knowledge. An argumerttd, ) is preferred to(H', '), denoted by(H,h) >wrLp
(H', 1), iff Level(H) < Level(H’).

Example 1 (Cont): Assume thaty = X U Xy with ¥, = {z} and Xy = {z —
y, -y }. It holds thatLevel({z}) = 1 while Level({—y}) = Level({x — y}) =
Level({x,—y}) = Level({—wy,z — y}) = Level({z,x — y}) = 2. Thus,a; >wrp
as,as, a4, as, ag While the five other arguments are all equally preferred.

In [2,4], Dung’s argumentation framework has been exteriegreferences be-
tween arguments. The idea behind those works is to rerootieal attacks$ and to
apply Dung’s semantics on the remaining attacks. Unfotalpahis solution does not
work, in particular, when the attack relation is asymmetric

Example 1 (Cont): The classical approaches of PAFs remove the critical aftack

as 10 ay (Sincea; >wrp as) and get{aq, as, as, as} as a stable extension. Note that
this extension, which intends to support@herent point of viewis conflicting since it
contains bothu; andas. Consequently, the union of the supports of its argumerss is
inconsistent set.

L An attack(b, a) € R is critical iff a > band not(b > a).



The approach followed in [2, 4] suffers from another prohlésresults may need
to berefinedby preferences between arguments as shown by the followengele.

Example 2.Let us consider the AF depicted in the figure below.
Assume that: > b andc > d. The corresponding PAF has two stable extensidms:}
and{b, d}. Note that any element db, d} is weaker than at least one element of the

set{a, c}. Thus, it is natural to considdm, c} as better tharb, d}. Consequently, we
may conclude that the two argumentandc are “more acceptable” thdnandd.

What is worth noticing is that a refinement amountstanparesubsets of argu-
ments. In Example 2, the so-callddmocratiaelation,> 4, can be used for comparing
the two setq a, ¢} and{b, d}. This relation is defined as follows:

Definition 5 (Democratic relation). Let A be a set of objects and C A x A be a
partial preorder. ForX', X' C A, X =4 X' iff Vo’ € X'\ X, 32 € X\ A’ such that
x>

In [3], we have proposed a novel approach which palliatedinfies of the existing
ones. It follows two steps:

1. To repair the critical attacks by computing a new attatktien 2.
2. To refine the results of the framewdtK, R.,.) by comparing its extensions using a
refinement relation.

The idea behind the first step is to modify the graph of attéclstich a way that,
for any critical attack, the preference between the argusnisriaken into account and
the conflict between the two arguments of the attack is reptes. For this purpose,
weinvertthe arrow of the critical attack. For instance, in Exampleh&,arrow fromas
to a; is replaced by another arrow emanating freptowardsas. The intuition behind
this is that an attack between two arguments representaie sense two things: i)
an incoherence between the two arguments, and ii) a kindedérance determined by
the direction of the attack. Thus, in our approach, the tisaof the arrow represents
a real preference between arguments. Moreover, the coisfliept between the two
arguments. Dung’s acceptability semantics are then apphiehe modified graph.

Definition 6 (PAF [3]). A preference-based argumentation framew@&F) is a tuple
T = (A, R,>)wheredis asetofargument® C Ax.Ais an attack relation ang- is

a (partial or total) preorder on4. The extensions @f under a given semantics are the
extensions of the argumentation framew@/ R..), calledrepaired frameworkunder
the same semantics witlR,. = {(a,b)|(a,b) € R and not(b > a)} U {(b,a)|(a,b) €

R andb > a}.

This approach does not suffer from the drawback of the exjsbine. Indeed, it
delivers conflict-free extensions of arguments.



Property 1. Let7 = (A, R, >) be a PAF and, ..., &, its extensions under a given
semantics. Forall=1,...,n, &; is conflict-free wrtR.

