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Abstract. Argumentation is a promising approach for handling inconsistent knowl-
edge bases, based on the justification of plausible conclusions by arguments. Due
to inconsistency, arguments may be attacked by counterarguments. The problem
is thus to evaluate the arguments in order to select the most acceptable ones.

The aim of this paper is to make a bridge between the argumentation-based and
the coherence-based approaches for handling inconsistency. We are particularly
interested by the case where priorities between the formulas of an inconsistent
knowledge base are available. For that purpose, we will use the rich preference-
based argumentation framework (PAF) we have proposed in an earlier work. A
rich PAF has two main advantages: i) it overcomes the limits of existing PAFs,
and ii) it encodes two different roles of preferences between arguments (handling
critical attacks and refining the evaluation of arguments).We show that there
exist full correspondences between particular cases of these PAF and two well
known coherence-based approaches, namely the preferred sub-theories and the
democratic ones.

1 Introduction

An important problem in the management of knowledge-based systems is the handling
of inconsistency. Inconsistency may be present for mainly three reasons:

– The knowledge base includes default rules. Let us consider for instance the general
rules ‘birds fly’, ‘penguins are birds’ and the specific rule ‘penguins do not fly’. If
we add the fact ‘Tweety is a penguin’, we may conclude that Tweety does not fly
because it is a penguin, and also that Tweety flies because it is a bird.

– In model-based diagnosis, a knowledge base contains a description of the normal
behavior of a system, together with observations made on this system. Failure de-
tection occurs when observations conflict with the normal functioning mode of the
system and the hypothesis that the components of the system are working well; that
leads to diagnose which component fails;

– Several consistent knowledge bases pertaining to the same domain, but coming
from different sources of information, are available. For instance, each source is
a reliable specialist in some aspect of the concerned domainbut is less reliable in
other aspects. A straightforward way of building a global baseΣ is to concatenate
the knowledge basesΣi provided by each source. Even if each baseΣi is consis-
tent, it is unlikely that their concatenation will be consistent also.



Classical logic has many appealing features for knowledge representation and rea-
soning, but unfortunately when reasoning with inconsistent information, i.e. drawing
conclusions from an inconsistent knowledge base, the set ofclassical consequences is
trivialized. To solve this problem, two kinds of approacheshave been proposed. The
first one, calledcoherence-basedapproach and initiated in [10], proposes to give up
some formulas of the knowledge base in order to get one or several consistent subbases
of the original base. Then plausible conclusions may be obtained by applying classical
entailment on these subbases. The second approach accepts inconsistency and copes
with it. Indeed, it retains all the available information but prohibits the logic from de-
riving trivial conclusions. Argumentation is one of these approaches. Its basic idea is
that each plausible conclusion inferred from the knowledgebase is justified by some
reason(s), calledargument(s), for believing in it. Due to inconsistency, those arguments
may be attacked by other arguments (called counterarguments). The problem is thus to
evaluate the arguments in order to select the most acceptable ones.

In [7], it has been shown that the results of the coherence-based approach proposed
in [10] can be recovered within Dung’s argumentation framework [9]. Indeed, there is
a full correspondence between the maximal consistent subbases of a given inconsistent
knowledge base and the stable extensions of the argumentation system built over the
same base. In [10], the formulas of the knowledge base are assumed to be equally pre-
ferred. This assumption has been discarded in [6] and in [8].Indeed, in the former work,
a knowledge base is equipped with a total preorder. Thus, instead of computing the max-
imal consistent subbases,preferred sub-theoriesare computed. These sub-theories are
consistent subbases that privilege the most important formulas. In [8], the knowledge
base is rather equipped with a partial reorder. The idea was to define a preference re-
lation, calleddemocratic relation, between the consistent subbases. The best subbases,
calleddemocratic sub-theories, wrt this relation are used for inferring conclusions from
the knowledge base.

The aim of this paper is to investigate whether it is possibleto recover the results of
these two works within an argumentation framework. Since priorities are available, it
is clear that we need a preference-based argumentation framework (PAF). Recently, we
have shown in [3] that existing PAFs (developed in [2, 4]) arenot appropriate since they
may return unintended results, especially when the attack relation is asymmetric. More-
over, their results are not optimal since they may be refined by the available preferences
between arguments. Consequently, we have proposed in the same paper (i.e. [3]) a new
family of PAFs, calledrich PAF, that encodes two distinct roles of preferences between
arguments: handling critical attacks (that is an argument is stronger than its attacker)
and refining the result of the evaluation of arguments using acceptability semantics.
In this paper, we show that there is a full correspondence between the preferred sub-
theories proposed in [6] and the stable extensions of an instance of this rich PAF, and
also a full correspondence between the democratic sub-theories developed in [8] and
another instance of the rich PAF. The two correspondences are obtained by choosing
appropriately the main components of a rich PAF: the definition of an argument, the
attack relation, the preference relation between arguments and the preference relation
between subsets of arguments.



The paper is organized as follows: Sections 2 and 3 recall respectively the rich
PAF if [3] and the two works of [6, 8]. Section 4 shows how instances of the rich PAF
compute preferred and democratic sub-theories of a knowledge base. The last section is
devoted to some concluding remarks.

2 Preference-based argumentation frameworks

In [9], Dung has developed the most abstract argumentation framework in the literature.
It consists of a set of arguments and an attack relation between them.

Definition 1 (Argumentation framework [9]). An argumentation framework(AF) is
a pair F = (A,R), whereA is a set of arguments andR is an attack relation (R ⊆
A×A). The notationaRb means that the argumenta attacksthe argumentb.

In the above definition, the arguments and attacks are abstract entities since Dung’s
framework completely abstracts from the application. However, the two components
can be defined as follows when handling inconsistency in apropositionalknowledge
baseΣ.

