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Abstract
We study the qualitative spatiotemporal logic that
results by combining the propositional temporal
logic (PTL) with a qualitative spatial constraint lan-
guage, namely, theL1 logic, and investigate the im-
plication of the constraint properties of compact-
ness and patchwork in qualitative spatiotemporal
reasoning. We use these properties to strengthen
results regarding the complexity of the satisfiabil-
ity problem in L1, by replacing the stricter global
consistency property used in literature and, con-
sequently, generalizing to more qualitative spatial
constraint languages. Further, we identify frag-
ments of the L1 logic that capture significant as-
pects of spatiotemporal change. In particular, we
address the issue of periodical, and smoothness
and continuity constraints between spatial config-
urations, and obtain results on their computational
properties. Regarding periodicity, we use again
the properties of compactness and patchwork to
strengthen results that exist in literature, by re-
establishing conditions that allow for tractability
and, again, generalizing to a larger class of quali-
tative spatial constraint languages.

1 Introduction
Time and space are fundamental cognitive concepts that have
been the focus of study in many scientific disciplines, in-
cluding Artificial Intelligence and, in particular, Qualita-
tive Reasoning [Wolter and Zakharyaschev, 2003; Hazarika,
2012]. Towards constraint-based qualitative spatiotempo-
ral reasoning, most of the work has relied on formalisms
based on the propositional temporal logic (PTL), also known
as linear temporal logic, and the qualitative spatial con-
straint language RCC-8 [Wolter and Zakharyaschev, 2003;
2000]. PTL [Huth and Ryan, 2004] is the well known tem-
poral logic comprising operators U (until), # (next point in
time), 2 (always), and 3 (eventually) over various flows
in time, such as 〈N, <〉. RCC-8 is a fragment of the Re-
gion Connection Calculus (RCC) [Randell et al., 1992] and
is used to describe regions that are non-empty regular subsets
of some topological space by stating their topological rela-
tions to each other. The topological relations comprise re-

lations DC (disconnected), EC (externally connected), EQ
(equal), PO (partially overlapping), TPP (tangential proper
part), TPPi (tangential proper part inverse), NTPP (non-
tangential proper part), NTPPi (non-tangential proper part
inverse). These 8 relations are depicted in [Randell et al.,
1992, Fig. 4]. One of the most important of such formalisms
is the ST −1 logic [Gabelaia et al., 2003]. For example,
one can have the following statement using that formalism:
3TPP (X,Y ), which translates to “eventually region X will
be a tangential proper part of region Y ”.

In this paper, we consider a generalization of the ST −1
logic, denoted by L1, which is the product of the combi-
nation of PTL [Huth and Ryan, 2004] with any qualita-
tive spatial constraint language, such as RCC-8 [Randell et
al., 1992], Cardinal Direction Algebra (CDA) [Frank, 1991;
Ligozat, 1998], and Block Algebra (BA) [Balbiani et al.,
2002], and make the following contributions: (i) we show
that satisfiability checking of a L1 formula is PSPACE-
complete if the qualitative spatial constraint language consid-
ered has the constraint properties of compactness and patch-
work [Lutz and Milicic, 2007] for atomic networks, thus,
strengthening previous related results that required atomic
networks to be globally consistent [Balbiani and Condotta,
2002; Demri and D’Souza, 2007], and (ii) we capture prop-
erties that deal with spatial behaviour in a temporal universe,
such as periodicity, and continuity and smoothness, with par-
ticular fragments of the L1 logic, and investigate their com-
putational properties; regarding periodicity, we use again the
properties of compactness and patchwork to obtain a stronger
result than the one existing in literature.

As opposed to the ST −1 logic [Gabelaia et al., 2003], L1

does not rely on the semantics or a particular interpretation
of the qualitative spatial constraint language used, but rather
on constraint properties, namely, compactness and patchwork
[Lutz and Milicic, 2007]. These properties have been found
to hold for RCC-8, Cardinal Direction Algebra (CDA), Block
Algebra (BA), and their derivatives [Huang, 2012].

The organization of the paper is as follows. In Section 2
we recall the definition of a qualitative spatial constraint lan-
guage, along with the properties of compactness, patchwork,
and global consistency. Section 3 introduces the L1 logic,
and in Section 4 we explain its implication with compactness
and patchwork. In Section 5 we present the fragments that
capture spatiotemporal behaviour and analyse their computa-



tional properties. In Section 6 we conclude and give direc-
tions for future work.

