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Abstract
Argumentation is a reasoning model based on the
construction and evaluation of arguments. Dung
has proposed an abstract argumentation framework
in which arguments are assumed to have the same
strength. This assumption is unfortunately not
realistic. Consequently, three main extensions of
the framework have been proposed in the literature.
The basic idea is that if an argument is stronger
than its attacker, the attack fails.

The aim of the paper is twofold: First, it shows that
the three extensions of Dung framework may lead
to unintended results. Second, it proposes a new
approach that takes into account the strengths of ar-
guments, and that ensures sound results. We start
by presenting two minimal requirements that any
preference-based argumentation framework should
satisfy, namely the conflict-freeness of arguments
extensions and the generalization of Dung’s frame-
work. Inspired from works on handling inconsis-
tency in knowledge bases, the proposed approach
defines a binary relation on the powerset of argu-
ments. The maximal elements of this relation rep-
resent the extensions of the new framework.

1 Introduction
Preferences are used in most models that have been developed
to solve conflicts (e.g. [Benferhat et al., 1993; Brewka, 1989;
Cayrol et al., 1993; Gelfond and Son, 1997]). Conflicts have
a better chance to be solved in presence of such informa-
tion. Preferences have also been introduced into argumen-
tation theory. Argumentation is a reasoning model based
on the construction and the evaluation of arguments. An
argument gives a reason to believe a statement, to perform
an action, or to choose an option, etc. Due to its explana-
tory power, argumentation is gaining an increasing interest
in Artificial Intelligence, namely for handling inconsistency
(e.g. [Amgoud and Cayrol, 2002a; Besnard and Hunter, 2008;
Simari and Loui, 1992]), and decision making (e.g. [Amgoud
and Prade, 2009]). Most of the models that treat the cited ap-
plications are instantiations of an abstract framework devel-
oped in [Dung, 1995]. This framework consists of a set of

arguments and a binary relation that captures attacks among
arguments. Arguments are assumed to have all the same
strength. This assumption is unfortunately not realistic since
it may be the case that an argument relies on certain informa-
tion, while another argument is built from less certain ones.
The former is clearly stronger than the latter. In [Benferhat
et al., 1993; Cayrol et al., 1993; Prakken and Sartor, 1997;
Simari and Loui, 1992] different preference relations between
arguments have been defined. A preference relation captures
differences in arguments’ strengths.

In [Amgoud and Cayrol, 2002b], a first extension of
Dung’s framework has been proposed. It takes as input a
set of arguments, an attack relation, and a preference relation
between arguments. This relation is abstract and can be in-
stantiated in different ways. This proposal has recently been
generalized in [Modgil, 2009] in order to reason even about
preferences. Thus, arguments may support preferences about
arguments. The last extension of Dung’s framework has been
proposed in [Bench-Capon, 2003]. It assumes that each ar-
gument promotes a value, and a preference between two ar-
guments comes from the importance of the respective values
that are promoted by the two arguments. Whatever the source
of the preference relation is, the idea behind the three exten-
sions is that an attack from an argument a to an argument b
fails if b is stronger than a.

The aim of the paper is twofold: First, it shows that while
the above idea is interesting and seems meaningful, the three
extensions return unintended results. Second, it proposes a
new preference-based argumentation framework (PAF) that
ensures sound results. We start by defining two basic require-
ments that any PAF should satisfy. Namely, the extensions
should be conflict-free w.r.t. the attack relation. The sec-
ond requirement consists of recovering Dung’s acceptability
extensions in case preferences are not available. We then pro-
pose a new approach which defines a binary relation on the
powerset of arguments. The maximal elements of this rela-
tion are the extensions of the new framework. Three relations
are particularly proposed in the paper. They capture respec-
tively stable extensions, preferred extensions and grounded
extensions of Dung’s framework.

The paper is organized as follows: Section 2 recalls briefly
Dung’s framework as well as its extensions with preferences.
Section 3 presents their limits through a simple example. Sec-
tion 4 develops the new approach, and Section 5 concludes.



2 Dung’s Framework And Its Extensions
In the seminal paper [Dung, 1995], an argumentation frame-
work is a pair AF = 〈A,R〉, where A is a set of arguments
and R is a binary relation between arguments, representing
attacks among them (R ⊆ A×A). The notation (a, b) ∈ R or
aRb means that the argument a attacks the argument b. Dif-
ferent acceptability semantics for evaluating arguments have
been proposed. Before recalling them, let us first define the
notions of conflict-free and defense.

Definition 1 (Conflict-free, Defense) LetB ⊆A and a ∈ A.

• B is conflict-free iff @ a, b ∈ B s.t. aRb.