Definition 2 (Argument - Undercut). LetΣ be a propositional knowledge base.

– Anargumentis a pairα = (H, h) such that:
• H ⊆ Σ
• H is consistent
• H ⊢ h
• ∄H ′ ⊂ H such thatH ′ is consistent andH ′ ⊢ h.

– An argument(H, h) undercutsan argument(H ′, h′) iff ∃h′′ ∈ H ′ s.t.h ≡ ¬h′′.

Example 1.Let Σ = {x,¬y, x → y} be a propositional knowledge base. The follow-
ing arguments are built from this base:

a1 : ({x}, x) a2 : ({¬y},¬y)
a3 : ({x → y}, x → y) a4 : ({x,¬y}, x ∧ ¬y)
a5 : ({¬y, x → y},¬x) a6 : ({x, x → y}, y)

The figure below depicts the attacks wrt “undercut”.

a4 a3

a1 a5 a6 a2

Different acceptability semanticsfor evaluating arguments have been proposed in
the same paper [9]. Each semantics amounts to define sets of acceptable arguments,
calledextensions. For the purpose of our paper, we only need to recall stable semantics.

Definition 3 (Conflict-free, Stable semantics [9]).LetF = (A,R) be an AF,B ⊆ A.

– B is conflict-freeiff ∄ a, b ∈ B such thataRb.



– B is astableextension iff it is conflict-free and attacks any element inA \ B.

Example 1 (Cont): The argumentation framework of Example 1 has three stable ex-
tensions:E1 = {a1, a2, a4}, E2 = {a2, a3, a5} andE3 = {a1, a3, a6}.

The attack relation is the backbone of any acceptability semantics in [9]. An attack
from an argumentb towards an argumenta always wins unlessb is itself attacked by
another argument. However, this assumption is very strong because some attacks cannot
always ‘survive’. Especially when the attacked argument isstronger than its attacker.

Throughout the paper, the relation≥ A×A is assumed to be a preorder (reflexive
and transitive). For two argumentsa andb, writing a ≥ b (or (a, b) ∈ ≥) means thata is
at least as strong asb. The relation> is the strict version of≥. Indeed,a > b iff a ≥ b
and not (b ≥ a). Examples of such relations are those based on the certainty level of
the formulas of a propositional knowledge baseΣ. The baseΣ is equipped with a total
preorderD. For two formulasx andy, writing x D y means thatx is at least as certain
asy. In this case, the baseΣ is stratified intoΣ1 ∪ . . . ∪ Σn such that formulas ofΣi

have the same certainty level and are more certain than formulas inΣj wherej > i.
The stratification ofΣ enables to define a certainty level of each subsetS of Σ. It is the
highest number of stratum met by this subset. Formally:

Level(S) = max{i | ∃ x ∈ S ∩ Σi} (with Level(∅) = 0).

The above certainty level is used in [5] in order to define a total preorder on the set of
arguments that can be built from a knowledge base. The preorder is defined as follows:

Definition 4 (Weakest link principle [5]). LetΣ = Σ1 ∪ . . . ∪Σn be a propositional
knowledge. An argument(H, h) is preferred to(H ′, h′), denoted by(H, h) ≥WLP

(H ′, h′), iff Level(H) ≤ Level(H ′).

Example 1 (Cont): Assume thatΣ = Σ1 ∪ Σ2 with Σ1 = {x} andΣ2 = {x →
y,¬y}. It holds thatLevel({x}) = 1 while Level({¬y}) = Level({x → y}) =
Level({x,¬y}) = Level({¬y, x → y}) = Level({x, x → y}) = 2. Thus,a1 ≥WLP

a2, a3, a4, a5, a6 while the five other arguments are all equally preferred.

In [2, 4], Dung’s argumentation framework has been extendedby preferences be-
tween arguments. The idea behind those works is to removecritical attacks1 and to
apply Dung’s semantics on the remaining attacks. Unfortunately, this solution does not
work, in particular, when the attack relation is asymmetric.

Example 1 (Cont): The classical approaches of PAFs remove the critical attackfrom
a5 to a1 (sincea1 >WLP a5) and get{a1, a2, a3, a5} as a stable extension. Note that
this extension, which intends to support acoherent point of view, is conflicting since it
contains botha1 anda5. Consequently, the union of the supports of its arguments isan
inconsistent set.

1 An attack(b, a) ∈ R is critical iff a ≥ b and not(b ≥ a).



The approach followed in [2, 4] suffers from another problem. Its results may need
to berefinedby preferences between arguments as shown by the following example.

Example 2.Let us consider the AF depicted in the figure below.

a b

d c

Assume thata > b andc > d. The corresponding PAF has two stable extensions:{a, c}
and{b, d}. Note that any element of{b, d} is weaker than at least one element of the
set{a, c}. Thus, it is natural to consider{a, c} as better than{b, d}. Consequently, we
may conclude that the two argumentsa andc are “more acceptable” thanb andd.

What is worth noticing is that a refinement amounts tocomparesubsets of argu-
ments. In Example 2, the so-calleddemocraticrelation,�d, can be used for comparing
the two sets{a, c} and{b, d}. This relation is defined as follows:

Definition 5 (Democratic relation). Let ∆ be a set of objects and≥ ⊆ ∆ × ∆ be a
partial preorder. ForX ,X ′ ⊆ ∆, X �d X ′ iff ∀x′ ∈ X ′ \ X , ∃x ∈ X \ X ′ such that
x > x′.

In [3], we have proposed a novel approach which palliates thelimits of the existing
ones. It follows two steps:

1. To repair the critical attacks by computing a new attack relationRr .
2. To refine the results of the framework(A,Rr) by comparing its extensions using a

refinement relation.