2 Preliminaries
A (binary) qualitative temporal or spatial constraint language
[Renz and Ligozat, 2005] is based on a finite set B of jointly
exhaustive and pairwise disjoint (JEPD) relations defined
on a domain D, called the set of base relations. The base
relations of set B of a particular qualitative constraint lan-
guage can be used to represent the definite knowledge be-
tween any two entities with respect to the given level of gran-
ularity. B contains the identity relation Id, and is closed un-
der the inverse operation (−1). Indefinite knowledge can be
specified by disjunctions of possible base relations, and is
represented by the set containing them. Hence, 2B repre-
sents the total set of relations. 2B is equipped with the usual
set-theoretic operations (union and intersection), the inverse
operation, and the weak composition operation denoted by
� [Renz and Ligozat, 2005]. A network from any qualita-
tive spatial constraint language, such as RCC-8 [Randell et
al., 1992], Cardinal Direction Algebra (CDA) [Frank, 1991;
Ligozat, 1998], Block Algebra (BA) [Balbiani et al., 2002],
or Interval Algebra (IA) [Allen, 1983], can be formulated as
a qualitative constraint network (QCN) as follows (a RCC-8
example of which is shown in Figure 1).

Definition 1 A QCN is a tuple (V,C) where V is a non-
empty finite set of variables and C is a mapping that as-
sociates a relation C(v, v′) ∈ 2B to each pair (v, v′) of
V × V . Mapping C is such that C(v, v) = {Id} and
C(v, v′) = (C(v′, v))−1 for every v, v′ ∈ V .

If b is a base relation, {b} is a singleton relation. An atomic
QCN is a QCN where each constraint is a singleton relation.
Given two QCNs N = (V,C) and N ′ = (V ′, C ′), N ∪
N ′ denotes the QCN N ′′ = (V ′′, C ′′), where V ′′ = V ∪
V ′, C ′′(u, v) = C ′′(v, u) = B for all (u, v) ∈ (V \ V ′) ×
(V ′ \ V ), C ′′(u, v) = C(u, v) ∩ C ′(u, v) for every u, v ∈
V ∩ V ′, C ′′(u, v) = C(u, v) for every (u, v) ∈ (V × V ) \
(V ′×V ′), and C ′′(u, v) = C ′(u, v) for every (u, v) ∈ (V ′×
V ′) \ (V × V ). A QCN N = (V,C) is said to be trivially
inconsistent iff ∃v, v′ ∈ V with C(v, v′) = ∅.

We can interpret any QCNN = (V,C) using a structure of
the formMS = (D, α), where α is a mapping that associates
elements of D to elements of V . For the case of RCC-8 for
example, if T is some topological space [Munkres, 2000], let
R(T ) denote the set of all non-empty regular closed subsets
in T . Then, the domain D of RCC-8 is the set R(T ), which
can be infinite. A structure MS = (D, α) is a model for a
QCN N = (V,C), also called a solution, if mapping α can
yield a spatial configuration where the relations between the
spatial variables can be described byC. It follows that a QCN
is satisfiable if there exists a model for it. A partial solution
for N on V ′ ⊆ V is the mapping α restricted to V ′.

Checking the satisfiability of a RCC-8, CDA, or BA
network is NP-complete in the general case [Renz, 1999;
Ligozat, 1998; Balbiani et al., 2002]. However, there exist
large maximal tractable subclasses of RCC-8, CDA, and BA,
which allow for practical and efficient reasoning. In partic-
ular, checking the satisfiability of a QCN (V,C) of RCC-8,
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Figure 1: RCC-8 configurations

CDA, or BA comprising only relations from one of its maxi-
mal tractable subclasses containing all singleton relations and
the universal relation B, can be done in O(|V |3) time us-
ing the �-consistency algorithm (also called algebraic clo-
sure), that iteratively performs the following operation un-
til a fixed point C is reached: ∀v, v′, v′′ ∈ V , C(v, v′) ←
C(v, v′) ∩ (C(v, v′′) � C(v′′, v′)) [Renz and Ligozat, 2005].
Let us recall the definition of global consistency.

Definition 2 A QCN N = (V,C) is globally consistent if
and only if, for any V ′ ⊂ V , every partial solution on V ′ can
be extended to a partial solution on V ′ ∪ {v} ⊆ V , for any
v ∈ V \ V ′.

We now recall the definitions of the constraint properties
of patchwork and compactness in the context of qualitative
reasoning, and give an example of how the former properties
combined are less strict than global consistency alone. (To be
precise, [Lutz and Milicic, 2007] introduced patchwork for
atomic QCNs, and [Huang, 2012] generalized it also for non-
atomic ones, a property that we will use later in this paper).

Definition 3 ([Huang, 2012; Lutz and Milicic, 2007]) A
qualitative temporal or spatial constraint language has
patchwork, if for any finite satisfiable constraint networks
N = (V,C) and N ′ = (V ′, C ′) defined in this language
where for any u, v ∈ V ∩V ′ we have thatC(u, v) = C ′(u, v),
the constraint network N ∪N ′ is satisfiable.