At the second step, the result of the above PAF is refined wsiadginement rela-
tion. The two steps are captured in an abstract framewolledaéch preference-based
argumentation framework

Definition 7 (Rich PAFs [3]). Arich PAFis a tuple7 = (A, R,>,>) whereA is a
set of argumentsy C A x Ais an attack relation> C A x A is a (partial or total)
preorder and~ C P(A) x P(A)? is a refinement relation. The extensiongofinder a
given semantics are the elementsiat(S, -)3 whereS is the set of extensions (under
the same semantics) of the PAE, R, >).

Example 3.Let us consider the argumentation framework depicted indfieside of
the following figure.
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Assume thats > b, ¢ > d andb > e. The repaired framework corresponding to
(A, R,>) is depicted in the right side of the above figure. This lattes two stable
extensionga, ¢} and{b, d}. According to the democratic relati¢n, it is clear that the
first extension is better than the second one. Thus, thfuse} is the stable extension
of the rich PAF(A, R, >, =4).

In [3], we have studied deeply the properties of the rich PABwever, for the
purpose of this paper we do not need to recall them.

3 Coherence-based approach for handling inconsistency

Coherence-based approach for handling inconsistency irpopitional knowledge
baseX follows two steps: At the first step, some subbase&’adre chosen. In [10],
these subbases are the maximal (for set inclusion) consmtes. At the second step,
an inference mechanism is chosen. This later defines theeinfes to be made froi.
An example of inference mechanism is the one that infersrad if it is a classical
conclusion of all the chosen subbases.

Several works have been done on choosing the subbasestitulzarwhenX’ is
equipped with a (total or partial) preorder(>> C X x X). Recall that wher is total,
X is stratified intoX; U ... U X, such thatvi, j with i # j, X; U X; = (). Moreover,
X7, contains the most important formulas whilg, contains the least important ones.

In[6], the knowledge bas® is equipped with a total preorder. The chosen subbases
privilege the most important formulas.

2 P(A) is the powerset of the sgt.
$Max(S,=)={s € S| #s’ € Ss.t.s' = sand nots = s'}.



Definition 8 (Preferred sub-theory [6]). Let X' be stratified intoX; U ... U X,,. A
preferred sub-theong a setS = S; U...US, suchthatvk € [1,n],S1 U...USk is
a maximal (for set inclusion) consistent subbas&'ofJ ... U Xy.

Example 1 (Cont): The knowledge bas& = Y7 U X5 with ¥y = {z} and Y, =
{z — y,~y} has two preferred sub-theorie®: = {z,z — y} andS; = {z, —y}.

It can be shown that the preferred sub-theories of a knowlbdge).’ are maximal
(wrt set inclusion) consistent subbasesbf

Property 2. Each preferred sub-theory of a knowledge basés a maximal (for set
inclusion) consistent subbase bf

In [8], the above definition has been extended to the caseenhiés equipped with
a partial preordeb. The basic idea was to define a preference relation on therpowe
set of 3. The best elements according to this relation are the pezfeheories , called
alsodemocratic sub-theorie$he relation that generalizes preferred sub-theorie®is th
democratic relation (see Definition 5). In this conteftis X' and> is the relatior>.
In what follows,> denotes the strict version &f. Thus:

LetS,8' C Y. S =4 S8 iff Va' € &'\ 8,3z € S\ S’ such thatr > 2.

Definition 9 (Democratic sub-theory [8]).Let X' be propositional knowledge base
and> C X' x X be a partial preorder. Ademocratic sub-theorig a setS C X' such
thatS is consistent an@3S’ C ¥) s.t. S’ is consistent ang’ =, S.

Example 4.Let ¥ = {z,—x,y,~y} be such thatz > y and—y > z. LetS; =
{z,y}, S2 = {x,w}, S3 = {—-=,y}, andS, = {—z,~y}. The three subbases,
S; andS, are the democratic sub-theoriesXf However,S; is not a democratic sub-
theory sinceS; =4 Si.

Itis easy to show that the democratic sub-theories of a kedgé base.’ are max-
imal (for set inclusion) consistent.