• B defends a iff ∀b ∈ A if bRa, then ∃c ∈ B s.t. cRb.

The main semantics introduced by Dung are recalled in the
following definition.

Definition 2 (Acceptability semantics) Let AF = 〈A,R〉
be an argumentation framework, and B be a conflict-free set
of arguments.

• B is a admissible iff it defends all its elements.

• B is a preferred extension iff it is a maximal (w.r.t. set
⊆) admissible set.

• B is a stable extension iff it is a preferred extension that
attacks any argument in A \ B.

• B is a grounded extension, denoted GE, iff B is the least
fixpoint of a function F where F(S) = {a ∈ A | S de-
fends a}, for S ⊆ A.

In [Amgoud and Cayrol, 2002b], a first extension of
Dung’s framework has been proposed. It takes as input
a set A of arguments, an attack relation R, and a (partial
or total) preorder1 ≥ on A. This preorder is a preference
relation between arguments. The expression (a, b) ∈≥ or
a ≥ b means that the argument a is at least as strong as b.
The symbol > denotes the strict relation associated with ≥.
Indeed, a > b iff a ≥ b and not (b ≥ a). From the two
relations R and ≥, a new binary relation, Def, is defined as
follows: a Def b iff aRb and not (b > a). This means that
among all the attacks in R, only the ones that hold between
incomparable and indifferent arguments and the ones that
agree with the preference relation are kept. In order to evalu-
ate the acceptability of the arguments, Dung’s acceptability
semantics are applied to the framework 〈A, Def〉.

In [Modgil, 2009], the preference relation ≥ is given
by arguments.The idea is that an argument may support
a preference between two other arguments. Two attack
relations are assumed: a classical one denoted by R, and
another relation, D, that ranges from an argument of A to
an element of R. An expression (a, (b, c)) means that the
argument a supports a preference of c over b. This preference
conflicts with the fact that b attacks c. A new relation, Def,
is defined as follows: a DefS b iff aRb and ∃c ∈ S such that
(c, (a, b)) ∈ D, where S ⊆ A.

1A binary relation is a preorder iff it is reflexive and transitive.

The extension proposed in [Bench-Capon, 2003], called
value-based framework, assumes that a set V of values is
available. Each argument in A promotes one value given by
a function val (i.e. val : A 7→ V). The values may not have
the same importance and this is captured by a binary relation
Pref. This latter is assumed to be irreflexive, asymmetric and
transitive. Like in [Amgoud and Cayrol, 2002a], a new rela-
tion, called defeats, is defined as follows: (a, b) ∈ defeats
iff (a, b) ∈ R ∧ (val(b), val(a)) /∈ Pref. Dung’s accept-
ability semantics are applied to the framework 〈A, defeats〉.

3 Critical Examples
This section shows through a simple example that the above
two extensions may lead to counter-intuitive results.

Let us consider a case of an agent who wants to buy a
given violin. An expert says that the violin in question is
produced by Stradivari (s), that’s why it is expensive (s→ e).
This agent has thus an argument a1 whose conclusion is
“the violin is expensive”. Suppose now that the 3-years
old son of this agent says that the violin was not produced
by Stradivari (¬s). Thus, an argument a2 which attacks
a1 is given. In sum, A = {a1, a2} and R = {(a2, a1)}.
According to Dung’s framework, argument a2 wins. This is
inadmissible, especially since it is clear that an argument of
an expert is stronger than an argument given by a 3-years old
child. In the framework presented in [Amgoud and Cayrol,
2002a], the fact that a1 is stronger than a2 is taken into
account. Thus, the relation ≥= {(a1, a1), (a2, a2), (a1, a2)}
is available. However, in this framework the relation Def
is empty. Consequently, both arguments are in the unique
preferred extension of the framework 〈A, Def〉. This means
that this extension is not conflict-free. Moreover, both s and
¬s are deduced.

According to [Modgil, 2009], there are three arguments:
a1, a2 and a3 where a3 expresses the fact that a1 is strictly
preferred to a2. Thus, A = {a1, a2, a3}, R = {(a2, a1)},
and D = {(a3, (a2, a1))}. The set {a1, a2, a3} is a preferred
extension which is not conflict-free w.r.t. R.

The same problem holds in the value-based framework of
[Bench-Capon, 2003]. Assume that the set of values is V =
{expert, child} and, of course, (expert, child) ∈ Pref. The
value of a1 is expert while the value of a2 is child. The
new relation defeats is empty. So, like with the previous
preference-based framework, the two arguments appear in the
same extension which is not conflict-free.

