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ABSTRACT
We introduce, study, and evaluate a novel algorithm in the
context of qualitative constraint-based spatial and tempo-
ral reasoning, that is based on the idea of variable elimina-
tion, a simple and general exact inference approach in prob-
abilistic graphical models. Given a qualitative constraint
network N , our algorithm enforces a particular directional
local consistency on N , which we denote by ←−� -consistency.
Our discussion is restricted to distributive subclasses of re-
lations, i.e., sets of relations closed under converse, intersec-
tion, and weak composition and for which weak composition
distributes over non-empty intersections for all of their rela-
tions. We demonstrate that enforcing ←−� -consistency on a
given qualitative constraint network defined over a distribu-
tive subclass of relations allows us to decide its satisfiability.
The experimentation that we have conducted with random
and real-world qualitative constraint networks defined over
a distributive subclass of relations of the Region Connection
Calculus, shows that our approach exhibits unparalleled per-
formance against competing state-of-the-art approaches for
checking the satisfiability of such constraint networks.

CCS Concepts
•Computing methodologies → Spatial and physical
reasoning; Temporal reasoning; •Theory of compu-
tation→ Constraint and logic programming; Algorithm de-
sign techniques;

Keywords
Spatial/temporal reasoning, qualitative constraint, distribu-
tive class of relations, variable elimination, exact inference

1. INTRODUCTION
Spatial and temporal reasoning is a major field of study

in Artificial Intelligence. This field has received a lot of at-
tention over the past decades, as it extends to a plethora
of areas and domains that include, but are not limited to,
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Figure 1: The relations of RCC-8

ambient intelligence, dynamic GIS, cognitive robotics, and
spatiotemporal design. In this context, an emphasis has
been made on qualitative constraint-based spatial and tem-
poral reasoning, which abstracts from numerical quantities
of space and time by using qualitative descriptions instead
(e.g., precedes, contains, is left of ). The conciseness of the
constraint language used in the qualitative approach pro-
vides a promising framework that further boosts research
and applications in spatial and temporal reasoning.

A subset of the Region Connection Calculus (RCC), de-
noted by RCC-8, is the dominant constraint language in
Artificial Intelligence for representing and reasoning about
qualitative spatial information [27]. In particular, RCC-8
makes use of the topological relations disconnected (DC),
externally connected (EC), equal (EQ), partially overlap-
ping (PO), tangential proper part (TPP ), tangential proper
part inverse (TPPi), non-tangential proper part (NTPP ),
and non-tangential proper part inverse (NTPPi) to encode
knowledge about the spatial relations between regions in
some topological space, as depicted in Figure 1. Other no-
table and well known constraint languages that can be used
for representing and reasoning about qualitative spatial or
temporal information include Point Algebra [39], Cardinal
Direction Calculus [12, 24], Interval Algebra [1], and Block
Algebra [3]. The problem of representing and reasoning
about qualitative information can be modeled as a qualita-
tive constraint network (QCN), i.e., a network of constraints
corresponding to qualitative spatial or temporal relations
between spatial or temporal variables respectively.

Given a QCN N , we are particularly interested in its sat-
isfiability problem, which is the problem of deciding if there
exists a spatial or temporal interpretation of the variables of
N that satisfies its constraints, such an interpretation being
called a solution of N . We focus on the recently studied no-
tion of distributive subclasses of relations [22,25], i.e., sets of
relations closed under converse, intersection, and weak com-
position and for which weak composition distributes over
non-empty intersections for all of their relations, and ex-
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ploit such subclasses of relations to efficiently reason about
qualitative constraints. We draw motivation for our work
from the fact that real-world QCNs that have been used
in the literature are defined over distributive subclasses of
relations and call for efficient reasoning methods that can
scale to millions of spatial or temporal variables [22,31,33].
Specifically, we make the following contributions: (i) we con-
sider a particular directional local consistency, denoted by
←−� -consistency, and demonstrate that ←−� -consistent and not
trivially inconsistent QCNs defined over a distributive sub-
class of relations are satisfiable, (ii) we introduce and study
a novel algorithm in the context of qualitative constraint-
based spatial and temporal reasoning, that efficiently en-
forces ←−� -consistency on a given QCN and that is based
on the idea of variable elimination, a simple and general
exact inference approach in probabilistic graphical models,
such as Bayesian networks and Markov random fields [40],
and, finally, (iii) we evaluate our approach with random
and real-world QCNs defined over a distributive subclass of
relations of RCC-8, and show that it exhibits unparalleled
performance against competing state-of-the-art approaches
for checking the satisfiability of such QCNs.

The paper is organized as follows. In Section 2 we give
some preliminary notions about qualitative constraint lan-
guages, spatial and temporal QCNs, distributive subclasses
of relations, and related constraint properties of QCNs. In
Section 3 we present our approach for efficiently checking
the satisfiability of a given QCN defined over a distribu-
tive subclass of relations, and also show how a solution of
that QCN can actually be extracted; the latter contribution
involves performing a generic backtrack-free procedure for
refining a ←−� -consistent and not trivially inconsistent QCN
N defined over a distributive subclass of relations to a sce-
nario of N , i.e., an atomic satisfiable sub-QCN of N , and
then using some known method from the literature for valu-
ating the variables of N in order to satisfy its constraints. In
Section 4 we evaluate our approach with random and real-
world QCNs defined over a distributive subclass of relations
of RCC-8, against competing state-of-the-art approaches for
checking the satisfiability of such QCNs. Finally, in Section 5
we conclude and give some perspectives for future work.