Property 3. Each democratic sub-theory of a knowledge basis a maximal (for set
inclusion) consistent subbase bf

4 Computing sub-theories with argumentation

This section shows how two instances of the rich PAF pregant&ection 2 compute
the preferred and the democratic sub-theories of a prapoaltknowledge basé..
The two instances use all the arguments that can be built ffoasing Definition 2
(i.e. the setirg(X)). Similarly, they both use the attack relation “Undercut/amn also
in Definition 2. However, as we will see next, they are grouhde distinct preference
relations between arguments. The last component of a ri€hi$A preference relation
on the power set dfrg(X’). Both instances will use the democratic relatiop. Thus,
for recovering preferred and democratic sub-theories, Weise two instances of the



rich PAF (Arg(X), Undercut>, >,).

It can be shown that when the preference relatiois a total preorder, then the stable
extensions of the PARArg(Y'), Undercut>) are all incomparable wrt the democratic
relation>.

Property 4. Let 7 = (Arg(X'), Undercui>) be a PAF. For all stable extensiofisind
&' of T with £ # &', if > is atotal preorder, then(& =4 &').

From the previous property, it follows that the stable estens of(Arg(X"), Undercut,
>) coincide with those of the rich PARrg(X'), Undercut>, ;).

Property 5. If > is a total preorder, then the stable extension&eg(Y'), Undercut,
>, =4) are exactly the stable extensiong afg(X'), Undercut,>).

Let us start by introducing some useful notations.

Notations: Leta = (H, h) be an argument (in the sense of Definition 2). The functions
Supp andConc return respectively the suppdit and the conclusion of the argument
a.ForS C X, Arg(S) = {(H, h) | (H,h) is an argument in the sense of Definition 2
andH C S}. Thus,Arg(X) denotes the set of all the arguments that can be built from
the whole knowledge basg. For8 C Arg(XY), Base(B) = | Supp(a) wherea € B.

The following result summarizes some useful propertiesefabove functions.

Property 6.
— For any consistent subbaSeC ¥, S = Base(Arg(S)).
— The functionBase is surjective but not injective.
— Forany€ C Arg(X), £ C Arg(Base(£)).
— The functionArg is injective but not surjective.

Another property that is important for the rest of the pamdates the notion of
consistency of a set of formulas to that of conflict-freeressset of arguments.

Property 7. A setS C X is consisteniff Arg(S) is conflict-free.

The following example shows that the previous property degsold for an arbi-
trary set of arguments.

Example 5.Let & = {({z},z), {z — y}, = — v), ({~y}, ~y)}. Itis obvious that
is conflict-free whileBase (&) is not consistent.

In the rest of this paper, we assume that a knowledge basmtains only consistent
formulas.



4.1 Recovering the preferred sub-theories

In this section, we will show that there is a full correspomeckebetween the preferred
sub-theories of a knowledge ba&and the stable extensions of the PAfrg(XY),
Undercut,>y 1 p). Recall that the relatiotryy 1 p is based on the weakest link prin-
ciple and privileges the arguments whose less importantdtas are more important
than the less important formulas of the other arguments. rEttétion is a total preorder
and is defined over a knowledge base that is itself equipptdaniotal preorder. Ac-
cording to Property 5, the stable extensiongfg(Y'), Undercut, >y 1 p) coincide
with those of(Arg(X'), Undercut>w . p, =4).

The first result shows that from a preferred sub-theorypbissible to build a unique
stable extension of the PARRrg(X'), Undercut>w p).

Theorem 1. Let )’ be a stratified knowledge base. For all preferred sub-thebof -,
it holds that:

— Arg(S) is a stable extension ¢hrg(X'), Undercut, >y 1, p)
— § = Base(Arg(S))

Similarly, we show that each stable extension(bfg(X’), Undercut,>wrp) is
built from a unique preferred sub-theory bf

Theorem 2. Let X’ be a stratified knowledge base. For all stable exten&iof(Arg(X),
Undercut,>y 1. p), it holds that:

— Base(€) is a preferred sub-theory of
— & = Arg(Base(£))

The next theorem shows that there exists a one-to-one pomdence between pre-
ferred sub-theories of and stable extensions (frg(X'), Undercut>w 1.p).