In light of patchwork, which concerns finite networks,
compactness ensures satisfiability of an infinite sequence of
finite satisfiable extensions of a network.

Definition 4 ([Huang, 2012]) A qualitative temporal or spa-
tial constraint language has compactness, if any infinite set of
constraints defined in this language is satisfiable whenever all
its finite subsets are satisfiable.

Intuitively, patchwork ensures that the combination of two
satisfiable constraint networks that agree on their common
part, i.e., on the constraints between their common vari-
ables, continues to be satisfiable, while compactness allows
for defining satisfiable networks of infinite size. Global con-
sistency implies patchwork, but the opposite is not true. Even
though RCC-8 has patchwork [Huang, 2012], it does not have
global consistency [Renz and Ligozat, 2005].

Example. Let us consider the spatial configuration shown
in Figure 1(a). Region y is a doughnut, and region x is exter-
nally connected to it, by occupying its hole. Further, region
z is externally connected to region y. For RCC-8 we know
that the constraint network {EC(x, y), EC(y, z), EC(x, z)}
is satisfiable as it is �-consistent. However, the valuation of
region variables x and y is such that it is impossible to extend
it with a valuation of region variable z so that EC(x, z)



may hold. Patchwork allows us to disregard any partial
valuations and focus on the satisfiability of the network.
Then, we can consider a valuation that respects the constraint
network. Such a valuation is, for example, the one presented
in Figure 1(b) along with its atomic QCN on the right.

As briefly mentioned earlier, due to Huang we have the
following result:

Proposition 1 ([Huang, 2012]) RCC-8, CDA, BA, and IA
have compactness, and patchwork for not trivially inconsis-
tent and �-consistent QCNs defined on one of the maximal
tractable subclasses Ĥ8, C8, or Q8, BCDA, HnIA, and HIA re-
spectively.

3 The L1 spatiotemporal logic
In general, a spatial QCN, as described in Section 2, consti-
tutes a static spatial configuration in some domain, over a set
of spatial variables V . To be able to describe a spatial config-
uration that changes over time, we can combine PTL [Huth
and Ryan, 2004] with a qualitative spatial constraint language
in a unique formalism. The domain D of a QCN will always
remain the same, but the spatial variables in it may spatially
change with the passing time (e.g., in shape, size, or orienta-
tion). We can interpret formulas of such a spatiotemporal for-
malism using a spatiotemporal structure defined as follows.

Definition 5 A ST-structure is a tuple MST = (D,N, α),
where α is a mapping that associates elements of D to the
spatial variables of a set V at a point of time i ∈ N. Thus,
α(i) denotes the set of elements of D that are associated with
the spatial variables of V at point of time i. By extending no-
tation, α(v, i), where v ∈ V , denotes the element of D that is
associated with spatial variable v at point of time i.

For example, in the case of RCC-8, α would be a mapping
associating elements of R(T ) to spatial region variables at a
point of time i ∈ N. The set of atomic propositions AP in the
case of standalone PTL [Huth and Ryan, 2004] is replaced by
the set of base relations B of the qualitative spatial constraint
language considered. We will call such a spatiotemporal for-
mula over B a L0 formula. Thus, the set of L0 formulas over
B is inductively defined as follows: if P ∈ B then P is a L0

formula, and if ψ and φ are L0 formulas then ¬φ, φ∨ψ, #φ,
2φ, 3φ, and φU ψ are L0 formulas.

A simple example of a L0 formula is 2NTPP (Athens,
Greece), stating that Athens will always be located in
Greece. To increase the expressiveness of the L0 logic we
can allow the application of operator # to spatial variables,
i.e., we can have the following statement: 2EQ(Greece,
#Greece), which translates to “Greece will never change its
borders”. We call the enriched logic the L1 logic.

Definition 6 Given a L1 formula φ over B, we write
〈MST, i〉 |= φ for the fact that MST satisfies φ at point of
time i, with i ∈ N (or formula φ is true inMST at point of
time i). The semantics is then defined as follows:
• 〈MST, i〉 |= P (#nv,#mv′) iff the relation that holds

between α(v, i + n) and α(v′, i + m) is the relation P ,
with P ∈ B
• 〈MST, i〉 |= ¬φ iff 〈MST, i〉 6|= φ

• 〈MST, i〉 |= φ ∨ ψ iff 〈MST, i〉 |= φ or 〈MST, i〉 |= ψ
• 〈MST, i〉 |= φU ψ if there exists a natural number k

such that i ≤ k, 〈MST, k〉 |= ψ, and for all natural
numbers j, if i ≤ j and j < k then 〈MST, j〉 |= φ