2. PRELIMINARIES
A (binary) qualitative spatial or temporal constraint lan-

guage is based on a finite set B of jointly exhaustive and pair-
wise disjoint (JEPD) relations defined on a domain D [19],
called the set of base relations. The base relations of the
set B of a particular qualitative constraint language can be
used to represent the definite knowledge between any two
entities with respect to the given level of granularity. B
contains the identity relation Id, and is closed under the
converse operation (−1). Indefinite knowledge can be spec-
ified by a union of possible base relations, and is repre-
sented by the set containing them. Hence, 2B represents
the total set of relations. 2B is equipped with the usual set-
theoretic operations (union and intersection), the converse
operation, and the weak composition operation denoted by
� [29]. For every r ∈ 2B, we have that r−1 = {b−1 | b ∈ r}.
The weak composition (�) of two base relations b, b′ ∈ B
is defined as the strongest relation r ∈ 2B that contains
b ◦ b′, or, formally, b � b′={b′′ ∈ B | b′′∩(b ◦ b′) 6= ∅}, where
b ◦ b′={(x, y) ∈ D×D | ∃z ∈ D s.t. (x, z) ∈ b∧ (z, y) ∈ b′} is
the relational composition of b and b′. For every r, r′ ∈ 2B,
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Figure 2: A QCN of RCC-8 along with a solution

we have that r � r′ = {b � b′ | b ∈ r, b′ ∈ r′}.
The Region Connection Calculus (RCC) is a first-order

theory for representing and reasoning about mereotopolog-
ical information [27]. The domain D of RCC comprises all
possible non-empty regular subsets of some topological space.
These subsets serve as regions in RCC. Further, they do not
have to be internally connected and do not have a particular
dimension, but they are usually required to be closed [28].
A subset X of some topological space is regular closed, if
X equals the closure of its interior. The base relations
of RCC are the following: disconnected (DC), externally
connected (EC), equal (EQ), partially overlapping (PO),
tangential proper part (TPP ), tangential proper part in-
verse (TPPi), non-tangential proper part (NTPP ), and
non-tangential proper part inverse (NTPPi). These eight
base relations form the RCC-8 constraint language and are
depicted in Figure 1 (using the Euclidean plane). Relation
EQ is the identity relation Id of RCC-8. Other notable and
well known qualitative spatial and temporal constraint lan-
guages include Point Algebra [39], Cardinal Direction Cal-
culus [12,24], Interval Algebra [1], and Block Algebra [3].

The weak composition operation � along with the converse
operation −1, and the total set of relations 2B along with the
identity relation Id of a qualitative constraint language, form
an algebraic structure (2B, Id, �,−1 ) that can correspond to
a relation algebra in the sense of Tarski [36]. This topic has
been extensively discussed in [11]. In fact, [11] summarizes
findings on the relationship between relation algebras and
qualitative constraint languages into the following result:

Proposition 1 ([11]). Each one of the qualitative con-
straint languages of Point Algebra, Cardinal Direction Cal-
culus, Interval Algebra, Block Algebra, and RCC-8 is a rela-
tion algebra with the algebraic structure (2B, Id, �,−1 ).

In what follows, for a qualitative constraint language that
is a relation algebra with the algebraic structure (2B, Id, �,−1 ),
we will simply say that it is a relation algebra, as the alge-
braic structure will always be of the same format.

The problem of representing and reasoning about qualita-
tive information can be modeled as a qualitative constraint
network (QCN), defined in the following manner:

Definition 1. A QCN is a tuple (V,C) where:
• V = {v1, . . . , vn} is a non-empty finite set of spatial or

temporal variables, where each such variable represents
a spatial or temporal entity respectively;
• C is a mapping C : V × V → 2B such that C(v, v) =
{Id} for every v ∈ V and C(v, v′) = (C(v′, v))−1 for
every v, v′ ∈ V .

An example of a QCN of RCC-8 is shown in Figure 2. In
particular, the QCN comprises the set of variables {x, y, z}
and the constraints C(x, y) = C(y, z) = C(z, x) = {EC};
for simplicity, converse relations as well as Id loops are not
mentioned or shown in the figure.



Note that we always regard a QCN as a complete network.
In what follows, given a QCN N = (V,C) and v, v′ ∈ V ,
relation C(v, v′) will also be denoted by N [v, v′]. Further,
N↓V ′ , with V ′ ⊆ V , will denote the QCN N restricted to
V ′. Finally, all considered graphs will be undirected.

Definition 2. Let N = (V,C) be a QCN, then:
• a solution of N is a mapping σ : V → D, such that

for each pair of variables (u, v) ∈ V × V , we have that
(σ(u), σ(v)) satisfies C(u, v), i.e., there exists a base
relation b ∈ C(u, v) such that (σ(u), σ(v)) ∈ b;
• N is satisfiable iff it admits a solution;
• a QCN N ′ is equivalent to N if and only if it admits

the same set of solutions as N ;
• a sub-QCN (refinement) N ′ of N , denoted by N ′ ⊆ N ,

is a QCN (V,C′) s.t. C′(v, v′) ⊆ C(v, v′) ∀v, v′ ∈ V ;
• N is atomic iff ∀v, v′ ∈ V , C(v, v′) is a singleton re-

lation, i.e., a relation {b} with b ∈ B;
• a partial scenario of N on V ′ ⊆ V is an atomic satis-

fiable sub-QCN S of N↓V ′ ;
• a scenario of N is a partial scenario of N on V ;
• N is weakly globally consistent iff, for any V ′ ⊂ V ,

every partial scenario of N on V ′ can be extended to a
partial scenario on V ′ ∪ {v} ⊆ V , for any v ∈ V \ V ′;
• a base relation b ∈ C(v, v′), with v, v′ ∈ V , is a feasi-

ble base relation of N iff there exists a scenario S =
(V,C′) of N such that C′(v, v′) = {b};
• N is minimal iff ∀v, v′ ∈ V and ∀b ∈ C(v, v′), b is a

feasible base relation of N ;
• the constraint graph of N is the graph (V,E), de-

noted by G(N ), for which we have that {v, v′} ∈ E
iff C(v, v′) 6= B and v 6= v′;
• N is trivially inconsistent iff ∃u, v′ ∈ V w/ C(u, v) = ∅.