The idea behind the first step is to modify the graph of attacksin such a way that,
for any critical attack, the preference between the arguments is taken into account and
the conflict between the two arguments of the attack is represented. For this purpose,
we invert the arrow of the critical attack. For instance, in Example 1,the arrow froma5

to a1 is replaced by another arrow emanating froma1 towardsa5. The intuition behind
this is that an attack between two arguments represents in some sense two things: i)
an incoherence between the two arguments, and ii) a kind of preference determined by
the direction of the attack. Thus, in our approach, the direction of the arrow represents
a real preference between arguments. Moreover, the conflictis kept between the two
arguments. Dung’s acceptability semantics are then applied on the modified graph.

Definition 6 (PAF [3]). A preference-based argumentation framework(PAF) is a tuple
T = (A,R,≥) whereA is a set of arguments,R ⊆ A×A is an attack relation and≥ is
a (partial or total) preorder onA. The extensions ofT under a given semantics are the
extensions of the argumentation framework(A,Rr), calledrepaired framework, under
the same semantics with:Rr = {(a, b)|(a, b) ∈ R and not(b > a)} ∪ {(b, a)|(a, b) ∈
R andb > a}.

This approach does not suffer from the drawback of the existing one. Indeed, it
delivers conflict-free extensions of arguments.



Property 1. Let T = (A,R,≥) be a PAF andE1, . . . , En its extensions under a given
semantics. For alli = 1, . . . , n, Ei is conflict-free wrtR.

At the second step, the result of the above PAF is refined usinga refinement rela-
tion. The two steps are captured in an abstract framework, called rich preference-based
argumentation framework.

Definition 7 (Rich PAFs [3]). A rich PAF is a tupleT = (A,R,≥,�) whereA is a
set of arguments,R ⊆ A×A is an attack relation,≥ ⊆ A×A is a (partial or total)
preorder and� ⊆ P(A)×P(A)2 is a refinement relation. The extensions ofT under a
given semantics are the elements ofMax(S,�)3 whereS is the set of extensions (under
the same semantics) of the PAF(A,R,≥).

Example 3.Let us consider the argumentation framework depicted in theleft side of
the following figure.

a b a b

e e

d c d c

Assume thata > b, c > d and b > e. The repaired framework corresponding to
(A,R,≥) is depicted in the right side of the above figure. This latter has two stable
extensions{a, c} and{b, d}. According to the democratic relation�d, it is clear that the
first extension is better than the second one. Thus, the set{a, c} is the stable extension
of the rich PAF(A,R,≥,�d).

In [3], we have studied deeply the properties of the rich PAF.However, for the
purpose of this paper we do not need to recall them.

3 Coherence-based approach for handling inconsistency

Coherence-based approach for handling inconsistency in a propositional knowledge
baseΣ follows two steps: At the first step, some subbases ofΣ are chosen. In [10],
these subbases are the maximal (for set inclusion) consistent ones. At the second step,
an inference mechanism is chosen. This later defines the inferences to be made fromΣ.
An example of inference mechanism is the one that infers a formula if it is a classical
conclusion of all the chosen subbases.

Several works have been done on choosing the subbases, in particular whenΣ is
equipped with a (total or partial) preorderD (D ⊆ Σ ×Σ). Recall that whenD is total,
Σ is stratified intoΣ1 ∪ . . . ∪ Σn such that∀i, j with i 6= j, Σi ∪ Σj = ∅. Moreover,
Σ1 contains the most important formulas whileΣn contains the least important ones.

In [6], the knowledge baseΣ is equipped with a total preorder. The chosen subbases
privilege the most important formulas.

2 P(A) is the powerset of the setA.
3 Max(S ,�) = {s ∈ S | ∄s′ ∈ S s.t.s′ � s and nots � s′}.



Definition 8 (Preferred sub-theory [6]). Let Σ be stratified intoΣ1 ∪ . . . ∪ Σn. A
preferred sub-theoryis a setS = S1 ∪ . . . ∪ Sn such that∀k ∈ [1, n], S1 ∪ . . . ∪ Sk is
a maximal (for set inclusion) consistent subbase ofΣ1 ∪ . . . ∪ Σk.

Example 1 (Cont): The knowledge baseΣ = Σ1 ∪ Σ2 with Σ1 = {x} andΣ2 =
{x → y,¬y} has two preferred sub-theories:S1 = {x, x → y} andS2 = {x,¬y}.

It can be shown that the preferred sub-theories of a knowledge baseΣ are maximal
(wrt set inclusion) consistent subbases ofΣ.

Property 2. Each preferred sub-theory of a knowledge baseΣ is a maximal (for set
inclusion) consistent subbase ofΣ.

In [8], the above definition has been extended to the case whereΣ is equipped with
a partial preorderD. The basic idea was to define a preference relation on the power
set ofΣ. The best elements according to this relation are the preferred theories , called
alsodemocratic sub-theories.The relation that generalizes preferred sub-theories is the
democratic relation (see Definition 5). In this context,∆ is Σ and≥ is the relationD.
In what follows,⊲ denotes the strict version ofD. Thus:

Let S,S′ ⊆ Σ. S �d S′ iff ∀x′ ∈ S′ \ S, ∃x ∈ S \ S′ such thatx ⊲ x′.

Definition 9 (Democratic sub-theory [8]). Let Σ be propositional knowledge base
andD ⊆ Σ × Σ be a partial preorder. Ademocratic sub-theoryis a setS ⊆ Σ such
thatS is consistent and(∄S′ ⊆ Σ) s.t.S′ is consistent andS′ �d S.