Theorem 3. Let7 = (Arg(X), Undercut,>y 1 p) be a PAF over a stratified knowl-
edge basel. The stable extensions @f are exactly theirg(S) whereS ranges over
the preferred sub-theories af.

From the above result, it follows that the PAkrg(Y'), Undercut > 1, p) has at
least one stable extension unless the formulas afe all inconsistent.

Corollary 1 The PAF(Arg(X'), Undercut,>yw 1 p) has at least one stable extension.

Example 1 (Cont): Figure 1 shows the two preferred sub-theoried’ads well as the
two stable extensions of the corresponding PAF.



Fig. 1. Preferred sub-theories af + Stable extensions dhrg(Y'), Undercut>wrp)
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4.2 Recovering the democratic sub-theories

Recall that the democratic sub-theories of a knowledge bageneralize the preferred
sub-theories whe' is equipped with a partial preorder. Thus, in order to capture the
democratic sub-theories, we will use the generalized orrsf the preference relation
>wrp C Arg(X) x Arg(X):

Definition 10 (Generalized weakest link principle [1]).Let X be a knowledge base
which is equipped with a partial preorder. For two argumentsH, ), (H', ') €
Arg(X), (H,h) >qwrp (H', 1) iff Vk € H,3k' € H' such thatk > k' (i.e.k > &
and not ¢’ > k)).

It can be shown that from each democratic sub-theory of a ledye base”, a
stable extension afarg(X’), Undercut>cw rp) can be built.

Theorem 4. Let X be a knowledge base which is equipped with a partial preokeler
For all democratic sub-theon§ of X, it holds thatArg(.S) is a stable extension of
(Arg(X),Undercut >cwrp).

The following result shows that each stable extension oP#ie(Arg(X'), Undercut,
>awirp) returns a maximal consistent subbaseof

Theorem 5. Let X be a knowledge base which is equipped with a partial preokeler
For all stable extensio# of (Arg(X'), Undercut, >cwrp), it holds that:

— Base(€) is a maximal (for set inclusion) consistent subbas& of



— &£ = Arg(Base(f)).

The following example shows that the stable extensiongAeg(X'), Undercut,
>awrp) do not necessarily return democratic sub-theories.

Example 4 (Cont): Recall that¥ = {z, —z,y, -y}, ~x > y and—y > z. LetS =
{z,y}. Itcan be checked that the geig(S) is a stable extension ¢hrg(X'), Undercut,
>cwrp). HoweverS is not a democratic sub-theory sintez, ~y} =4 S.

It can also be shown that the converse of the above theoreot isue. Indeed, a
knowledge base may have a maximal consistent subBaselArg(S) is not a stable
extension of Arg(X), Undercut>aw . p). Let us consider the following example.

Example 6.Let ¥ = {x, -z} andz > —z. Itis clear that{—z} is a maximal con-
sistent subbase df while Arg({—z}) is not a stable extension ¢frg(X'), Undercut,
>ewLp)-

The following result establishes a link between the ‘besiximal consistent sub-
bases of’ wrt the democratic relatior ; and the ‘best’ sets of arguments wrt the same
relation>,.

Theorem 6. LetS, S’ C X be maximal (for set inclusion) consistent subbases.df
holds thatS =, &' iff Arg(S) =4 Arg(S’).

We also show that from each democratic sub-theorifobne can build a stable
extension of the corresponding rich PAF, and each stabinsidn of the rich PAF is
built from a democratic sub-theory.

Theorem 7. Let X' be equipped with a partial preordér.

— For all democratic sub-theor§ of X, Arg(S) is a stable extension of the rich PAF
(Arg(z), Undercut>cwrp, =d).

— For each stable extensiafi of (Arg(X), Undercut,>cwrp, =4), Base(£) is a
democratic sub-theory of.

Finally, we show that there is a one-to-one correspondeeiveden the democratic
sub-theories of a base and the stable extensions of its corresponding rich PAF.