Note that the constraint graph of a QCN does not contain
the universal relation B, as B is the non-restrictive relation
that contains all base relations, thus, it does not really pose a
constraint. Given two QCNs N = (V,C) and N ′ = (V ′, C′),
we have that N ∪N ′ yields the QCN N ′′ = (V ′′, C′′), where
V ′′ = V ∪ V ′, C′′(u, v) = C′′(v, u) = B for all (u, v) ∈ (V \
V ′)× (V ′ \ V ), C′′(u, v) = C(u, v)∩C′(u, v) for every u, v ∈
V ∩V ′, C′′(u, v) = C(u, v) for all (u, v) ∈ (V ×V )\(V ′ × V ′),
and C′′(u, v) = C′(u, v) for all (u, v) ∈ (V ′ × V ′) \ (V × V ).

The method of algebraic closure [29] (or closure under
weak composition) applies the following iterative procedure
on a given QCN N = (V,C) until a fixed state is reached:

∀vi, vk, vj ∈ V,C(vi, vj)← C(vi, vj)∩ (C(vi, vk) �C(vk, vj))

Due to the definition of the weak composition operation de-
noted by symbol �, the algebraic closure method is sound for
checking the satisfiability of a QCN; it only removes base re-
lations that do not participate in any solution of that QCN.
If a QCN becomes trivially inconsistent after the application
of the algebraic closure method, then it is unsatisfiable.

Definition 3. A QCN N = (V,C) is �-consistent iff
∀vi, vk, vj ∈ V we have that C(vi, vj) ⊆ C(vi, vk) � C(vk, vj).

Proposition 2 ([11]). Let N = (V,C) be an atomic
QCN of Point Algebra, Cardinal Direction Calculus, Interval
Algebra, Block Algebra, or RCC-8. Then, N is satisfiable if
and only if it is �-consistent.

Applying (or enforcing) �-consistency on a given QCN N ,
i.e., making N �-consistent, requires the implementation of

the algebraic closure method through an algorithm. Such
an algorithm requires O(n3|B|) runtime for a given QCN
over n variables [39]. The �-consistent QCN obtained after
the application of the algebraic closure method on a QCN
N is unique and equivalent to N . Further, it is called the
�-consistent QCN of N and it is denoted by �(N ). Net-
work �(N ) corresponds to the largest (with respect to ⊆)
�-consistent sub-QCN of N . By definition, �-consistency in-
volves the complete underlying graph of a given QCN N , as
it considers all possible triples of variables of N . We can
obtain a weaker notion of �-consistency, by considering only
the pairs of variables of N that correspond to a subset of
the set of edges of its complete underlying graph.

Definition 4. Given a QCN N = (V,C) and a graph G
= (V,E), N is �G-consistent iff ∀{vi, vj}, {vi, vk}, {vk, vj} ∈
E we have that C(vi, vj) ⊆ C(vi, vk) � C(vk, vj).

Given a QCNN = (V,C) and a graph G = (V,E), we have
that �G-consistency can be applied on N in O(δ|E||B|) time,
where δ is the maximum degree of G [6]. The �G-consistent
QCN of N is denoted by �G(N ). Clearly, if G is a complete
graph, �G-consistency is equivalent to �-consistency. In the
general case, it should be clear that �(N ) ⊆ �G(N ).

Definition 5. A subclass of relations is a subset A ⊆ 2B

that contains the singleton relations of 2B and is closed under
converse, intersection, and weak composition.

Given three relations r, r′, r′′ ∈ 2B, we say that weak
composition distributes over intersection if we have that r �
(r′∩r′′) = (r�r′)∩(r�r′′) and (r′∩r′′)�r = (r′�r)∩(r′′�r).

Definition 6. A subclass A ⊆ 2B is distributive iff weak
composition distributes over non-empty intersections for all
relations r, r′, r′′ ∈ A. A distributive subclass A ⊆ 2B is
maximal iff there exists no distributive subclass A′ ⊆ 2B such
that A′ properly contains A.

We list the following two properties for a given qualitative
constraint language L.

L is a relation algebra. (1)

Every atomic � -consistent QCN of L is satisfiable. (2)

With respect to distributive subclasses of relations, we
have the following result:

Theorem 1 ([25]). Let N = (V,C) be a QCN defined
over a distributive subclass of relations of a qualitative con-
straint language that satisfies properties 1 and 2. If N is
�-consistent and not trivially inconsistent, then N is mini-
mal and weakly globally consistent.

We recall the definition of a Helly subclass of relations.

Definition 7. A subclass A ⊆ 2B is Helly [8] if and only
if for any n relations r1, r2, . . . rn ∈ A we have that:

n⋂
i=1

ri 6= ∅ iff ∀(1 ≤ i, j ≤ n) ri ∩ rj 6= ∅

Then, we have the following result by Long and Li in [25]:

Theorem 2 ([25]). A subclass A ⊆ 2B of a qualitative
constraint language that satisfies property 1 is distributive if
and only if it is Helly.



Let us recall the definition of the patchwork property [26],
which we tailor to the context of �-consistency.