Formulas of the form 3φ and 2φ are abbreviations for
>U φ and ¬(>U ¬φ) respectively. A structure MST =
(D,N, α), for which 〈MST, 0〉 |= φ, is a model for φ. It fol-
lows that a L1 formula φ is satisfiable if there exists a model
for it. Note that a formula of the form #kP (#lv,#mv′)
is equivalent to formula P (#l+kv,#m+kv′). The size of
P (#l+kv, #m+kv′) is then defined to be equal to max{l +
k,m + k}. Like in [Balbiani and Condotta, 2002], we de-
fine the size of any L1 formula φ, denoted by |φ|, induc-
tively as follows: P (#lv,#mv′) = max{l,m}; |¬φ| = |φ|;
|φ ∨ ψ| = |φU ψ| = max{|φ|, |ψ|}.

We then have the following result from [Balbiani and Con-
dotta, 2002], which is proven by the authors using a non-
deterministic decision-based procedure:

Theorem 1 ([Balbiani and Condotta, 2002]) Checking the
satisfiability of a L1 formula φ in a ST-structure is PSPACE-
complete in the length of φ if atomic QCNs defined in the
considered qualitative language are globally consistent.

4 Revisiting the satisfiability problem in L1

In this section, we revisit a result regarding the satisfiabil-
ity of L1 formulas in a ST-structure, using patchwork and
compactness. These properties strengthen previous results,
in that we do not longer need to restrict atomic QCNs to be-
ing globally consistent as in [Balbiani and Condotta, 2002;
Demri and D’Souza, 2007], but we can consider atomic
QCNs that have compactness and patchwork. As explained
in Section 2, compactness and patchwork combined are less
strict than global consistency alone.

Given a L1 formula φ, Balbiani and Condotta in [Balbiani
and Condotta, 2002] show that the satisfiability of formula
φ can be checked by characterizing a particular infinite se-
quence of finite satisfiable atomic QCNs representing an in-
finite consistent valuation of φ. Each of the QCNs of such
a sequence represents a set of spatial constraints in a fixed-
width window of time. The set of spatial constraints at point
of time i, is given by the i-th QCN in the infinite sequence,
and shares spatial constraints with the next QCN. Moreover,
in such a sequence, there exists a point of time after which
the corresponding QCNs replicate the same set of spatial con-
straints. The global consistency property is then used for the
following two tasks: (i) to prove that by considering all the
QCNs of the aforementioned sequence we obtain a consistent
set of constraints, and (ii) to prove that in such an infinite
sequence, a sub-sequence which begins and ends with two
QCNs representing the same set of spatial constraints can be
reduced to just considering the first QCN.

In the sequel, we formally show that tasks (i) and (ii) can
be performed using the properties of patchwork and compact-
ness instead. As a consequence, we can generalize a result re-
garding the satisfiability of a L1 formula φ to a larger class of
calculi than the previously considered in literature. We now
introduce the two aforementioned tasks in the form of two
propositions.
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Figure 2: A countably infinite sequence of satisfiable atomic
QCNs that agree on their common part

Proposition 2 Let V = {v0, . . . , vn} be a set of variables,
w ≥ 0 an integer, and S = (N0 = (V0, C0), N1 = (V1, C1),
. . .) a countably infinite sequence of satisfiable atomic QCNs,
as shown in Figure 2, such that:
• for each i ≥ 0, Vi is defined by the set of variables
{v0

0 ,. . .,v0
n,. . .,vw0 ,. . .,vwn },

• for each i ≥ 0, for all m,m′ ∈ {0, . . . , n}, and for all
k, k′ ∈ {1, . . . , w}, Ci(vkm, vk

′

m′) = Ci+1(vk−1
m , vk

′−1
m′ ).

We have that if the constraint language considered has com-
pactness and patchwork for atomic QCNs, then S defines a
consistent set of qualitative constraints.

Proof. Given Ni, we rewrite its set of variables to
{vi0,. . .,vin,. . .,vw+i

0 ,. . .,vw+i
n }. Then, by patchwork we can

assert that for each integer k ≥ 0,
⋃
k≥i≥0Ni is a consistent

set of qualitative constraints. Suppose though, that
⋃
i≥0Ni

is an inconsistent set. By compactness we know that there ex-
ists an integer k′ ≥ 0 for which

⋃
k′≥i≥0Ni is inconsistent.