Theorem 8. The stable extensions @frg(X'), Undercut>cwrp, =4) are exactly the
Arg(S) whereS ranges over the democratic subtheoriegbf

Figure 2 synthetizes the different links between the deatarsub-theories of a
knowledge basé’ and the stable extensions of its corresponding PAF and Aéh P

5 Conclusion

The paper has proposed a new approach for preference-bagedemtation frame-
works. This approach allows to encode two roles of preferefetween arguments:
handling critical attacks and refining the result of the eatibn. It is clearly argued in



Fig. 2. Summary
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the paper that the two roles are completely independenttamadbe modeled in dif-
ferent ways and at different steps of the evaluation proddssn, we have shown that
the approach is well-founded since it allows to recover weeit known works on han-
dling inconsistency in knowledge bases, namely the onésdhtore the consistency of
the knowledge base. Indeed, we have shown full correspaeddretween instances of
the new PAF and respectively the preferred sub-theoriesetibfiy Brewka in [6] and
the democratic sub-theories proposed by Cayrol, Royer anceSin [8].
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Appendix

Proof of Property 1 Every setf€ C A is conflict-free wrtR iff it is conflict-free wrt
R.. Since extensions are conflict-free iRt, then they are conflict-free wiR..

Proof of Property 3 Let S be a democratic sub-theory. From Definition®ijs con-
sistent. Assume now that is not a maximal (for set inclusion) consistent set. Thus,
Jr € ¥\ §s.t.SU {z} is consistent. It is clear th& U {z} >4 S. This contradicts
the fact thatS is a democratic sub-theory.

Proof of Property 4 Let &, £’ be two stable extensions @frg(X’), Undercut, >), and
let€ =4 & with € # &', Itis clear that~(€ C &) and—(E' C &). Leta’ € &'\ € be
suchthawa” € £\ £ it holds thata’ > o” (this is possible since is a total preorder).
From& =4 £, we have thalla € £\E&’ s.t.a > a’. Thismeansthatt’ € £'\&,a > V.
Sincef’ is a stable extension, théla” € £’ s.t.a"Ra, i.e.(a”"Ra and—(a > o)) or
(aRa” anda” > a). Sets€ and&’ are both conflict-free, s@’ € £\ €. Contradiction,
sinceVa” € £\ £ we haven > a”.

Proof of Property 6

— We show thatr € S iff © € Base(Arg(S)) whereS is a consistent subbase bf
(=) Letz € S. SinceS is consistent, then the sgt} is consistent as well. Thus,
({z},z) € Arg(S). Consequently; € Base(Arg(S)).

(<) Assume that: € Base(Arg(S)). Thus,3a € Arg(S) s.t.z € Supp(a). From
the definition of an argumergnpp(a) C S. Consequently; € S.

— Let us show that the functioBase is surjective. LetS C Y. From the first item
of this property, the equalitBase(Arg(S)) = S holds. It is clear thatrg(S) €
P(arg(X)) (P(Arg(X)) being the power set dfrg(2)).

The following counter-example shows that the functBarze is not injective: Let
T ={z,z -y}, € = {({«},2), ({x — y},o — y)} ande’ = {({z},2), ({z.2 —
y},y)}. SinceBase(€) = Base(E’) = X, with £ # £’ thenBase is not injective.

—If a € £ whereE C Arg(X), thenSupp(a) C Base(£). Consequentlyg €
Arg(Base(£)).

— Let us prove thatrg is injective. LetS, S’ C X with S # &'. Then, it must be
thatS\ &’ # B or S’ \ S # 0 (or both). Without loss of generality, l&\ S’ #
and letr € S\ &'. If {z} is consistent, ther{{z}, z) € Arg(S) \ Arg(S’). Thus,
Arg(S) # Arg(S).

We will now present an example that shows that this funct®nat surjective.
Let ¥ = {z,z — y} and& = {({z},2), {z — y},x — y)}. Itis clear that
there exists n& C ¥ s.t.£ = Arg(S), since such a s&& would containX’ and,
consequentlyArg(S) would contain({z,z — y},y), an argument not belonging
to €.



Proof of Property 7 LetS C .