4 A New Approach
The previous section has highlighted the limits of existing
preference-based argumentation frameworks. Even if the idea
pursued by these frameworks is intuitive and meaningful,
their results are not satisfactory and violate a key property.
This property concerns the conflict-freeness of their exten-
sions w.r.t. the attack relation R. In this section, we propose
a new preference-based argumentation framework. It takes as
input three elements: a set A of arguments, an attack relation



R, and a (partial or total) preorder ≥. It returns extensions
that are subsets of A. These extensions satisfy the two fol-
lowing basic requirements:
Conflict-freeness: If E is an extension of (A,R,≥), then E

is conflict free w.r.t. R.
Generalization: If (@a, b ∈ A) s.t. (a, b) ∈ R and

(b, a) ∈>, then any extension of (A,R,≥) is also an
extension of Dung’s framework 〈A,R〉 and vice versa.

The first requirement ensures that the extensions returned
by the new framework are conflict-free. This is important
since it ensures safe results in the sense that inconsistent
conclusions are avoided. The second one captures the idea
that an attack fails in case the attacker is weaker than its
target. Moreover, it states that the proposed approach extends
Dung’s framework, i.e. it refines its acceptability semantics.

In what follows, we show how extensions of a PAF are
computed. We follow the same reasoning as in some ap-
proaches developed for handling inconsistency in knowledge
bases, namely the coherence-based ones. In [Cayrol et al.,
1993], for instance, an inconsistent knowledge base Σ is
equipped with a partial or total preorder, meaning that for-
mulas of Σ have not the same priority. Then, preference rela-
tions among consistent sub-bases of Σ are defined. The max-
imal elements w.r.t. those preference relations represent the
preferred ones. We apply the same idea in an argumentation
context. Indeed, by analogy, the inconsistent base represents
our conflicting set of arguments, and the priorities between
formulas of Σ are the preferences between arguments. We
define preference relations, denoted by�, between the differ-
ent conflict-free sets of arguments. Thus, � ⊆ 2A × 2A. The
relation � is the strict version of �, that is for E , E ′ ⊆ A,
E � E ′ iff E � E ′ and not (E ′ � E). The maximal elements
of � are the extensions of a PAF. This notion of maximality
is defined as follows.
Definition 3 (Maximal elements) Let E be a conflict-free set
of arguments. E is maximal w.r.t. � iff:

1. (∀E ′ ⊆ A) ((E ′ is conflict-free)⇒ (E � E ′))
2. No strict superset of E is conflict-free and verifies (1)

Let �max denote the set of maximal sets w.r.t. �.
The above definition privileges maximal (for set inclusion)
sets of arguments among the conflict-free ones. It is worth
mentioning that different relations� can be defined, and may
lead to different sets of extensions. Moreover, those exten-
sions are not necessarily the ones got by Dung’s acceptability
semantics. The new preference-based argumentation frame-
work is defined as follows.
Definition 4 (PAF) A PAF is a tuple (A,R,≥), where A is
a set of arguments, R is an attack relation, and ≥ is a (par-
tial or total) preorder on A. Extensions of (A,R,≥) are the
maximal elements of a relation � ⊆ 2A × 2A that satisfies
the two basic requirements.
In what follows, we propose three relations which generalize
respectively stable, preferred and grounded semantics. Note
that, without loss of generality, we assume that there are no
self-attacking arguments, i.e., (@x ∈ A) s.t. (x, x) ∈ R.
Moreover, the set A is assumed to be finite.

4.1 Generalization Of Stable Semantics
This section presents a relation � that generalizes stable se-
mantics. The idea behind this relation is the following: given
two conflict-free sets of arguments, E and E ′, we say that E ′
is better then E iff any argument in E \ E ′ is weaker than at
least one argument in E ′ \ E or is attacked by it. Formally:

Definition 5 Let E , E ′ be two conflict-free sets of arguments.
E ′ � E iff (∀x ∈ E \ E ′) (∃x′ ∈ E ′ \ E) s.t. (((x′, x) ∈ R ∧
(x, x′) /∈>) ∨ (x′, x) ∈>).

Let us illustrate this definition through the following simple
example.

Example 1 LetA = {a, b, c},≥= {(a, a), (b, b), (a, b)} and
R = {(a, b), (b, a), (b, c), (c, b)}. The conflict-free sets of ar-
guments are: E1 = ∅, E2 = {a}, E3 = {b}, E4 = {c}, and
E5 = {a, c}. It can be checked that the following relations
hold: E2 � E1, E3 � E1, E4 � E1, E5 � E1, E5 � E4,
E5 � E2, E5 � E3, E4 � E3, E3 � E4, and E2 � E3. It can be
checked that �max= {E5}.