Definition 8. A subclass A ⊆ 2B has patchwork iff for
any two �-consistent and not trivially inconsistent QCNs
N = (V,C) and N ′ = (V ′, C′) defined over A such that
C(u, v) = C′(u, v) for every u, v ∈ V ∩ V ′, we have that the
QCN N ∪N ′ is satisfiable.

Intuitively, patchwork ensures that “patching” together
�-consistent and not trivially inconsistent QCNs satisfying
some conditions, yields a unified QCN that is satisfiable.

Given two graphs G = (V,E) and G′ = (V ′, E′), G is a
subgraph of G′ (and G′ is a supergraph of G), denoted by
G ⊆ G′, iff V ⊆ V ′ and E ⊆ E′, and G and G′ are equal,
denoted by G = G′, iff V = V ′ and E = E′. A graph G is
said to be chordal (or triangulated) if every cycle of length
at least 4 has a chord, which is an edge connecting two non-
adjacent nodes of the cycle [10]. We have the following result
with respect to chordal graphs and �G-consistency:

Proposition 3 ([2, 32]). Let N = (V,C) be a QCN de-
fined over a subclass of relations that has patchwork, and
G = (V,E) a graph such that G(N ) ⊆ G. If G is chordal,
and N is �G-consistent and not trivially inconsistent, then N
is satisfiable.

Due to Propositions 1 and 2, and the notion of weak global
consistency in Theorem 1, which guarantees patchwork for a
distributive subclass of relations of a qualitative constraint
language that satisfies properties 1 and 2, it is clear that
Proposition 3 applies to QCNs defined over a distributive
subclass of relations of Point Algebra, Interval Algebra, Car-
dinal Direction Calculus, Block Algebra, or RCC-8.1

3. APPROACH
We propose a novel approach in the context of qualitative

constraint-based spatial and temporal reasoning for solving
a given QCN defined over a distributive subclass of relations,
that is based on the idea of variable elimination, a simple
and general exact inference algorithm in probabilistic graph-
ical models, such as Bayesian networks and Markov random
fields [40]. Notably, a variant of the variable elimination
algorithm has also been introduced for finite-domain con-
straint satisfaction problems (CSPs) defined over connected
row convex constraints [9] by Zhang et al. in [41]

3.1 Satisfiability Checking
Given a QCN, we are particularly interested in its satisfi-

ability problem, i.e., the problem of checking (or deciding) if
there exists a valuation of the variables of the QCN such that
all of its constraints are satisfied by that valuation, such a
valuation being called a solution of the QCN (as defined in
Section 2). Here, we show how we can efficiently decide the
satisfiability of a given QCN defined over a distributive sub-
class of relations. To this end, the notion of ←−� -consistency
will be essential to us, defined in the following manner:

1Actually, the result also applies to QCNs defined over
larger subclasses of relations (so-called tractable) that prop-
erly contain the distributive subclasses of relations for the
considered qualitative constraint languages [2], as patchwork
holds for those larger subclasses of relations as well [17].
However, we will not be mentioning those subclasses of re-
lations in our work here, as they are not of our interest for
the techniques that we will present in the sequel.

Definition 9. A QCN N = (V = {v0, v1, . . . , vn−1}, C)
is ←−� -consistent iff for all vi, vk, vj ∈ V with i, j < k we have
that C(vi, vj) ⊆ C(vi, vk) � C(vk, vj).

Given a QCN N = (V,C) with some ordering of its vari-
ables, the ←−� -consistent QCN of N with respect to that or-
dering is denoted by ←−� (N ). It is clear that �(N ) ⊆ ←−� (N )
for any possible ordering of the variables of N . For sim-
plicity, in what follows, when we state that a QCN is ←−� -
consistent, the ordering of the variables of that QCN for the
use case at hand will be implicitly considered.

Theorem 3 ([25]). Let N = (V = {v0, v1, . . . , vn−1}, C)
be a QCN defined over a distributive subclass of relations of
a qualitative constraint language that satisfies properties 1
and 2. If we have that C(vi, vj) ⊆ C(vi, vn−1) � C(vn−1, vj)
for all vi, vj ∈ V with i, j < n − 1, then N↓V \{vn−1} is
satisfiable only if N is satisfiable.

Using Theorem 3, we prove the following proposition:

Proposition 4. Let N = (V = {v0, v1, . . . , vn−1}, C) be
a QCN defined over a distributive subclass of relations of a
qualitative constraint language that satisfies properties 1 and
2. If N is ←−� -consistent and not trivially inconsistent, then
N is satisfiable.

Proof. Let Vl with 0 ≤ l < n denote the set of vari-
ables {v0,v1,. . .,vl}, i.e., the set of variables of V from v0 up
to (and including) vl. Then, due to N being ←−� -consistent,
for each vk ∈ V with 0 < k < n we have that C(vi, vj) ⊆
C(vi, vk) � C(vk, vj) for all vi, vj ∈ V with i, j < k. As
such, by Theorem 3, for each k with 0 < k < n we have
that N↓Vk−1 is unsatisfiable if N↓Vk is unsatisfiable. By the
“if. . .then”transitive property, we have that N↓V1 is unsatis-
fiable if N↓V = N is unsatisfiable. Let us assume that N is
indeed unsatisfiable. Then, as N↓V1 [v0, v0] = N↓V1 [v1, v1]
= {Id} by definition of a QCN, this can only mean that
N↓V1 [v0, v1] = ∅, or, equivalently, that N↓V1 [v1, v0] = ∅,
as N↓V1 [v1, v0] = (N↓V1 [v0, v1])−1 by definition of a QCN.
This is a contradiction, as N is not trivially inconsistent.
We can conclude that if N is ←−� -consistent and not trivially
inconsistent, then N is satisfiable.