— Assume thatS is consistent andrg(S) is not conflict-free. This means that there
exista,a’ € Arg(S) s.t.a undercuts:’. From Definition 2 of undercut, it follows
thatSupp(a)USupp(a’) is inconsistent. Besides, from the definition of an argument
Supp(a) € S andSupp(a’) C S. Thus,Supp(a) U Supp(a’) C S. Then,S is
inconsistent. Contradiction.

— Assume now thas is inconsistent. This means that there exists a finiteSset

{hl, ceey hk} s.t.
e SCS
e S'H L
e S’ is minimal (wrt. set inclusion) s.t. previous two items hold
SinceS’ is a minimal inconsistent set, théi, ..., hiy—1} and{h;} are consis-

tent. Thus,({h1, ..., hg—1}, 2he), {hw}, hi) € Arg(S). Furthermore, those two
arguments are conflicting (the former undercuts the lafférs means thatrg(S)
is not conflict-free.

Proof of Theorem 1Let S be a preferred sub-theory of a knowledge h&s@hus,S is
consistent. From Property 7, it follows thaitg(S) is conflict-free. Assume thala ¢
Arg(S). Sincea ¢ Arg(S) andS is a maximal consistent subbase Xf(according
to Property 2), theih € Supp(a) s.t.S U {h} F L. Assume that: € X,. Thus,
Level(Supp(a)) > j.

SinceS is a preferred sub-theory df, thenS; U ... U S; is a maximal (for set
inclusion) consistent subbase®f U ... U X;. Thus,S; U...US; U{h} I L. This
means that there exists an argum@t —h) € Arg(S) s.t.S8’ C S; U...US;. Thus,
Level(S’) < j. Consequently(S’,—~h) >wrp a. Moreover,(S’, —h) undercuts.
Thus,(S’, —h) undercutsa.

The second part of the theorem follows directly from Prop6ért

Proof of Theorem 2Throughout the proof, we will use the notatiSn= S N X;.

— We will first show that ifS C X, £ = Arg(S) and& is a stable extension then
S € PST. We will suppose thaf ¢ PST and we will prove that is not a stable
extension. IfS is not consistent, then Property 7 implies thas not conflict-free.
Let us study the case whehis consistent but it is not a preferred subtheory. Thus,
there exists € {1,...,n} such thatS; U ... U S, is hot a maximal consistent set
inXq,...,%;. Leti be minimal s.tS; U...US; is not a maximal consistent set in
X1,...,2;. This means that there existst S s.t.xz € X; andS; U...US; U{z}
is consistent. Let’ = ({z}, z). Sincef is a stable extension, théda € &) s.t.
aR.a'. SinceS; U...US; U{x} is consistent then no argumentdrhaving level
at mosti cannot be in conflict witl’. Thus, we have thata € € s.t.aR,a’, which
proves that is not a stable extension.

— We will now prove that if€ C A is a stable extension df4,R,>) andS =
Base(€&) thenf = Arg(S). Suppose the contrary. From Propertg 8. Arg(Base(£)),
thus€ C Arg(Base(£)).



e Let us suppose thd is consistent. Sincé is consistent, then Property 7 im-
plies thatArg(S) is conflict-free. Since we supposed tlaf. Arg(S), thené
is not maximal conflict-free, contradiction.
e Let us study the case wheh is inconsistent. This means that there can be
found asetS’ = {h},...,h,} st
x*x ' CS
* 8'F L
x S’ is a minimal s.t. the previous two conditions are satisfied.
Let us consider the sét containing the following: argumentsg’ = {df, ..., a}},
wherea; = (S8 \ b}, -h;). Since(Vh, € §')(Ja € €) s.t.h] € Supp(a) and
since€ is conflict-free ther(#b € &) s.t.Conc(b) € {—h},...—h}}. Hence,
(Va; € &) we have thau, ¢ £. Formally,&€ N & = (. This also means
that, wrt. R, no argument irf attacks any of argumends, . .., aj.. Formally,
(Va' € &) (Pa € €) s.t.aRa’. Since€ is a stable extension then arguments of
&’ must be attacked wrfz .. We have just seen that they are not attacked wrt.
R. This means that:

(Vi e {1,...,k})(3a; € E)(a;Ra;) A (a; > a).
For undercuts to exist, it is necessary that:
(Vie{1,...,k}) (h; € Supp(a;)) A (a; > a).