Example 4.Let Σ = {x,¬x, y,¬y} be such that¬x D y and¬y D x. Let S1 =
{x, y}, S2 = {x,¬y}, S3 = {¬x, y}, andS4 = {¬x,¬y}. The three subbasesS2,
S3 andS4 are the democratic sub-theories ofΣ. However,S1 is not a democratic sub-
theory sinceS4 �d S1.

It is easy to show that the democratic sub-theories of a knowledge baseΣ are max-
imal (for set inclusion) consistent.

Property 3. Each democratic sub-theory of a knowledge baseΣ is a maximal (for set
inclusion) consistent subbase ofΣ.

4 Computing sub-theories with argumentation

This section shows how two instances of the rich PAF presented in Section 2 compute
the preferred and the democratic sub-theories of a propositional knowledge baseΣ.
The two instances use all the arguments that can be built fromΣ using Definition 2
(i.e. the setArg(Σ)). Similarly, they both use the attack relation “Undercut” given also
in Definition 2. However, as we will see next, they are grounded on distinct preference
relations between arguments. The last component of a rich PAF is a preference relation
on the power set ofArg(Σ). Both instances will use the democratic relation�d. Thus,
for recovering preferred and democratic sub-theories, we will use two instances of the



rich PAF(Arg(Σ), Undercut,≥,�d).

It can be shown that when the preference relation≥ is a total preorder, then the stable
extensions of the PAF(Arg(Σ), Undercut,≥) are all incomparable wrt the democratic
relation�d.

Property 4. Let T = (Arg(Σ), Undercut,≥) be a PAF. For all stable extensionsE and
E ′ of T with E 6= E ′, if ≥ is a total preorder, then¬(E �d E ′).

From the previous property, it follows that the stable extensions of(Arg(Σ), Undercut,
≥) coincide with those of the rich PAF(Arg(Σ), Undercut,≥, �d).

Property 5. If ≥ is a total preorder, then the stable extensions of(Arg(Σ), Undercut,
≥, �d) are exactly the stable extensions of(Arg(Σ), Undercut,≥).

Let us start by introducing some useful notations.

Notations: Let a = (H, h) be an argument (in the sense of Definition 2). The functions
Supp andConc return respectively the supportH and the conclusionh of the argument
a. ForS ⊆ Σ, Arg(S) = {(H, h) | (H, h) is an argument in the sense of Definition 2
andH ⊆ S}. Thus,Arg(Σ) denotes the set of all the arguments that can be built from
the whole knowledge baseΣ. ForB ⊆ Arg(Σ), Base(B) =

⋃
Supp(a) wherea ∈ B.

The following result summarizes some useful properties of the above functions.

Property 6.
– For any consistent subbaseS ⊆ Σ, S = Base(Arg(S)).
– The functionBase is surjective but not injective.
– For anyE ⊆ Arg(Σ), E ⊆ Arg(Base(E)).
– The functionArg is injective but not surjective.

Another property that is important for the rest of the paper relates the notion of
consistency of a set of formulas to that of conflict-freenessof a set of arguments.

Property 7. A setS ⊆ Σ is consistentiff Arg(S) is conflict-free.

The following example shows that the previous property doesnot hold for an arbi-
trary set of arguments.

Example 5.Let E = {({x}, x), ({x → y}, x → y), ({¬y},¬y)}. It is obvious thatE
is conflict-free whileBase(E) is not consistent.

In the rest of this paper, we assume that a knowledge baseΣ contains only consistent
formulas.



4.1 Recovering the preferred sub-theories

In this section, we will show that there is a full correspondence between the preferred
sub-theories of a knowledge baseΣ and the stable extensions of the PAF(Arg(Σ),
Undercut,≥WLP ). Recall that the relation≥WLP is based on the weakest link prin-
ciple and privileges the arguments whose less important formulas are more important
than the less important formulas of the other arguments. This relation is a total preorder
and is defined over a knowledge base that is itself equipped with a total preorder. Ac-
cording to Property 5, the stable extensions of(Arg(Σ), Undercut,≥WLP ) coincide
with those of(Arg(Σ), Undercut,≥WLP ,�d).

The first result shows that from a preferred sub-theory, it ispossible to build a unique
stable extension of the PAF(Arg(Σ), Undercut,≥WLP ).

Theorem 1. LetΣ be a stratified knowledge base. For all preferred sub-theoryS of Σ,
it holds that:

– Arg(S) is a stable extension of(Arg(Σ), Undercut,≥WLP )

– S = Base(Arg(S))

Similarly, we show that each stable extension of(Arg(Σ), Undercut,≥WLP ) is
built from a unique preferred sub-theory ofΣ.

Theorem 2. LetΣ be a stratified knowledge base. For all stable extensionE of (Arg(Σ),
Undercut,≥WLP ), it holds that:

– Base(E) is a preferred sub-theory ofΣ
– E = Arg(Base(E))

The next theorem shows that there exists a one-to-one correspondence between pre-
ferred sub-theories ofΣ and stable extensions of(Arg(Σ), Undercut,≥WLP ).

Theorem 3. Let T = (Arg(Σ), Undercut,≥WLP ) be a PAF over a stratified knowl-
edge baseΣ. The stable extensions ofT are exactly theArg(S) whereS ranges over
the preferred sub-theories ofΣ.

From the above result, it follows that the PAF(Arg(Σ), Undercut,≥WLP ) has at
least one stable extension unless the formulas ofΣ are all inconsistent.

Corollary 1 The PAF(Arg(Σ), Undercut,≥WLP ) has at least one stable extension.

Example 1 (Cont): Figure 1 shows the two preferred sub-theories ofΣ as well as the
two stable extensions of the corresponding PAF.