Note that relation � is not transitive. However, the follow-
ing property states that this relation privileges maximal for
set inclusion elements.

Property 1 Let E , E ′ be conflict-free sets of arguments. If
E ( E ′ then E ′ � E .

Proof Let us prove that E ′ � E . We have that E \ E ′ = ∅,
and, consequently, there are no arguments in E \ E ′. Let us
now see why¬(E � E ′). Since E ( E ′, then ∃x′ ∈ E ′\E . But,
from the fact that E \E ′ is empty, we conclude that @x ∈ E\E ′
s.t. (x, x′) ∈> or ((x, x′) ∈ R ∧ (x′, x) /∈>).

With the above relation, Definition 3 can be simplified.

Property 2 Let E ′ be a conflict-free set of arguments. It holds
that E ′ ∈�max iff (∀E ⊆ A) ((E is conflict-free) ⇒ (E ′ �
E)).

Proof ⇒ Trivial, according to Definition 3.
⇐ Let (∀E ⊆ A) ((E is conflict-free) ⇒ (E ′ � E)). We

will prove that (@E ′′ ⊆ A) s.t. E ′′ is conflict-free ∧ E ′ ( E ′′
∧ (∀E ′′′ ⊆ A) (E ′′′ conflict-free ⇒ E ′′ � E ′′′). Suppose
the contrary. Since E ′ ( E ′′ then Property 1 implies that
¬(E ′ � E ′′). Contradiction.

The following property shows that the maximal sets of argu-
ments w.r.t. the relation � given in Definition 5 are maximal
conflict-free subsets of A.

Property 3 Let E be a conflict-free set of arguments. If E
∈�max, then E is a maximal conflict-free set.

Proof Suppose the contrary, i.e., that E ∈�max and that E
is not a maximal conflict-free set. This means that (∃x ∈ A)
s.t. x /∈ E and E ∪{x} is conflict-free. According to Property
1, (E ∪ {x}) � E . Contradiction with the fact E ∈�max.

The converse is not true, as illustrated by the next example.

Example 2 (Ex. 1 Cont.) The set E3 is maximal conflict-free
but does not belong to �max.

We can show that the proposed framework handles correctly
the example discussed in Section 3.



Example 3 Recall that A = {a1, a2}, R = {(a2, a1)}
and ≥= {(a1, a1), (a2, a2), (a1, a2)}. Conflict-free sets are:
E1 = ∅, E2 = {a1}, E3 = {a2}. It can easily be checked that
�max= {E2}. Thus, the new PAF has a unique extension
which is {a1}.
The extensions of the new PAF are conflict-free w.r.t the at-
tack relationR.

Property 4 Let (A,R,≥) be a preference-based argumen-
tation framework. The extensions of this framework w.r.t. the
relation � given in Definition 5 are conflict-free w.r.t. R.

Proof This follows from the definition of �.

Regarding the second requirement, the following theorem
proves that the extensions of our preference-based argumen-
tation framework coincide with stable extensions in case pref-
erences are not available and when any attacked argument is
not stronger than its attacker.

Theorem 1 Let (A,R,≥) be a preference-based argumen-
tation framework, and E1, . . . , En denote its extensions w.r.t.
�. If (@x, y ∈ A) s.t. (x, y) ∈ R ∧ (y, x) ∈>, then each Ei
is a stable extension of 〈A,R〉 and vice versa.

Proof ⇒ Let E ′ ∈�max.

• Since E ′ ∈�max then it is conflict-free.

• We will now prove that E ′ defends all its elements. Let
us suppose that (∃a ∈ E ′) (∃x ∈ A) s.t. (x, a) ∈ R
∧ (@y ∈ E ′) (y, x) ∈ R. Since E ′ is conflict-free,
then x /∈ E ′. Let E = {x} ∪ {t ∈ E ′ | (x, t) /∈ R
∧ (t, x) /∈ R}. It is clear the E is conflict-free since
E is union of two conflict-free sets which do not attack
one another. Since E ′ ∈�max then E ′ � E . In par-
ticular, since x ∈ E \ E ′, then (∃x′ ∈ E ′ \ E) s.t.
((x′, x) ∈ R ∧ (x, x′) /∈>) ∨ (x′, x) ∈>. Since
(@y ∈ E ′) (y, x) ∈ R, then it must be the case that
(x′, x) /∈ R and (x′, x) ∈>. Since x′ ∈ E ′ and x′ /∈ E
then, with respect to definition of E , from x′ /∈ E we have
that (x, x′) ∈ R or (x′, x) ∈ R. Since we have just seen
that (x′, x) /∈ R, it must be that (x, x′) ∈ R. Recall that
we have (x′, x) ∈>. But we supposed that (@z, z′ ∈ A)
s.t. (z, z′) ∈ R and (z′, z) ∈>. Contradiction. Thus, E ′
defends its arguments.