From (Vi € {1,...,k})a; > o, we have(Vi € {1,...,k}) Level({h;}) <
Level(Supp(a;)) < Level(Supp(a})). This means that:

(Vi€ {1,...,k}) Level({h;}) < max;ziLevel({h}}).

Let l; = Level(h}), foralli € {1,...,k} and letl,, € S’ be s.t.i,, =
max{l,...,l;}. Then, from the previous facts, we have:

ll<lm

L < maz({li,..., &} \ {lm})

Zk < lm
The rowm, i.e.l,, < maz({l1,...,lx} \ {lm}) is an obvious contradiction
since we supposed th} is the maximal value idly, ..., [}

— Now, we have proved that:
1. If S C X, & = Arg(S) and€ is a stable extension, thehe PST,
2. If £ is a stable extension theéh= Arg(Base(&)).
Let £ be a stable extension and I8t= Base(£). Then, from(2), £ = Arg(S).
From(1), S € PST.

Proof of Theorem 3

— Theorem 1 shows thatrg(PST) C Ext.



— Property 6 implies thatrg is injective.

— Let & € Ext and letS = Base(£). From Theorem 2, we hav@ = Arg(S).
Theorem 2 yields also the conclusion ti$ate PST. Thus,Arg : PST — Ext IS
surjective.

Proof of Theorem 4Let £ = Arg(S) and letx > 2’ iff x > 2’ and notz’ > x. From
Property 7, we see thatis conflict-free. We will prove that it attacks (wrR,) any
argument in its exterior. Let’ € A\ £ be an arbitrary argument. Sineé ¢ £ then
3k’ € Supp(a’) s.th’ ¢ S. FromS € DMS(X') we have thatS is a maximal consistent
set. It is clear thatS U {#'} + L. Let us identify all its minimal conflicting subsets.
Formally, letC1, .. ., Cy be all sets which satisfy the following three conditions:

1.C; CS
2.C;U{r}IFL
3. C; is minimal (wrt. set inclusion) s.t. the two previous coitis are satisfied.

Those sets allow to construct the followikgargumentsa; = (Cy,—h'),...,ax =
(Ck,—h). It is obvious that all of them attack” wrt. R. If at least one of them at-
tacka’ wrt. R,., then the proof is over. Suppose the contrary. This wouldmikat
Vi e {l,...,k},d > a;. Thus,(Vi € {1,...,k}) (3h; € C;) s.t.h' > h;. In other
words, for every argument, there exists one formufa € Supp(a;), such thah’h;.
LetH = {h1,...,h}.

Now, we can define a s&’ as follows:S" = S U {h'} \ H. We will show thatS’
is consistent. Suppose the contrary. Sicis consistent, then any inconsistent subset
of &’ must contairk'. Let K, . .., K; be all sets which satisfy the following conditions:

1. K; CS'\{h'}
2. K;U{h}EL
3. K is a minimal set s.t. the previous two conditions hold.

Let K = {Ky,...,K,;} andC = {C1,...,Cy}. Itis easy to see thak' C C (this
follows immediately from the fact tha®’ \ {#'} C S). Furthermore, sinc&/C; € C)
(3h € H)s.t.h € C;then(VK,; € K) (3h € H) s.t.h € K. Since for allK;, we have
that K; N H = () then it must be thaf = 0, i.e. K = (. In other words, there are no
inconsistent subsets 6f, which means tha$”’ is consistent.

We can notice thas’ \ § = {#'} andS \ &' = {h4,...,hi}. SinceS’ is consis-
tent, we see that’ - S. Contradiction withS € DMS(X).

Proof of Theorem 5Let S = Base(€).