Fig. 1. Preferred sub-theories ofΣ + Stable extensions of(Arg(Σ), Undercut,≥WLP )
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4.2 Recovering the democratic sub-theories

Recall that the democratic sub-theories of a knowledge baseΣ generalize the preferred
sub-theories whenΣ is equipped with a partial preorderD. Thus, in order to capture the
democratic sub-theories, we will use the generalized version of the preference relation
≥WLP ⊆ Arg(Σ) × Arg(Σ):

Definition 10 (Generalized weakest link principle [1]).Let Σ be a knowledge base
which is equipped with a partial preorderD. For two arguments(H, h), (H ′, h′) ∈
Arg(Σ), (H, h) ≥GWLP (H ′, h′) iff ∀k ∈ H , ∃k′ ∈ H ′ such thatk ⊲ k′ (i.e. k D k′

and not (k′ D k)).

It can be shown that from each democratic sub-theory of a knowledge baseΣ, a
stable extension of(Arg(Σ), Undercut,≥GWLP ) can be built.

Theorem 4. LetΣ be a knowledge base which is equipped with a partial preorderD.
For all democratic sub-theoryS of Σ, it holds thatArg(S) is a stable extension of
(Arg(Σ), Undercut,≥GWLP ).

The following result shows that each stable extension of thePAF(Arg(Σ), Undercut,
≥GWLP ) returns a maximal consistent subbase ofΣ.

Theorem 5. LetΣ be a knowledge base which is equipped with a partial preorderD.
For all stable extensionE of (Arg(Σ), Undercut,≥GWLP ), it holds that:

– Base(E) is a maximal (for set inclusion) consistent subbase ofΣ.



– E = Arg(Base(E)).

The following example shows that the stable extensions of(Arg(Σ), Undercut,
≥GWLP ) do not necessarily return democratic sub-theories.

Example 4 (Cont): Recall thatΣ = {x,¬x, y,¬y}, ¬x D y and¬y D x. Let S =
{x, y}. It can be checked that the setArg(S) is a stable extension of(Arg(Σ), Undercut,
≥GWLP ). However,S is not a democratic sub-theory since{¬x,¬y} �d S.

It can also be shown that the converse of the above theorem is not true. Indeed, a
knowledge base may have a maximal consistent subbaseS andArg(S) is not a stable
extension of(Arg(Σ), Undercut,≥GWLP ). Let us consider the following example.

Example 6.Let Σ = {x,¬x} andx ⊲ ¬x. It is clear that{¬x} is a maximal con-
sistent subbase ofΣ while Arg({¬x}) is not a stable extension of(Arg(Σ), Undercut,
≥GWLP ).

The following result establishes a link between the ‘best’ maximal consistent sub-
bases ofΣ wrt the democratic relation�d and the ‘best’ sets of arguments wrt the same
relation�d.

Theorem 6. LetS,S′ ⊆ Σ be maximal (for set inclusion) consistent subbases ofΣ. It
holds thatS �d S′ iff Arg(S) �d Arg(S′).

We also show that from each democratic sub-theory ofΣ, one can build a stable
extension of the corresponding rich PAF, and each stable extension of the rich PAF is
built from a democratic sub-theory.

Theorem 7. LetΣ be equipped with a partial preorderD.

– For all democratic sub-theoryS of Σ, Arg(S) is a stable extension of the rich PAF
(Arg(Σ), Undercut,≥GWLP ,�d).

– For each stable extensionE of (Arg(Σ), Undercut,≥GWLP ,�d), Base(E) is a
democratic sub-theory ofΣ.

Finally, we show that there is a one-to-one correspondence between the democratic
sub-theories of a baseΣ and the stable extensions of its corresponding rich PAF.

Theorem 8. The stable extensions of(Arg(Σ), Undercut,≥GWLP ,�d) are exactly the
Arg(S) whereS ranges over the democratic subtheories ofΣ.

Figure 2 synthetizes the different links between the democratic sub-theories of a
knowledge baseΣ and the stable extensions of its corresponding PAF and rich PAF.

5 Conclusion

The paper has proposed a new approach for preference-based argumentation frame-
works. This approach allows to encode two roles of preferences between arguments:
handling critical attacks and refining the result of the evaluation. It is clearly argued in



Fig. 2. Summary
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the paper that the two roles are completely independent and should be modeled in dif-
ferent ways and at different steps of the evaluation process. Then, we have shown that
the approach is well-founded since it allows to recover verywell known works on han-
dling inconsistency in knowledge bases, namely the ones that restore the consistency of
the knowledge base. Indeed, we have shown full correspondences between instances of
the new PAF and respectively the preferred sub-theories defined by Brewka in [6] and
the democratic sub-theories proposed by Cayrol, Royer and Saurel in [8].
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Appendix

Proof of Property 1 Every setE ⊆ A is conflict-free wrtR iff it is conflict-free wrt
Rr. Since extensions are conflict-free wrtRr, then they are conflict-free wrtR.

Proof of Property 3 Let S be a democratic sub-theory. From Definition 9,S is con-
sistent. Assume now thatS is not a maximal (for set inclusion) consistent set. Thus,
∃x ∈ Σ \ S s.t.S ∪ {x} is consistent. It is clear thatS ∪ {x} ≻d S. This contradicts
the fact thatS is a democratic sub-theory.

Proof of Property 4 LetE , E ′ be two stable extensions of(Arg(Σ), Undercut,≥), and
let E �d E ′ with E 6= E ′. It is clear that¬(E ⊆ E ′) and¬(E ′ ⊆ E). Let a′ ∈ E ′ \ E be
such that∀a′′ ∈ E ′ \E it holds thata′ ≥ a′′ (this is possible since≥ is a total preorder).
FromE �d E ′, we have that∃a ∈ E\E ′ s.t.a > a′. This means that∀b′ ∈ E ′\E , a > b′.
SinceE ′ is a stable extension, then∃a′′ ∈ E ′ s.t.a′′Rra, i.e.(a′′Ra and¬(a > a′′)) or
(aRa′′ anda′′ > a). SetsE andE ′ are both conflict-free, soa′′ ∈ E ′ \E . Contradiction,
since∀a′′ ∈ E ′ \ E we havea > a′′.