This is a contradiction. Thus, S defines a consistent set of
qualitative constraints. a

Nt′ Nt
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· · ·
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· · ·=
Nt′
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Figure 3: A countably infinite sequence of satisfiable atomic
QCNs that contains a sub-sequence which begins and ends
with two QCNs representing the same set of spatial con-
straints; we can reduce the sub-sequence to just considering
the first QCN and patch it with the QCN following the sub-
sequence

Proposition 3 Let V = {v0, . . . , vn} be a set of variables,
w ≥ 0, t > t′ ≥ 0 three integers, and S = (N0 = (V0, C0),
N1 = (V1, C1), . . .) a countably infinite sequence of satisfi-
able atomic QCNs, as shown in Figure 3, such that:
• for each i ≥ 0, Vi is defined by the set of variables
{v0

0 ,. . .,v0
n,. . .,vw0 ,. . .,vwn },

• for each i ≥ 0, for all m,m′ ∈ {0, . . . , n}, and for all
k, k′ ∈ {1, . . . , w}, Ci(vkm, vk

′

m′) = Ci+1(vk−1
m , vk

′−1
m′ ),

• for all m,m′ ∈ {0, . . . , n} and all k, k′ ∈ {0, . . . , w},
Ct′(v

k
m, v

k′

m′) = Ct(v
k
m, v

k′

m′).
Let S ′ = (N ′0 = (V ′0 , C

′
0),N ′1 = (V ′1 , C

′
1), . . .) be the infinite

sequence defined by:
• for all i ∈ {0, . . . , t′}, N ′i = Ni,

• for all i > t′, V ′i = Vi, and for all m,m′ ∈
{0, . . . , n} and all k, k′ ∈ {0, . . . , w}, C ′i(vkm, vk

′

m′) =

Ci+(t−t′)(v
k
m, v

k′

m′).
We have that if the constraint language considered has com-
pactness and patchwork for atomic QCNs, then S ′ defines a
consistent set of qualitative constraints.
Proof. We have Ni which is a satisfiable QCN for all i ≥ 0.
From this, we can deduce that N ′i is a satisfiable QCN for
all i ≥ 0. By Proposition 2 we can deduce that S ′ defines a
consistent set of qualitative constraints. a
We now can obtain the following result:
Theorem 2 Checking the satisfiability of a L1 formula φ in
a ST-structure is PSPACE-complete in the length of φ if the
qualitative spatial constraint language considered has com-
pactness and patchwork for atomic QCNs.

Proof. (Sketch) Consider the approach in [Balbiani and
Condotta, 2002] where a proof of PSPACE-completeness is
given for a logic that considers qualitative constraint lan-
guages for which satisfiable atomic QCNs are globally con-
sistent (see Theorem 1). To be able to replace the use of
global consistency with the use of patchwork and compact-
ness, we need to use Propositions 2 and 3 in the proofs of
Lemmas 3 and 4 in [Balbiani and Condotta, 2002]. The inter-
ested reader can verify that the aforementioned proofs make
use of global consistency to perform exactly the tasks de-
scribed by Propositions 2 and 3. Since these propositions
build on compactness and patchwork, we can prove PSPACE-
completeness using these properties instead. a

Theorem 2 allows us to consider more calculi than the ones
considered in literature for which the combination with PTL
yields PSPACE-completeness. Due to the lack of global con-
sistency for RCC-8 [Renz and Ligozat, 2005], in [Gabelaia
et al., 2003] the authors restrict themselves to a very partic-
ular domain interpretation of RCC-8 to prove that the ST −1
logic is PSPACE-complete. As already noted in Section 1,
the ST −1 logic is the L1 logic when the considered qual-
itative constraint language is RCC-8. L1 does not rely on
the semantics of the qualitative constraint language used, but
rather on the constraint properties of compactness and patch-
work [Lutz and Milicic, 2007]. Therefore, L1 is by default
able to consider all calculi that have these properties, such
as RCC-8 [Randell et al., 1992], Cardinal Direction Alge-
bra (CDA) [Frank, 1991; Ligozat, 1998], Block Algebra (BA)
[Balbiani et al., 2002], and even Interval Algebra (IA) [Allen,
1983] when viewed as a spatial calculus. The most notable
languages that have patchwork and compactness are listed in
[Huang, 2012]. In particular, by Proposition 1 and Theorem 2
we can have the following result:
Corollary 1 Checking the satisfiability of a L1 formula in a
ST-structure is PSPACE-complete for RCC-8, CDA, BA, IA.