• We have just shown that E ′ is admissible, i.e., it is
conflict-free and it defends all its arguments. We will
now prove that E ′ attacks all arguments in A \ E ′. Let
x /∈ E ′ be an argument and suppose that (@y ∈ E ′)
(y, x) ∈ R. Either x attacks some argument of E ′ or not.
If it is the case, i.e., (∃a ∈ E ′) s.t. (x, a) ∈ R then, since
E ′ defends all its elements, it holds that (∃y ∈ E ′) s.t.
(y, x) ∈ R. Contradiction. So, it must be that (@a ∈ E ′)
s.t. (x, a) ∈ R. This means that E = E ′∪{x} is conflict-
free. According to Property 1, it holds that ¬(E ′ � E).
Contradiction with the fact that E ′ ∈�max.
So, E is conflict-free and it attacks all arguments inA\E .
This means that E is a stable extension of framework
AF = 〈A,R〉.

⇐ Let E ′ be a stable extension of the framework AF =
〈A,R〉 and let us prove that E ′ ∈�max.

• Since E ′ is stable then it is conflict-free.
• We will prove that for an arbitrary conflict-free set of

arguments E it holds that E ′ � E . Let E ⊆ A be a
conflict-free set. If E \ E ′ = ∅ the proof is over. If it
is not the case, let x ∈ E \ E ′. Since x /∈ E ′ and E ′
is a stable extension, then (∃x′ ∈ E ′) s.t. (x′, x) ∈ R.
We supposed that (@z, z′ ∈ A) s.t. (z, z′) ∈ R and
(z′, z) ∈>. Thus, (x, x′) /∈>. Since x ∈ E \ E ′ was
arbitrary, it holds that E ′ � E .

• Using Property 2, we conclude that E ′ ∈�max.
From this result it follows that when preferences are not

available, stable extensions are retrieved.

Corollary 1 Let (A,R,≥) be a preference-based argumen-
tation framework, and E1, . . . , En denote its extensions w.r.t.
�. If ≥= {(x, x) | x ∈ A}, then each Ei is a stable extension
of 〈A,R〉 and vice versa.

Proof Since ≥= {(x, x) | x ∈ A} then (@x, y ∈ A) s.t.
x 6= y ∧ (x, y) ∈ R ∧ (y, x) ∈>. Since we supposed that
(@x ∈ A) s.t. (x, x) ∈ R then (@x, y ∈ A) s.t. (x, y) ∈ R
∧ (y, x) ∈>. Thus, Theorem 1 implies that extensions of
(A,R,≥) are exactly the stable extensions of 〈A,R〉.

Note that the relation � gives more information than
Dung’s acceptability semantics. Indeed, even when prefer-
ences are not available, the relation � compares conflict-free
sets of arguments, as can be shown on the following example.

Example 4 Let A = {a, b, c}, ≥= {(a, a), (b, b), (c, c)} and
R = {(a, b), (b, c)}. Note that in this case, the preference re-
lation ≥ is useless. Thus, the only stable extension of 〈A,R〈
is {a, c}. This is also the only maximal element of the relation
�. However, in the new PAF, it is also possible to compare
the two sets: {a} and {b}. It can be checked that {a} � {b}.

4.2 Generalization Of Preferred Semantics
In this section, we define a relation � that allows to retrieve
preferred extensions in case preferences between arguments
are not available or are not important. The basic idea behind
this relation is that a set E ′ is better than E iff for every at-
tack from E to E ′ which does not fail E ′ is capable to defend
the attacked argument and that for every attack from E ′ to E
which fails, there is another attack from E ′ which defends the
argument which failed in its attack.
Definition 6 Let E , E ′ be conflict-free sets of arguments.
E ′ � E iff (∀x′ ∈ E ′)(∀x ∈ E) if (((x, x′) ∈ R∧ (x′, x) /∈>)
or ((x′, x) ∈ R ∧ (x, x′) ∈>)) then ((∃y′ ∈ E ′) s.t.
((y′, x) ∈ R ∧ (x, y′) /∈>)).
Let us illustrate this definition through the next example.
Example 5 (Ex. 1 Cont.) One can easily see that it holds
that E2 � E3, E3 � E4, E4 � E3, E5 � E3, . . . It can also
be checked that �max= {E5}.
Note that this relation is not transitive. It is also clear from the
above definition that the corresponding framework satisfies
the conflict-freeness requirement.
Property 5 Let (A,R,≥) be a preference-based argumen-
tation framework. The extensions of this framework w.r.t. �
given in Definition 6 are conflict-free w.r.t. R.