Proof of Property 6

– We show thatx ∈ S iff x ∈ Base(Arg(S)) whereS is a consistent subbase ofΣ.
(⇒) Let x ∈ S. SinceS is consistent, then the set{x} is consistent as well. Thus,
({x}, x) ∈ Arg(S). Consequently,x ∈ Base(Arg(S)).
(⇐) Assume thatx ∈ Base(Arg(S)). Thus,∃a ∈ Arg(S) s.t.x ∈ Supp(a). From
the definition of an argument,Supp(a) ⊆ S. Consequently,x ∈ S.

– Let us show that the functionBase is surjective. LetS ⊆ Σ. From the first item
of this property, the equalityBase(Arg(S)) = S holds. It is clear thatArg(S) ∈
P(Arg(Σ)) (P(Arg(Σ)) being the power set ofArg(Σ)).
The following counter-example shows that the functionBase is not injective: Let
Σ = {x, x → y},E = {({x}, x), ({x → y}, x → y)} andE ′ = {({x}, x), ({x, x →
y}, y)}. SinceBase(E) = Base(E ′) = Σ, with E 6= E ′ thenBase is not injective.

– If a ∈ E whereE ⊆ Arg(Σ), thenSupp(a) ⊆ Base(E). Consequently,a ∈
Arg(Base(E)).

– Let us prove thatArg is injective. LetS,S′ ⊆ Σ with S 6= S′. Then, it must be
thatS \ S′ 6= ∅ or S′ \ S 6= ∅ (or both). Without loss of generality, letS \ S′ 6= ∅
and letx ∈ S \ S′. If {x} is consistent, then,({x}, x) ∈ Arg(S) \ Arg(S′). Thus,
Arg(S) 6= Arg(S′).
We will now present an example that shows that this function is not surjective.
Let Σ = {x, x → y} andE = {({x}, x), ({x → y}, x → y)}. It is clear that
there exists noS ⊆ Σ s.t.E = Arg(S), since such a setS would containΣ and,
consequently,Arg(S) would contain({x, x → y}, y), an argument not belonging
to E .



Proof of Property 7 Let S ⊆ Σ.

– Assume thatS is consistent andArg(S) is not conflict-free. This means that there
exista, a′ ∈ Arg(S) s.t.a undercutsa′. From Definition 2 of undercut, it follows
thatSupp(a)∪Supp(a′) is inconsistent. Besides, from the definition of an argument,
Supp(a) ⊆ S andSupp(a′) ⊆ S. Thus,Supp(a) ∪ Supp(a′) ⊆ S. Then,S is
inconsistent. Contradiction.

– Assume now thatS is inconsistent. This means that there exists a finite setS′ =
{h1, . . . , hk} s.t.
• S′ ⊆ S
• S′ ⊢ ⊥
• S′ is minimal (wrt. set inclusion) s.t. previous two items hold.

SinceS′ is a minimal inconsistent set, then{h1, . . . , hk−1} and{hk} are consis-
tent. Thus,({h1, . . . , hk−1},¬hk), ({hk}, hk) ∈ Arg(S). Furthermore, those two
arguments are conflicting (the former undercuts the latter). This means thatArg(S)
is not conflict-free.

Proof of Theorem 1LetS be a preferred sub-theory of a knowledge baseΣ. Thus,S is
consistent. From Property 7, it follows thatArg(S) is conflict-free. Assume that∃a /∈
Arg(S). Sincea /∈ Arg(S) andS is a maximal consistent subbase ofΣ (according
to Property 2), then∃h ∈ Supp(a) s.t. S ∪ {h} ⊢ ⊥. Assume thath ∈ Σj . Thus,
Level(Supp(a)) ≥ j.

SinceS is a preferred sub-theory ofΣ, thenS1 ∪ . . . ∪ Sj is a maximal (for set
inclusion) consistent subbase ofΣ1 ∪ . . . ∪ Σj . Thus,S1 ∪ . . . ∪ Sj ∪ {h} ⊢ ⊥. This
means that there exists an argument(S′,¬h) ∈ Arg(S) s.t.S′ ⊆ S1 ∪ . . . ∪ Sj . Thus,
Level(S′) ≤ j. Consequently,(S′,¬h) ≥WLP a. Moreover,(S′,¬h) undercutsa.
Thus,(S′,¬h) undercutsra.
The second part of the theorem follows directly from Property 6.

Proof of Theorem 2Throughout the proof, we will use the notationSi = S ∩ Σi.

– We will first show that ifS ⊆ Σ, E = Arg(S) andE is a stable extension then
S ∈ PST. We will suppose thatS /∈ PST and we will prove thatE is not a stable
extension. IfS is not consistent, then Property 7 implies thatE is not conflict-free.
Let us study the case whenS is consistent but it is not a preferred subtheory. Thus,
there existsi ∈ {1, . . . , n} such thatS1 ∪ . . . ∪ Si is not a maximal consistent set
in Σ1, . . . , Σi. Let i be minimal s.t.S1 ∪ . . .∪Si is not a maximal consistent set in
Σ1, . . . , Σi. This means that there existsx /∈ S s.t.x ∈ Σi andS1 ∪ . . .∪Si ∪{x}
is consistent. Leta′ = ({x}, x). SinceE is a stable extension, then(∃a ∈ E) s.t.
aRra

′. SinceS1 ∪ . . . ∪ Si ∪ {x} is consistent then no argument inE having level
at mosti cannot be in conflict witha′. Thus, we have that∄a ∈ E s.t.aRra

′, which
proves thatE is not a stable extension.