— Let us suppose that is consistent but that it is not a maximal consistent sets Thi
means thath € X'\ S s.t. SU {h} is consistent. From Property &, = Arg(S U
{h}) is consistent. From Property 6,C &’. The same result implies th&t£ £’.
Thus,& C &’, which means thaf is not a maximal conflict-free set. Contradiction
with the fact that is a stable extension.

— Suppose now thaf is inconsistent. This means that there can be found &’set
{h},...,h}} st



e SCS

e S'F L

e S’ is a minimal s.t. the previous two conditions are satisfied.
Let us consider the sét containing the following: argumentsg’ = {a, ..., a}}.
wherea] = (S§'\ h}, -h}). Since(Vh] € §')(Ja € £) s.t.h; € Supp(a) and since&
is conflict-free ther{#b € €) s.t.Conc(b) € {—h},...—h} }. Hence(Va, € £') we
have that] ¢ £. Formally,£ N &’ = (. This also means that, wfR, no argument
in £ attacks any of arguments, . . ., a}.. Formally,(Va' € £')(fa € &) s.t.aRa’.
Sincef is a stable extension then argument£bMmust be attacked wrik,.. We
have just seen that they are not attacked RrtThis means that:

(Vi e {1,...,k})(3a; € E)(a;Rai) A (a; > a).
For undercuts to exist, it is necessary that:
(Vie{1,...,k}) (h} € Supp(ai)) A (a; > a}).

Fori = 1, we have:di; € {1,...,k} s.t. hy > hj . Fori = i;, we have that
Jiz € {1,...,k} s.t.hi >h ,thus,hy>h; >h; . After k consecutive applications
of the same rule, we obtaih; > 7; >...>h] . Itis clearly a contradiction since on
one hand, all the formulae in the chain are different becafide strict preference
between them, and, on the other hand {¢ét ..., h}} containsk formulae, thus
at least two of them in a chain &f+ 1 formulae must coincide.

This ends the first part of the proof. Let us now prove that Arg(S). From Property
6, we have that C Arg(S). Suppose thaf C Arg(S). In the first part of the proof,
we have showed th&t is a maximal consistent set. Thus, from Property 7, we haate th
Arg(S) is conflict-free. This simply means th&tis not a maximal conflict-free set,
contradiction.

Proof of Theorem 6 (=) LetS =4 §’. Leta’ € &\ £. Then3h’ € Supp(a’) s.t.

R e 8"\ S.SinceS -4 S’ thendh € S\ &’ s.t.hh'. Leta = ({h},h). Itis clear
thata € S\ &’ anda > o’. Thus,£ =, &'.

(<) Let& =4 & . Leth € 8\ S. Thend' = ({W'}, 1) € &\ E. Thus,Fa € £\ &
s.t.a > d'. Sincea € £\ &', then3h € Supp(a) s.t.h € S\ &'. ltis clear that > h'.

Proof of Theorem 7

— From Theorem 4, we have th&ts an extension of a basic PAR, R, >). We will
prove that it is also an extension of a rich PAR, R, >, =,). Let us suppose the
contrary, i.e. suppose that there exiéts.t.£’ is a stable extension arfd -, £.
Let &’ = Base(&’). From Theorem 5&' = Arg(S’). From the same theorem,
we have thatS’ is maximal consistent set and from Theorem 6 t8at-,; S.
Contradiction.

— Theorem 5 implies tha® is a maximal conflict-free set and thét = Arg(S).
Suppose thaS ¢ DMS(X). This means thalS’ C X s.t. &’ € DMS(XY) and
S »4 S. From Theorem 4£’ = Arg(S’) is a stable extension of a basic PAF.
Theorem 6 implies tha’ -, £, contradiction.



Proof of Theorem 8Let us denot&xt(7) the set of all extensions of a rich PAF.
We will prove thatArg : DMS — Ext(7) is a bijection.

— Theorem 7 shows thatrg(DMS) C Ext (7).

— Property 6 implies thatrg is injective.

— Let& € Ext(7) and letS = Base(£). From Theorem 5, we have = Arg(S).
Theorem 7 yields the conclusion th&te DMS. Thus,Arg : DMS — Ext iS surjec-
tive.