Next, we present an algorithm that uses the notion of
←−� -consistency to decide the satisfiability of a given QCN de-
fined over a distributive subclass of relations. The algorithm
is given in Algorithm 1 and is called VarElimination as it is
built on the idea of the variable elimination algorithm [40]
that we mentioned earlier. However, we note that variables
are not really eliminated in the process, they are just ig-
nored, at some point, from further consideration. Given
a QCN N = (V,C), algorithm VarElimination attempts to
apply ←−� -consistency on N , and terminates with a value of
(True, 2) if it succeeds in doing so without producing a triv-
ial inconsistency. Algorithm VarElimination has a runtime of
O(δ2|V |), where δ is the maximum degree of the graph G
returned through its output, as it iterates O(|V |) variables
(lines 3–4) and performs O(δ2) constant operations for the
variable v at hand in each iteration (lines 5–15). The rela-
tions of a qualitative constraint language are implemented

2The symbol denotes an anonymous variable, which we
use when we are not interested in its instantiation for the
use case at hand. We borrowed that syntax from Prolog [7].



Algorithm 1: VarElimination(N ,α)

in/out : A QCN N = (V,C) over n variables.
in : A bijection α of V onto {0, 1, . . . , n− 1}.
out : True or False, and a graph G.

1 begin
2 G ← (V,E = E(G(N )));
3 for x from n− 1 to 1 do
4 v ← α−1(x);
5 adj ← {v′ | {v′, v} ∈ E ∧ α(v′) < α(v)};
6 foreach v′, v′′ ∈ adj do
7 if α(v′) < α(v′′) then
8 if {v′, v′′} 6∈ E then
9 E ← E ∪ {{v′, v′′}};

10 temp ← C(v′, v′′) ∩ (C(v′, v) � C(v, v′′));
11 if temp ⊂ C(v′, v′′) then
12 C(v′, v′′) ← temp;

13 C(v′′, v′) ← temp−1;

14 if C(v′, v′′) = ∅ then
15 return (False,G);

16 return (True,G);

as bit vectors [20,38]. In this way, the fast bitwise AND op-
eration can be used to perform the intersection operation.
Note that the size of a bit vector is |B|, with each of its bits
corresponding to a base relation. Further, the converse of a
relation of 2B is obtained by a lookup in a converse table that
stores the converse relation r−1 for each relation r ∈ 2B. In a
similar manner, the weak composition of two relations of 2B

is obtained by a lookup in a weak composition table. How-
ever, in this case, a 2-dimensional array is required to store
the weak compositions between all the relations, which has
a O(22|B|) memory footprint and can pose a challenge even
for today’s modern computers (e.g., consider Block Algebra
with 13p base relations for some integer p ≥ 1). In the case

where storing a 2|B|×2|B| 2-dimensional array is impractical,
we can consider Hogge’s method [16], which uses four small
tables instead of a single large one, each one containing at
most 2|B|+1 entries. The result of a weak composition can
then be obtained by the union of four table lookups plus
three shift operations and some logical ANDs [16].

Theorem 4. Given a QCN N = (V,C), with |V | = n,
defined over a distributive subclass of relations of a qualita-
tive constraint language that satisfies properties 1 and 2, and
a bijection α : V → {0, 1, . . . , n−1}, we have that algorithm
VarElimination terminates and returns (True, ) if and only if
N is satisfiable.

Proof. We rewrite each variable of V as follows. For
each u ∈ V , u is rewritten as vα(u). As such, the set of
variables V will be the set {v0, v1, . . . , vn−1}. Let N ′ de-
note the refined QCN of N that results from the application
of algorithm VarElimination on N until its termination with
an output of either (True, ) or (False, ) (the refinement re-
sults due to the consistency operations in lines 12–13). It is
clear that in general �(N ) ⊆ N ′, as algorithm VarElimination
performs less consistency operations than a �-consistency
enforcing algorithm. We address the “only if” part first.
If VarElimination terminates and returns (True, ), for each
vk ∈ V with 0 < k < n we will have that N ′[vi, vj ] ⊆
N ′[vi, vk] � N ′[vk, vj ] for all vi, vj ∈ V with i, j < k, and for

all vi, vj ∈ V we will have that N ′[vi, vj ] 6= ∅. Thus, by def-
inition of ←−� -consistency, we have that N ′ is ←−� -consistent,
or, more precisely, that there exists a QCN ←−� (N ) such that
N ′ = ←−� (N ), viz., the ←−� -consistent QCN of N with respect
to the considered ordering of the variables of V . Further,
as N ′[vi, vj ] 6= ∅ for all vi, vj ∈ V , we have that N ′ is not
trivially inconsistent. By Proposition 4 we have that N ′ is
satisfiable. As N ′ is equivalent to N (because �(N ) ⊆ N ′ ⊆
N and �(N ) is equivalent to N ), we have that N is satisfi-
able. Next, we address the “if” part. If N is satisfiable, then
it yields a unique �-consistent and not trivially inconsistent
QCN ofN , viz., �(N ). Let us assume that givenN and some
bijection α : V → {0, 1, . . . , n−1}, algorithm VarElimination
terminates and returns (False, ). This would mean that the
QCN N ′, i.e., the refined QCN of N that would result from
the application of algorithm VarElimination on N until its
termination with the output of (False, ), would be trivially
inconsistent (lines 14–15). As we already established that
�(N ) ⊆ N ′, we would have that �(N ) is trivially incon-
sistent. This is a contradiction, as �(N ) cannot be trivially
inconsistent when N is satisfiable (�(N ) is equivalent to N ).
We can conclude that algorithm VarElimination terminates
and returns (True, ) if and only if N is satisfiable.