Proof This follows from the definition of �.

Regarding the second requirement, the following theorem
shows that the preference-based framework that uses this re-
lation generalizes preferred extensions.
Theorem 2 Let (A,R,≥) be a preference-based argumen-
tation framework, and E1, . . . , En denote its extensions w.r.t.
�. If (@x, y ∈ A) s.t. (x, y) ∈ R ∧ (y, x) ∈>, then each Ei
is a preferred extension of 〈A,R〉 and vice versa.

Proof Since we supposed that (@x, y ∈ A) s.t. (x, y) ∈ R ∧
(y, x) ∈> then E ′ � E iff (∀x′ ∈ E ′) (∀x ∈ E) if (x, x′) ∈ R
then (∃y′ ∈ E ′) s.t. (y, x) ∈ R.
⇐ Let E ′ be a preferred extension of AF = 〈A,R〉.
• Since E ′ is a preferred extension then it is conflict-free.
• Let us prove that E ′ ∈�max. Suppose the contrary. This

means that one of the following is true:
1. (∃E ⊆ A) s.t. E is conflict-free and ¬(E ′ � E)
2. (∃E ⊆ A) s.t. E is conflict-free ∧ E ′ ( E ∧ (∀E ′′ ⊆
A) if E ′′ is conflict-free then E � E ′′

Let (1) be the case. Since ¬(E ′ � E) then (∃x′ ∈
E ′)(∃x ∈ E) s.t. (x, x′) ∈ R ∧ (@y′ ∈ E ′) s.t. (y′, x) ∈
R. This leads to the conclusion that E ′ does not de-
fend its arguments, thus it cannot be a preferred exten-
sion. Contradiction. So, it must be that (2) holds. Since
E ′ is preferred and E ′ ( E then E is not admissible.
From the fact that E is conflict-free, one concludes that
it does not defend its arguments. Thus, (∃x′′ ∈ E ′′ \ E ′)
s.t. (∃y ∈ A) s.t. (y, x′′) ∈ R ∧ (@z′′ ∈ E ′′) s.t.
(z′′, y) ∈ R. Hence, ¬(E ′′ � {y}). Contradiction.

⇒ Let E ′ ∈�max. We will prove that E ′ is a preferred ex-
tension of Dung’s argumentation framework AF = 〈A,R〉.
• Since E ′ is then it is conflict-free.
• Let us prove that E ′ defends all its arguments. Suppose

not. This means that (∃y ∈ A) s.t. (y, x′) ∈ R ∧ (@z′ ∈
E ′) s.t. (z′, y) ∈ R. This means that ¬(E ′ � {y}).
Contradiction.

• We have just seen that E ′ is admissible. Let us prove that
E ′ is a preferred extension of AF = 〈A,R〉. Suppose
the contrary, i.e., (∃E ⊆ A) s.t. E is a preferred ex-
tension and E ′ ( E . Since E ′ ∈�max then E /∈�max.
On the other hand, since E is a preferred extension, then
E ∈�max, as we have proved in the first part of this
theorem. Contradiction.

When preferences are not available, the framework that uses
the relation � retrieves preferred extensions.
Corollary 2 Let (A,R,≥) be a preference-based argumen-
tation framework, and E1, . . . , En denote its extensions w.r.t.
�. If ≥= {(x, x) | x ∈ A}, then each Ei is a preferred exten-
sion of 〈A,R〉 and vice versa.

Proof Since ≥= {(x, x) | x ∈ A} then (@x, y ∈ A) s.t.
x 6= y ∧ (x, y) ∈ R ∧ (y, x) ∈>. Since we supposed that
(@x ∈ A) s.t. (x, x) ∈ R then (@x, y ∈ A) s.t. (x, y) ∈
R ∧ (y, x) ∈>. Theorem 2 now implies that extensions of
(A,R,≥) are exactly the preferred extensions of 〈A,R〉.

4.3 Generalization Of Grounded Semantics
In this section, we define a relation � that allows to retrieve
the grounded extension in case preferences between argu-
ments are not available or are not important. The basic idea
behind this relation is that a set is not worse than another if it
can strongly defend all its arguments against all attacks that
come from another set.