– We will now prove that ifE ⊆ A is a stable extension of(A,R,≥) andS =
Base(E) thenE = Arg(S). Suppose the contrary. From Property 6,E ⊆ Arg(Base(E)),
thusE ( Arg(Base(E)).



• Let us suppose thatS is consistent. SinceS is consistent, then Property 7 im-
plies thatArg(S) is conflict-free. Since we supposed thatE ( Arg(S), thenE
is not maximal conflict-free, contradiction.

• Let us study the case whenS is inconsistent. This means that there can be
found a setS′ = {h′

1
, . . . , h′

k} s.t.
∗ S′ ⊆ S
∗ S′ ⊢ ⊥
∗ S′ is a minimal s.t. the previous two conditions are satisfied.

Let us consider the setE ′ containing the followingk arguments:E ′ = {a′
1, . . . , a

′
k},

wherea′
i = (S′ \ h′

i,¬h′
i). Since(∀h′

i ∈ S′)(∃a ∈ E) s.t.h′
i ∈ Supp(a) and

sinceE is conflict-free then(∄b ∈ E) s.t.Conc(b) ∈ {¬h′
1, . . .¬h′

k}. Hence,
(∀a′

i ∈ E ′) we have thata′
i /∈ E . Formally,E ∩ E ′ = ∅. This also means

that, wrt.R, no argument inE attacks any of argumentsa′
1
, . . . , a′

k. Formally,
(∀a′ ∈ E ′)(∄a ∈ E) s.t.aRa′. SinceE is a stable extension then arguments of
E ′ must be attacked wrt.Rr. We have just seen that they are not attacked wrt.
R. This means that:

(∀i ∈ {1, . . . , k})(∃ai ∈ E)(a′
iRai) ∧ (ai > a′

i).

For undercuts to exist, it is necessary that:

(∀i ∈ {1, . . . , k}) (h′
i ∈ Supp(ai)) ∧ (ai > a′

i).

From (∀i ∈ {1, . . . , k})ai > a′
i we have(∀i ∈ {1, . . . , k}) Level({hi}) ≤

Level(Supp(ai)) < Level(Supp(a′
i)). This means that:

(∀i ∈ {1, . . . , k}) Level({h′
i}) < maxj 6=iLevel({h

′
j}).

Let li = Level(h′
i), for all i ∈ {1, . . . , k} and let lm ∈ S′ be s.t.lm =

max{l1, . . . , lk}. Then, from the previous facts, we have:

l1 < lm

. . .

lm < max({l1, . . . , lk} \ {lm})

. . .

lk < lm

The rowm, i.e. lm < max({l1, . . . , lk} \ {lm}) is an obvious contradiction
since we supposed thatlm is the maximal value in{l1, . . . , lk}.

– Now, we have proved that:
1. If S ⊆ Σ, E = Arg(S) andE is a stable extension, thenS ∈ PST,
2. If E is a stable extension thenE = Arg(Base(E)).

Let E be a stable extension and letS = Base(E). Then, from(2), E = Arg(S).
From(1), S ∈ PST.

Proof of Theorem 3

– Theorem 1 shows thatArg(PST) ⊆ Ext.



– Property 6 implies thatArg is injective.
– Let E ∈ Ext and letS = Base(E). From Theorem 2, we haveE = Arg(S).

Theorem 2 yields also the conclusion thatS ∈ PST. Thus,Arg : PST → Ext is
surjective.

Proof of Theorem 4Let E = Arg(S) and letx ⊲ x′ iff x D x′ and notx′ D x. From
Property 7, we see thatE is conflict-free. We will prove that it attacks (wrt.Rr) any
argument in its exterior. Leta′ ∈ A \ E be an arbitrary argument. Sincea′ /∈ E then
∃h′ ∈ Supp(a′) s.t.h′ /∈ S. FromS ∈ DMS(Σ) we have thatS is a maximal consistent
set. It is clear thatS ∪ {h′} ⊢ ⊥. Let us identify all its minimal conflicting subsets.
Formally, letC1, . . . , Ck be all sets which satisfy the following three conditions:

1. Ci ⊆ S
2. Ci ∪ {h′} ⊢ ⊥
3. Ci is minimal (wrt. set inclusion) s.t. the two previous conditions are satisfied.

Those sets allow to construct the followingk arguments:a1 = (C1,¬h′), . . . , ak =
(Ck,¬h). It is obvious that all of them attacka′ wrt. R. If at least one of them at-
tack a′ wrt. Rr, then the proof is over. Suppose the contrary. This would mean that
∀i ∈ {1, . . . , k}, a′ > ai. Thus,(∀i ∈ {1, . . . , k}) (∃hi ∈ Ci) s.t. h′ ⊲ hi. In other
words, for every argumentai, there exists one formulahi ∈ Supp(ai), such thath′ ⊲hi.
Let H = {h1, . . . , hk}.

Now, we can define a setS′ as follows:S′ = S ∪ {h′} \ H . We will show thatS′

is consistent. Suppose the contrary. SinceS is consistent, then any inconsistent subset
of S′ must containh′. LetK1, . . . , Kj be all sets which satisfy the following conditions:

1. Ki ⊆ S′ \ {h′}
2. Ki ∪ {h′} ⊢ ⊥
3. Ki is a minimal set s.t. the previous two conditions hold.

Let K = {K1, . . . , Kj} andC = {C1, . . . , Ck}. It is easy to see thatK ⊆ C (this
follows immediately from the fact thatS′ \ {h′} ⊆ S). Furthermore, since(∀Ci ∈ C)
(∃h ∈ H) s.t.h ∈ Ci then(∀Ki ∈ K) (∃h ∈ H) s.t.h ∈ Ki. Since for allKi, we have
thatKi ∩ H = ∅ then it must be thatj = 0, i.e.K = ∅. In other words, there are no
inconsistent subsets ofS′, which means thatS′ is consistent.