Due to Propositions 1 and 2, and Theorem 4, it is clear
that algorithm VarElimination is sound and complete for de-
ciding the satisfiability of a QCN defined over a distributive
subclass of relations of Point Algebra, Interval Algebra, Car-
dinal Direction Calculus, Block Algebra, or RCC-8.

Given a QCN N , we note that algorithm VarElimination
may consider pairs of variables that do not exist in E(G(N ))
(lines 2–9), which are nevertheless involved in consistency
operations with respect to the constraints that are associ-
ated with them (lines 10–15). It would be interesting to
explore if there exists a condition such that no pair of vari-
ables that does not exist in E(G(N )) needs to be considered,
as this would allow us to perform less consistency operations
in general. To this end, the bijection α that is given as input
to algorithm VarElimination plays an important role, as it de-
fines the ordering in which the variables of V are eliminated.
Let us show when the ordering defined by α guarantees that
no pair of variables that does not exist in E(G(N )) will be
considered by algorithm VarElimination.

First, we recall some graph theoretic concepts. Given a
graph G = (V,E), with |V | = n, and a vertex v ∈ V ,
N(v) denotes the set of neighbors of v in G, i.e., N(v) =
{u | {u, v} ∈ E}. A vertex v ∈ V is said to be a simpli-
cial vertex of G if the subgraph of G induced by N(v) is
complete. Further, let α : V → {0, 1, . . . , n − 1} be a bi-
jection of V onto {0, 1, . . . , n − 1}, and let Gi denote the
subgraph of G induced by Vi = {α−1(0),α−1(1),. . .,α−1(i)},
with 0 ≤ i < n. (Note that Gn−1 = G.) The ordering
(α−1(n − 1),α−1(n − 2),. . .,α−1(0)) of the vertices of V is
said to be a perfect elimination ordering of G, if for every
n > i > 0, vertex α−1(i) is a simplicial vertex of graph Gi.
Then, we have the following theorem:

Theorem 5 ([13]). A graph G is chordal if and only if
it admits a perfect elimination ordering.

With respect to chordal graphs, algorithm VarElimination
constructs a chordal graph as a byproduct. In particular we
have the following result:



Proposition 5. Given a QCN N = (V,C), with |V | = n,
and a bijection α : V → {0, 1, . . . , n − 1}, we have that if
algorithm VarElimination terminates and returns (True,G),
then G is a chordal graph such that G(N ) ⊆ G.

Proof. Since algorithm VarElimination terminates and
returns (True,G), we can ignore lines 10–15 of its opera-
tion. Graph G is initialized to (V,E = E(G(N ))) (line 2),
where V is also the set of vertices of G(N ). Let us show
that G(N ) ⊆ G and G is also chordal after the termina-
tion of algorithm VarElimination. As defined earlier, Gi is
the subgraph of G induced by {α−1(0),α−1(1),. . ., α−1(i)},
with 0 ≤ i < n. For each x from n − 1 to 1, line 5 pro-
vides us with the set of neighbors of vertex α−1(x) in Gx,
denoted by Nx(α−1(x)). Then, in lines 6–9 we add edges
to E (if not existing in E and, thus, neither in E(G(N )))
such that every two vertices in Nx(α−1(x)) become con-
nected by an edge in Gx. As such, vertex α−1(x) becomes
a simplicial vertex of Gx, since the subgraph of Gx induced
by Nx(α−1(x)) becomes complete. (Note that the check
α(v′) < α(v′′) in line 7 for vertices v′, v′′ ∈ V does not
cause a problem, as we deal with edges that are not or-
dered pairs of vertices, but rather doubletons of vertices;
this is also apparent from our notation.) After process-
ing the set of vertices {α−1(1),α−1(2),. . .,α−1(n − 1)} of
V , we will have admitted a perfect elimination ordering
(α−1(n−1),α−1(n−2),. . .,α−1(0)) of G through the addition
of new edges to the set of edges E when necessary. As such,
we have that the edge-augmented graph G = (V,E) of G(N )
is a chordal graph by Theorem 5. We can conclude that if
algorithm VarElimination terminates and returns (True,G),
then G is a chordal graph such that G(N ) ⊆ G.

As shown in the proof of Proposition 5, given a satisfiable
QCN N = (V,C), with |V | = n, and a bijection α : V →
{0, 1, . . . , n−1}, algorithm VarElimination treats the ordering
(α−1(n− 1),α−1(n− 2),. . .,α−1(0)) as a perfect elimination
ordering of G(N ) and consequently constructs a chordal su-
pergraph G of G(N ). We can assert the following result:

Proposition 6. Given a QCN N = (V,C), with |V | = n,
and a bijection α : V → {0, 1, . . . , n−1}, we have that algo-
rithm VarElimination terminates and returns ( ,G), with G =
G(N ), if G(N ) is a chordal graph and (α−1(n− 1),α−1(n−
2),. . .,α−1(0)) a perfect elimination ordering of it.