5 Capturing spatiotemporal behaviour
In this section, we use particular fragments of the L1 logic to
capture properties that deal with spatial behaviour in a tempo-
ral universe, such as periodicity, and continuity and smooth-
ness. We first define a sublanguage of L1 that will be of use



in studying our fragments. In particular, let LQCN be the sub-
language defined by statements of the form φ =

∧
(R(#nxi,

#mxj)), where R ∈ 2B. It is easy to see that a LQCN for-
mula φ can be expressed by a QCN N = (V,C) as fol-
lows. If formula φ comprises the set of variables {x0, . . . ,

xk}, V will be the set {v0
0 , . . ., v0

k, . . ., v|φ|0 , . . ., v|φ|k }. Then,
C(vni , v

m
j ) = R ifR(#nxi,#mxj) is a subformula of φ, and

C(vni , v
m
j ) = (B if vni 6= vmj else {Id}) otherwise. Express-

ing a QCN as a LQCN formula is also straight-forward. As
such, checking the satisfiability of a LQCN formula in a ST-
structure has the same complexity as the satisfiability prob-
lem for the corresponding QCN in the considered qualitative
constraint language, and, in particular, is NP-complete for the
considered languages of RCC-8, CDA, and BA.

5.1 Spatiotemporal periodicity
In this section, we capture the notion of an ultimately pe-
riodic qualitative constraint network (UPQCN) [Condotta et
al., 2005]. A UPQCN is a temporalized QCN that evolves
over time with a recurrent pattern. It is defined as follows.

Definition 7 ([Condotta et al., 2005]) A UPQCN is a struc-
ture (V , C, tmin, tmax), where V = {v0

0 , . . ., v0
n, . . ., vtmax

0 ,
. . ., vtmax

n } is a finite set of variables, tmin and tmax are
two integers such that 0 ≤ tmin ≤ tmax, and C is a map-
ping that associates a relation C(v, v′) ∈ 2B to each pair
(v, v′) of V ×V . Mapping C is such that C(v, v) = {Id} and
C(v, v′) = (C(v′, v))−1 for every v, v′ ∈ V .

Intuitively, in a spatial context, each variable vt ∈ V rep-
resents the occurrence of the spatial component of entity v at
point of time t, with t ∈ N. C(ut, vt

′
) is a constraint on the

relative positions of the occurrence of u at point of time t and
that of v at point of time t′. The constraints expressed by C
are twofold: firstly, all constraints from 0 up to tmax have to
be satisfied; secondly, all constraints from tmin to tmax have
to be satisfied up to tmax, but also on all subsequent periods
{tmin + t, . . . , tmax + t}, where t ∈ N. In other words, the
structure defines both initial constraints (up to tmax), and a
recurrent pattern, or motif, of constraints (from tmin to tmax)
which repeats itself indefinitely. The motif of a UPQCN U is
defined as follows.

Definition 8 ([Condotta et al., 2005]) Let U = (V , C, tmin,
tmax) be a UPQCN over n entities. The motif of U , de-
noted by motif(U), is the QCN Nm = (Vm, Cm), where
Vm = {vt | vt ∈ V and t ≤ lg}, with lg = tmax − tmin,
and ∀ m,m′ ∈ {0, . . . , n} and ∀ k, k′ ∈ {0, . . . , lg},
Cm(vkm, v

k′

m′) = C(vk+tmin
m , vk

′+tmin

m′ ).

As noted earlier, a UPQCN is a QCN that extends over a
fixed-width window of time, and contains a smaller QCN as a
recurrent pattern evolving over time. We can define fragment
LUPQCN to capture periodicity as follows.

Definition 9 Given a UPQCN U = (V,C, tmin, tmax), frag-
ment LUPQCN comprises formulas of the following form:

φ∧#m 2φmotif(U)

where φ is a LQCN formula that corresponds to U , φmotif(U) is
a LQCN formula that corresponds to the periodical part of U ,

t = 0 t = 1 t = 2 t = 3 t = 4 · · · t

φ

φmotif(U)

φmotif(U)

φmotif(U) · · ·

Figure 4: A LUPQCN formula φ over timeline t

namely, motif(U), and m = tmin defines the beginning of
the recurrent pattern.

Clearly, a UPQCN U is satisfiable if and only if the
LUPQCN formula representing it is satisfiable. Given a
UPQCN U , the relationship between LQCN formulas φ and
φmotif(U), as provided in the aforementioned definition, is
depicted in Figure 4. As φ stretches over the timeline, it
forms a pattern, denoted by φmotif(U), which holds at every
consecutive period of time after its first appearance, as clearly
observed in the figure.

Example. Let us consider the LUPQCN formula
PO(X,Y ) ∧ EC(X,#X) ∧ #2DC(X,#Y ). Assuming
a timeline t, formula φ corresponds to a UPQCN U that
extends over three consecutive points of time t = 0, t = 1,
and t = 2. At t = 0 we have the constraint PO(X,Y ),
between points of time t = 0 and t = 1 we have the
constraint EC(X,#X), and between points of time t = 1
and t = 2 we have the constraint DC(X,#Y ). It is easy to
see that due to the 2 operator, constraint DC(X,#Y ) must
hold over the period defined by points of time t = 1 and
t = 2, but also over all consecutive periods of time in t. In
fact, DC(X,#Y ) is the motif of U , captured by φmotif(U),
where m = 1 in our example LUPQCN formula.