We first generalize the notion of strong defense by taking
into account preferences between arguments. The idea is that
an argument has either to be preferred to its attacker or has
to be defended by arguments that themselves can be strongly
defended without using the argument in question.
Definition 7 (Strong defense) Let E ′ ⊆ A. E ′ strongly de-
fends an argument x from attacks of a set E , denoted by
sd(x, E ′, E) iff (∀y ∈ E) if (((y, x) ∈ R ∧ (x, y) /∈>)
or ((x, y) ∈ R ∧ (y, x) ∈>)) then ((∃z ∈ E ′ \ {x}) s.t.
((z, y) ∈ R ∧ (y, z) /∈> ∧sd(z, E ′ \ {x}, E))).
If the third argument of sd is not specified, then sd(x, E) ≡
sd(x, E ,A).

Let us illustrate this notion through the following example.

Example 6 (Ex. 1 Cont.) It holds that sd(a, {a}, {b}) since
a is strictly preferred to b thus it can defend itself. However,
we have ¬sd(b, {b}, {c}) since b cannot defend itself against
c. On the other hand, it does hold that sd(c, {a, c}, {b}) since
a can defend c against b and a is protected from b since it is
strictly preferred to it.

This relation amounts to prefer the subsets that strongly de-
fend all their arguments. In particular, E ′ � E iff E ′ strongly
defends all its arguments against all attacks of E .

Definition 8 Let E , E ′ be conflict-free sets of arguments. We
say that E ′ � E iff (∀x′ ∈ E ′) sd(x′, E ′, E).

Example 7 LetA = {a, b, c},≥= {(a, a), (b, b), (b, a)} and
R = {(a, b), (b, a), (b, c), (c, b)}. One can check that there is
exactly one subset ofA which is preferred to all other subsets
of arguments. This set is the empty one. While we do have
{b} � {a}, we have ¬({b} � {c}), so {b} is not an extension
of (A,R,≥). We have also ¬({a} � {b}), ¬({c} � {b})
and ¬({a, c} � {b}). This is expected and a natural output
since neither b nor c are capable to defend strongly them-
selves and, on the other hand, it can be said that a is the
worst argument in this framework, thus not strong enough to
be better than b.

Theorem 3 Let (A,R,≥) be a preference-based argumenta-
tion framework. If (@x, y ∈ A) s.t. (x, y) ∈ R ∧ (y, x) ∈>,
then�max contains exactly one element which coincides with
the grounded extension of 〈A,R〉.
Proof Since we supposed that (@x, y ∈ A) s.t. (x, y) ∈ R ∧
(y, x) ∈> then we can simplify Definition 7 which becomes:
sd(x, E ′, E) iff (∀y ∈ E) (if (y, x) ∈ R then (∃z ∈ E ′ \ {x})
s.t. ((z, y) ∈ R ∧ sd(z, E ′ \ {x}, E))). In this particular
case when no attacked argument is strictly preferred to its at-
tacker, our definition of sd(x, E) becomes exactly the same
as Definition 13 in [Baroni and Giacomin, 2007]. Thus, us-
ing Proposition 50 and Proposition 51 of the same paper, we
conclude that x ∈ GE iff sd(x, GE), where GE is the grounded
extension of the framework AF = 〈A,R〉.



⇐ Let E ′ be the grounded extension of 〈A,R〉.
• Since E ′ is the grounded extension then it is conflict-free.

• We will prove that for an arbitrary conflict-free set E ⊆
A it holds that E ′ � E . Let E ⊆ A be conflict-free. Since
E ′ is the grounded extension then x ∈ E ′ ⇒ sd(x, E ′).
On the other hand, (∀x ∈ E ′) sd(x, E ′) implies that
sd(x, E ′, E). Thus, E ′ � E . Since E was arbitrary, then
(∀E ⊆ A) ((E is conflict-free)⇒ (E ′ � E)).

• We will now prove that (@E ⊆ A) s.t. E is conflict-free
and E ′ ( E and ((∀E ′′ ⊆ A) (E ′′ conflict-free)⇒ (E �
E ′′)). Suppose the contrary. Suppose also that (∀x ∈ E)
sd(x, E). If this is the case, according to Proposition
51 in [Baroni and Giacomin, 2007], E ⊆ GE. Contra-
diction. So, it must be that (∃x ∈ E) s.t. ¬sd(x, E).
Thus, (∃y ∈ A) s.t. ¬sd(x, E , {y}). Consequently,
¬(E � {y}). Contradiction. So, we have proved that
E ′ ∈�max.

⇒ Let E ′ ∈�max and let us prove that E ′ = GE. Since
(∀x ∈ A) E ′ � {x} then (∀x′ ∈ E ′) sd(x′, E ′). From the
fact that (∀x′ ∈ E ′) sd(x, E ′) and Proposition 51 of [Baroni
and Giacomin, 2007] we have that E ′ ⊆ GE. Let us now prove
that E ′ = GE. Suppose not, i.e., suppose that E ′ ( GE. We
have proved in the first part of this theorem that GE ∈�max.
Contradiction, since we have supposed that E ′ ∈�max and
we have E ′ ( GE.