Proposition 6 ensures that if its specified condition holds,
then no pair of variables that does not exist in E(G(N )) will
be considered by algorithm VarElimination. In light of this
result, the question arises whether a perfect elimination or-
dering of a given chordal graph is easily obtainable. In fact,
given a chordal graph G = (V,E), with |V | = n, we can ob-
tain a perfect elimination ordering of G in O(|V |+ |E|) time
using the maximum cardinality search (MCS) algorithm [35].
In particular, MCS visits the vertices of a graph in an or-
der such that, at any point, a vertex is visited that has
the largest number of visited neighbors. Consequently, MCS
produces a bijection α : V → {0, 1, . . . , n − 1} such that
(α−1(n − 1),α−1(n − 2),. . .,α−1(0)) is a perfect elimination
ordering of G. Given a QCN N = (V,C), if G(N ) is not
chordal, MCS will define an elimination ordering of the vari-
ables of N , which, although not perfect, in general will al-
low less pairs of variables that do not exist in E(G(N )) to
be considered by algorithm VarElimination, than a randomly

chosen elimination ordering. An alternative would be to use
some special greedy heuristic instead of the MCS algorithm
to obtain an elimination ordering, the simplest and fastest of
which being the approximate minimum degree heuristic [15].
This heuristic has a runtime of O(|V ||E|) for a given graph
G = (V,E) [15]. Thus, its use can still be an overkill for
large QCNs, which are of our particular interest in the eval-
uation that takes place in Section 4. Another choice is the
minimum fill-in heuristic with a runtime of O(|V |3) [18,30],
which again makes its use prohibitive for large QCNs.

3.2 Extracting a Solution
In the previous section we showed how we can efficiently

decide the satisfiability of a given QCN defined over a dis-
tributive subclass of relations. Here, we show how a solution
of that QCN can actually be extracted. The contribution
involves performing a generic backtrack-free procedure for
refining a ←−� -consistent and not trivially inconsistent QCN
N defined over a distributive subclass of relations to a sce-
nario of N , i.e., an atomic satisfiable sub-QCN of N , and
then using some known method from the literature for valu-
ating the variables of N in order to satisfy it; such methods
in general dictate that a given QCN should be atomic and
satisfiable in order for a valuation of its variables to take
place (e.g., as it is required in the case of RCC-8 in [5]).

Proposition 7. Let N = (V = {v0, v1, . . . , vn−1}, C) be
a ←−� -consistent and not trivially inconsistent QCN defined
over a distributive subclass of relations of a qualitative con-
straint language that satisfies properties 1 and 2. Then, N
can be refined to a scenario S of N as follows. For each k
from 1 to n− 1, and for each i ∈ {0, . . . , k − 1}, do:

• C(vk, vi) ←
⋂k−1
j=0 C(vk, vj) � C(vj , vi);

• C(vk, vi) ← {b} for some b ∈ C(vk, vi);
• C(vi, vk) ← (C(vk, vi))

−1.

Proof. Let Vl with 0 ≤ l < n denote the set of variables
{v0,v1,. . .,vl}, i.e., the set of variables of V from v0 up to
(and including) vl. By Proposition 4 we have that N is sat-
isfiable. As such, N↓Vl′ is satisfiable for some 0 ≤ l′ < n−1
(as with any other restriction of N to a proper subset of
its variables). Since N↓Vl′ is satisfiable, we can refine it
to a scenario S↓Vl′ of N↓Vl′ , and have that N [vj , vj′ ] =
S↓Vl′ [vj , vj′ ] for every j, j′ ∈ {0, . . . , l′}. We will show that
we can extend that scenario to a scenario of N↓Vl′+1

with
our proposed construction that is specified by the three suc-
cessive operations listed in our proposition. It is clear that
N↓Vl′+1

is←−� -consistent with respect to the variable ordering

{v0,v1,. . .,vl′+1} and not trivially inconsistent. Let Ni with

i ∈ {0, . . . , l′} denote
⋂l′

j=0N [vl′+1, vj ] � S↓Vl′ [vj , vi]. First,
we need to show that Ni is not empty. By Theorem 2 it suf-
fices to show that N [vl′+1, vj ] �S↓Vl′ [vj , vi] ∩ N [vl′+1, vj′ ] �
S↓Vl′ [vj′ , vi] 6= ∅ for all j, j′ ∈ {0, . . . , l′}. As N is defined
on a qualitative constraint language that satisfies property 1
(i.e., that is a relation algebra), due to the Peircean law that
holds for relation algebras (cf. [11, Chapt. 3]), we have that
N [vl′+1, vj ]�S↓Vl′ [vj , vi] ∩ N [vl′+1, vj′ ]�S↓Vl′ [vj′ , vi] 6= ∅ iff
N [vl′+1, vj′ ]�S↓Vl′ [vj′ , vi]�S↓Vl′ [vi, vj ] ∩ N [vl′+1, vj ] 6= ∅ iff
N [vj′ , vl′+1] � N [vl′+1, vj ] ∩ S↓Vl′ [vj′ , vi] � S↓Vl′ [vi, vj ] 6= ∅.
As S↓Vl′ [vj′ , vj ] ⊆ S↓Vl′ [vj′ , vi] � S↓Vl′ [vi, vj ] and S↓Vl′ [vj′ ,
vj ] ⊆ N [vj′ , vl′+1] � N [vl′+1, vj ], we have that Ni is not
empty. As such, there exists a base relation b ∈ B such that
b ∈ Ni. Let us assign the base relation b to N [vl′+1, vi], and
have that N [vl′+1, vi] = {b} and N [vi, vl′+1] = {b−1}. We



will now show that the refinedN↓Vl′+1
remains←−� -consistent

with respect to the variable ordering {v0,v1,. . .,vl′+1} and
not trivially inconsistent. As b 6= ∅, N↓Vl′+1