The main result of [Condotta et al., 2005] concerns the sat-
isfiability problem for a UPQCN where the qualitative con-
straints belong to a class for which all �-consistent and not
trivially inconsistent QCNs are globally consistent. More pre-
cisely, it was shown that the satisfiability of a UPQCN U can
be checked by characterizing a particular infinite sequence
of finite �-consistent and not trivially inconsistent QCNs rep-
resenting an infinite consistent valuation of U . Each of the
QCNs of such a sequence represents a set of spatial con-
straints in a fixed-width window of time. The set of spatial
constraints at point of time i, is given by the i-th QCN in the
infinite sequence, and shares spatial constraints with the next
QCN. Moreover, in such a sequence, there exists a point of
time after which every QCN replicates the same set of spatial
constraints with the previous QCN in the sequence. Global
consistency was then used to prove that by considering all the
QCNs of the aforementioned sequence we obtain a consistent
set of constraints. We can generalize the result of [Condotta
et al., 2005] with the following proposition:

Proposition 4 Let V = {v0, . . . , vn} be a set of variables,
w ≥ 0, t ≥ 0 two integers, and S = (N0 = (V0, C0), N1 =
(V1, C1), . . .) a countably infinite sequence of not trivially
inconsistent and �-consistent QCNs, as shown in Figure 5,
such that:
• for each i ≥ 0, Vi is defined by the set of variables
{v0

0 ,. . .,v0
n,. . .,vw0 ,. . .,vwn },



Nt

t

· · · · · ·=
Nt

Nt+1
=
Nt

Nt+2
=
Nt

Nt+3

Figure 5: A countably infinite sequence of not trivially in-
consistent and �-consistent QCNs, where there exists a point
of time t after which the QCNs in the sequence represent the
same set of constraints
• for each i ≥ 0, for all m,m′ ∈ {0, . . . , n}, and for all
k, k′ ∈ {1, . . . , w}, Ci(vkm, vk

′

m′) = Ci+1(vk−1
m , vk

′−1
m′ ),

• for all m,m′ ∈ {0, . . . , n}, all k, k′ ∈ {0, . . . , w}, and
all t′ > t, Ct′(vkm, v

k′

m′) = Ct(v
k
m, v

k′

m′).
We have that if the qualitative spatial constraint language
considered has compactness, patchwork for not trivially in-
consistent and �-consistent QCNs, and �-consistency which
implies satisfiability, then S defines a consistent set of quali-
tative constraints.
Proof. Since �-consistency implies satisfiability, for each
i ≥ 0 we have that Ni is a satisfiable QCN. Given Ni, we
rewrite its set of variables to {vi0,. . .,vin,. . .,vw+i

0 ,. . .,vw+i
n }.

Then, by patchwork we can assert that for each integer k ≥ 0,⋃
k≥i≥0Ni is a consistent set of qualitative constraints. Sup-

pose though, that
⋃
i≥0Ni is an inconsistent set. By compact-

ness we know that there exists an integer k′ ≥ 0 for which⋃
k′≥i≥0Ni is inconsistent. This is a contradiction. Thus, S

defines a consistent set of qualitative constraints. a
Using Proposition 4 and the line of reasoning followed in

[Condotta et al., 2005] we can prove the following theorem:
Theorem 3 The satisfiability problem for a LUPQCN for-
mula that corresponds to a UPQCN defined on a qualitative
spatial constraint language having compactness, patchwork
for not trivially inconsistent and �-consistent QCNs, and �-
consistency which implies satisfiability, is in PTIME.
By Proposition 1 and Theorem 3 we have the following result:
Corollary 2 The satisfiability problem for aLUPQCN formula
that corresponds to a UPQCN defined on one of the classes
Ĥ8, C8, or Q8 for RCC-8, BCDA for CDA, HnIA for BA, and
HIA for IA, is in PTIME.

Theorem 3 is a significant strengthening of the main result
obtained in [Condotta et al., 2005], as we no longer need to
restrict ourselves to a small class of relations satisfying global
consistency (if such a class exists), but we can use a maximal
tractable subclass of relations for the considered calculi here.
For example, for RCC-8 there does not exist a class of re-
lations containing all singleton relations that satisfies global
consistency (as explained in Section 2 and stated in [Renz and
Ligozat, 2005]), but the class of relations satisfying patch-
work and compactness can be any of its maximal tractable
subclasses Ĥ8, C8, and Q8 [Renz, 1999], which comprise up
to ∼ 60% of the whole set of RCC-8 relations.