When preferences are not available, the framework that uses
the relation � retrieves exactly grounded extension.
Corollary 3 Let (A,R,≥) be a preference-based argumen-
tation framework. If ≥= {(x, x) | x ∈ A}, then �max con-
tains exactly one element which coincides with the grounded
extension of 〈A,R〉.
Proof Since ≥= {(x, x) | x ∈ A} then (@x, y ∈ A) s.t.
x 6= y ∧ (x, y) ∈ R ∧ (y, x) ∈>. Since we supposed that
(@x ∈ A) s.t. (x, x) ∈ R then (@x, y ∈ A) s.t. (x, y) ∈ R ∧
(y, x) ∈>. Theorem 3 now implies that (A,R,≥) has exactly
one extension which is the grounded extension of 〈A,R〉.

5 Conclusion
This paper has shown through a simple example that exist-
ing preference-based argumentation frameworks may lead to
undesirable results. This means that the way preferences be-
tween arguments are taken into account is not appropriate.
We have then proposed an alternative approach that satisfies
two basic requirements: conflict-freeness of extensions, and
recovering Dung’s acceptability semantics when preferences
are not available. The approach amounts to define a rela-
tion on the powerset of arguments. In other words, it com-
pares pairs of conflict-free subsets of arguments. The best
elements w.r.t. this relation are the extensions of the new
framework. The approach has three main advantages: i) it is
general since different relations can be defined, ii) it enforces
the new framework to satisfy key properties, namely conflict-
freeness of the extensions and recovering Dung’s semantics,
iii) it allows to compare any pair of subsets of arguments,
contrary to Dung’s approach in which there are only two cat-
egories of sets: the ones that are considered as extensions and

all the remaining ones. The results presented in this paper
show also how to characterize Dung’s semantics in terms of
a relation between subsets of arguments. To the best of our
knowledge this is the first work in this direction. It allows to
better understand the underpinning of those semantics.

References
[Amgoud and Cayrol, 2002a] L. Amgoud and C. Cayrol. In-

ferring from inconsistency in preference-based argumenta-
tion frameworks. J. of Automated Reasoning, 29 (2):125–
169, 2002.

[Amgoud and Cayrol, 2002b] L. Amgoud and C. Cayrol. A
reasoning model based on the production of acceptable
arguments. Annals of Mathematics and Artificial Intelli-
gence, 34:197–216, 2002.

[Amgoud and Prade, 2009] L. Amgoud and H. Prade. Using
arguments for making and explaining decisions. Artificial
Intelligence J., 173:413–436, 2009.

[Baroni and Giacomin, 2007] P. Baroni and M. Giacomin.
On principle-based evaluation of extension-based argu-
mentation semantics. Artificial Intelligence J., 171:675–
700, 2007.

[Bench-Capon, 2003] T. J. M. Bench-Capon. Persua-
sion in practical argument using value-based argumen-
tation frameworks. Journal of Logic and Computation,
13(3):429–448, 2003.

[Benferhat et al., 1993] S. Benferhat, D. Dubois, and
H. Prade. Argumentative inference in uncertain and
inconsistent knowledge bases. In Proc. of UAI’93, pages
411–419, 1993.

[Besnard and Hunter, 2008] Ph. Besnard and A. Hunter. El-
ements of Argumentation. MIT Press, 2008.

[Brewka, 1989] G. Brewka. Preferred subtheories: An ex-
tended logical framework for default reasoning. In Proc.
of IJCAI-89, pages 1043–1048, 1989.

[Cayrol et al., 1993] C. Cayrol, V. Royer, and C. Saurel.
Management of preferences in assumption-based reason-
ing. Lecture Notes in Computer Science, 682:13–22, 1993.

[Dung, 1995] P. M. Dung. On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial Intelligence
J., 77:321–357, 1995.

[Gelfond and Son, 1997] M. Gelfond and T.C. Son. Priori-
tized default theory. Lecture Notes in AI, 1471, 1997.

[Modgil, 2009] S. Modgil. Reasoning about preferences in
argumentation frameworks. Artificial Intelligence J., 2009.

[Prakken and Sartor, 1997] H. Prakken and G. Sartor.
Argument-based extended logic programming with de-
feasible priorities. J. of Applied Non-Classical Logics,
7:25–75, 1997.

[Simari and Loui, 1992] G.R. Simari and R.P. Loui. A math-
ematical treatment of defeasible reasoning and its imple-
mentation. Artificial Intelligence J., 53:125–157, 1992.