We can notice thatS′ \ S = {h′} andS \ S′ = {h1, . . . , hk}. SinceS′ is consis-
tent, we see thatS′ ≻ S. Contradiction withS ∈ DMS(Σ).

Proof of Theorem 5Let S = Base(E).

– Let us suppose thatS is consistent but that it is not a maximal consistent set. This
means that∃h ∈ Σ \ S s.t.S ∪ {h} is consistent. From Property 7,E ′ = Arg(S ∪
{h}) is consistent. From Property 6,E ⊆ E ′. The same result implies thatE 6= E ′.
Thus,E ( E ′, which means thatE is not a maximal conflict-free set. Contradiction
with the fact thatE is a stable extension.

– Suppose now thatS is inconsistent. This means that there can be found a setS′ =
{h′

1
, . . . , h′

k} s.t.



• S′ ⊆ S
• S′ ⊢ ⊥
• S′ is a minimal s.t. the previous two conditions are satisfied.

Let us consider the setE ′ containing the followingk arguments:E ′ = {a′
1, . . . , a

′
k},

wherea′
i = (S′\h′

i,¬h′
i). Since(∀h′

i ∈ S′)(∃a ∈ E) s.t.h′
i ∈ Supp(a) and sinceE

is conflict-free then(∄b ∈ E) s.t.Conc(b) ∈ {¬h′
1
, . . .¬h′

k}. Hence,(∀a′
i ∈ E ′) we

have thata′
i /∈ E . Formally,E ∩ E ′ = ∅. This also means that, wrt.R, no argument

in E attacks any of argumentsa′
1
, . . . , a′

k. Formally,(∀a′ ∈ E ′)(∄a ∈ E) s.t.aRa′.
SinceE is a stable extension then arguments ofE ′ must be attacked wrt.Rr. We
have just seen that they are not attacked wrt.R. This means that:

(∀i ∈ {1, . . . , k})(∃ai ∈ E)(a′
iRai) ∧ (ai > a′

i).

For undercuts to exist, it is necessary that:

(∀i ∈ {1, . . . , k}) (h′
i ∈ Supp(ai)) ∧ (ai > a′

i).

For i = 1, we have:∃i1 ∈ {1, . . . , k} s.t. h′
1

⊲ h′
i1

. For i = i1, we have that
∃i2 ∈ {1, . . . , k} s.t.h′

i1
⊲h′

i2
, thus,h′

1
⊲h′

i1
⊲h′

i2
. After k consecutive applications

of the same rule, we obtain:h′
1 ⊲h′

i1
⊲ . . . ⊲ h′

ik
. It is clearly a contradiction since on

one hand, all the formulae in the chain are different becauseof the strict preference
between them, and, on the other hand, set{h′

1, . . . , h
′
k} containsk formulae, thus

at least two of them in a chain ofk + 1 formulae must coincide.

This ends the first part of the proof. Let us now prove thatE = Arg(S). From Property
6, we have thatE ⊆ Arg(S). Suppose thatE ( Arg(S). In the first part of the proof,
we have showed thatS is a maximal consistent set. Thus, from Property 7, we have that
Arg(S) is conflict-free. This simply means thatE is not a maximal conflict-free set,
contradiction.
Proof of Theorem 6 (⇒) Let S �d S′. Let a′ ∈ E ′ \ E . Then∃h′ ∈ Supp(a′) s.t.
h′ ∈ S′ \ S. SinceS �d S′ then∃h ∈ S \ S′ s.t.h ⊲ h′. Let a = ({h}, h). It is clear
thata ∈ S \ S′ anda > a′. Thus,E �d E ′.
(⇐) Let E �d E ′. Let h′ ∈ S′ \ S. Thena′ = ({h′}, h′) ∈ E ′ \ E . Thus,∃a ∈ E \ E ′

s.t.a > a′. Sincea ∈ E \ E ′, then∃h ∈ Supp(a) s.t.h ∈ S \ S′. It is clear thath ⊲ h′.

Proof of Theorem 7

– From Theorem 4, we have thatE is an extension of a basic PAF(A,R,≥). We will
prove that it is also an extension of a rich PAF(A,R,≥,�d). Let us suppose the
contrary, i.e. suppose that there existsE ′ s.t.E ′ is a stable extension andE ′ ≻d E .
Let S′ = Base(E ′). From Theorem 5,E ′ = Arg(S′). From the same theorem,
we have thatS′ is maximal consistent set and from Theorem 6 thatS′ ≻d S.
Contradiction.

– Theorem 5 implies thatS is a maximal conflict-free set and thatE = Arg(S).
Suppose thatS /∈ DMS(Σ). This means that∃S′ ⊆ Σ s.t. S′ ∈ DMS(Σ) and
S′ ≻d S. From Theorem 4,E ′ = Arg(S′) is a stable extension of a basic PAF.
Theorem 6 implies thatE ′ ≻d E , contradiction.



Proof of Theorem 8Let us denoteExt(T ) the set of all extensions of a rich PAFT .
We will prove thatArg : DMS → Ext(T ) is a bijection.

– Theorem 7 shows thatArg(DMS) ⊆ Ext(T ).
– Property 6 implies thatArg is injective.
– Let E ∈ Ext(T ) and letS = Base(E). From Theorem 5, we haveE = Arg(S).

Theorem 7 yields the conclusion thatS ∈ DMS. Thus,Arg : DMS → Ext is surjec-
tive.