5.2 Spatiotemporal smoothness and continuity
In [Westphal et al., 2013] the authors study the problem of
transition constraints in Point Algebra (PA) [van Beek, 1992].

x x x

x

x x

x

y y
y

x ≡ y

y y

y
y

DC(x, y) EC(x, y)

PO(x, y)

EQ(x, y)

TPP (x, y) NTPP (x, y)

TPPi(x, y) NTPPi(x, y)

Figure 6: A transition graph of RCC-8

In particular, they take a relational approach to the problem
and define global constraints that capture smoothness and
continuity. Here, we will make a similar contribution for
spatiotemporal logics, as we will define statements that can
capture smoothness and continuity within the context of L1.

Smoothness and continuity in a qualitative spatial con-
straint language can be encoded by a conceptual neighbor-
hood graph [Freksa, 1991], or transition graph for short,
which is defined as follows.

Definition 10 A transition graph is a graph Γ = (B, E)
where E = {(b, b′) | (b, b′) ∈ B × B; and b and b′ are con-
ceptually proximal [Freksa, 1991]} (and B is the set of base
relations of a qualitative constraint language, as a reminder).

As an example, a transition graph of RCC-8 is depicted in
Figure 6. (Self loops are omitted in Figure 6 for convenience;
clearly, every base relation is conceptually proximal to itself.)
In RCC-8 the base relations DC(v, v′) and PO(v, v′) are
not conceptually proximal since a transition between those
relations must go through relation EC(v, v′). Transition
graphs can be established for all qualitative spatial constraint
languages, a subset of which are found in [Freksa, 1991;
Santos and Moreira, 2009; Egenhofer, 2010].

Definition 11 Given a transition graph Γ = (B, E), the con-
ceptual neighborhood of a vertex b ∈ B is the set NC(b) =
{b′ | (b, b′) ∈ E}.

We can capture transition constraints in the LQCN logic,
by defining a particular formula φΓ comprising certain state-
ments as follows.

Definition 12 Given the set of spatial variables V of a LQCN

formula, and a transition graph Γ = (B, E), formula φΓ is
defined for all (v, v′) ∈ V × V as a conjunction of the fol-
lowing L1 statements:∧

b∈B
2(b(v, v′)→ #(

∨
b′∈NC(b)

(b′(v, v′))))

We can obtain the following theorem:

Theorem 4 Given a LQCN formula φ defined on a qualita-
tive spatial constraint language, and a transition graph Γ of
that language, checking the satisfiability of formula φ ∧ φΓ

in a ST-structure has the same complexity as the satisfiability
problem for the corresponding QCN of φ in that language.

Proof. (Sketch) Formula φΓ can be seen as a set of inte-
grated constraints on each pair of the same spatial entities
appearing at adjacent points of time. We can check all such



constraints in a candidate solution in polynomial time, as the
timeline is upper bounded by |φ|. In particular, the 2 operator
propagates the transition constraints indefinitely, but, due to
compactness and its implication regarding infinite sequences
of finite satisfiable extensions of a network, we only need to
propagate the constraints up to point of time |φ|, and assume
to always have the same satisfiable valuation afterwards. a
By Theorem 4 and the discussion in Section 2 we can obtain
the following result:

Corollary 3 Given a LQCN formula φ defined on RCC-8,
CDA, BA, or IA, and a transition graph Γ of the considered
language, checking the satisfiability of formula φ ∧ φΓ in a
ST-structure is NP-complete.

6 Conclusion and future work
In this paper, we considered a generalized qualitative spa-
tiotemporal formalism, namely, the L1 logic, which is the
product of the combination of PTL with any qualitative spa-
tial constraint language, such as RCC-8, Cardinal Direction
Algebra, and Block Algebra, and showed that satisfiabil-
ity checking of a L1 formula is PSPACE-complete if the
constraint language considered has the constraint properties
of compactness and patchwork for atomic networks, thus,
strengthening previous results that required atomic networks
to be globally consistent and, consequently, generalizing to
a larger class of calculi. Further, we defined fragments of
the L1 logic to capture properties that deal with spatial be-
haviour in a temporal universe, such as periodicity, and con-
tinuity and smoothness, formally introduced them, and inves-
tigated their computational properties. Regarding periodic-
ity, we used again the properties of compactness and patch-
work to obtain a much stronger result than the one existing
in literature. To summarize, we revisited, re-established, and
strengthened results on the computational complexity of the
L1 logic and on important aspects of spatial change in a tem-
poral universe, such as periodicity. A promising line of future
research would be to consider SAT-encodings of the formal-
ism and its particular fragments that we studied in this paper.
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