remains not

trivially inconsistent. To show thatN↓Vl′+1
also remains←−� -

consistent with respect to the considered variable ordering,
we need to show that N [vj , vi] ⊆ N [vj , vl′+1] � N [vl′+1, vi],
i.e., N [vj , vi] ⊆ N [vj , vl′+1] � {b}, for every j ∈ {0, . . . , l′}.
As b ∈ Ni, we have that {b} ⊆ N [vl′+1, vj ]�N [vj , vi]. (Note
that N [vj , vi] = S↓Vl′ [vj , vi].) Thus, {b} ∩ N [vl′+1, vj ] �
N [vj , vi] 6= ∅. Then, due to the Peircean law, we have that
N [vj , vl′+1] � {b} ∩ N [vj , vi] 6= ∅. As N [vj , vi] is a singleton
relation, we can only have that N [vj , vi] ⊆ N [vj , vl′+1] �
{b}. Up to this point, we have shown that given any sce-
nario S↓Vl′ of N↓Vl′ for some 0 ≤ l′ < n − 1, and as long

as N↓Vl′+1
remains ←−� -consistent and not trivially inconsis-

tent, then, for any i ∈ {0, . . . , l′}, every base relation b ∈ Ni
is a feasible base relation of N↓Vl′+1

with regard to con-

straint N [vl′+1, vi]. Further, we showed that after assign-
ing to N [vl′+1, vi] a base relation of Ni, the refined N↓Vl′+1

will remain←−� -consistent and not trivially inconsistent. This
property allows us to extend the scenario S↓Vl′ to a scenario
of N↓Vl′+1

by (i) choosing some not already considered con-

straint N [vl′+1, vi] of N↓Vl′+1
, for some i ∈ {0, . . . , l′}, and

calculating Ni with respect to the refined N↓Vl′+1
that has

resulted from the assignment of a base relation to each one
of its already considered constraints (if any), (ii) soundly
assigning any base relation of Ni to N [vl′+1, vi] and, thus,
further refining N↓Vl′+1

, and (iii) repeating the procedure
for all not already considered constraints of N↓Vl′+1

by go-

ing back to (i). It is important to stress that in each loop
of the aforementioned procedure, a relation Ni, for some
i ∈ {0, . . . , l′}, is by definition calculated with respect to
the refined N↓Vl′+1

that has resulted from the assignment
of a base relation to each one of its already considered con-
straints; in technical terms, in each loop, N↓Vl′+1

is mutated

(i.e., refined in our context) in place, and a calculation of
some Ni takes into account the latest refinement of N↓Vl′+1

.
The procedure terminates when all unassigned constraints
of N↓Vl′+1

have been considered, and N↓Vl′+1
has become

an atomic and satisfiable (by Proposition 4) QCN. Using
this procedure, and with respect to k and i as they appear
in our proposition, we can refine N to a scenario S of N , by
strictly following the ordering (1, . . . , n − 1) for k, and any
permutation of the ordering (0, . . . , k−1) for i. In particular,
we start by assigning to N [v0, v1] any base relation b such
that b ∈ N [v0, v1], as N↓V1 being a QCN of two variables
is minimal and weakly globally consistent, and acquire the
rest of the scenario up to N incrementally, at which point
N will have been refined to an atomic satisfiable QCN.

Next, we present an algorithm for extracting a solution of
a given satisfiable QCN N = (V,C) defined over a distribu-
tive subclass of relations. The algorithm is given in Al-
gorithm 2 and is called ExtractSolution. First, algorithm
ExtractSolution uses algorithm VarElimination to make N ←−� -
consistent, then, it applies the procedure specified in Propo-
sition 7 to refine N to a scenario of N , and, finally, it uses
some known method from the literature to extract a solu-
tion of that scenario. Algorithm ExtractSolution has a run-
time of max({O(|V |3), ω}), where ω is the runtime of the
method that valuates the variables of N in order to satisfy
it (line 12), and O(|V |3) includes the runtime of algorithm

Algorithm 2: ExtractSolution(N ,α)

in/out : A QCN N = (V,C) over n variables.
in : A bijection α of V onto {0, 1, . . . , n− 1}.
out : True or False, and a mapping µ.

1 begin
2 (decision, ) ← VarElimination(N , α);
3 if decision = False then
4 return (False,Null);

5 for x from 1 to n− 1 do
6 v ← α−1(x);
7 foreach v′ ∈ V | α(v′) < α(v) do
8 adj ← {v′′ ∈ V | α(v′′) < α(v)};
9 C(v, v′) ←

⋂
v′′∈adj C(v, v′′) � C(v′′, v′);

10 C(v, v′) ← {b} for some b ∈ C(v, v′);

11 C(v′, v) ← (C(v, v′))−1;

12 µ← (f : V → D) s.t. µ satisfies N ;
13 return (True, µ);

VarElimination (line 2), and the time needed to iterate O(|V |)
variables (lines 5–6) and realize O(|V |2) constant operations
for the variable v at hand in each iteration (lines 7–11). Once
a scenario of N is obtained, a solution of N can be con-
structed using some canonical model, i.e., a structure that
allows to model any satisfiable sentence of the qualitative
constraint language at hand. In light of this information,
and with regard to runtime ω, of particular interest is the
case of RCC-8, for which several canonical models alongside a
valuation method have been defined in order to obtain inter-
esting solutions. For instance, the literature offers a domain
of regular closed subsets of the set of real numbers with a
valuation method that runs in O(|V |3) time [5], a domain of
countably many homeomorphic disjoint components form-
ing a topological space with a valuation method that, again,
runs in O(|V |3) time [21,23], and the usual domain of regions
corresponding to regular closed subsets of some topological
space that do not have to be internally connected and do not
have a particular dimension with a valuation method that
runs in O(|V |4) time [28]. The canonical model of Renz [28],
allows for a simple representation of regions with respect to
a set of RCC-8 constraints, and, further, enables one to gen-
erate realizations in any dimension d ≥ 1.

Theorem 6. Given a QCN N = (V,C), with |V | = n,
defined over a distributive subclass of relations of Point Al-
gebra, Interval Algebra, Cardinal Direction Calculus, Block
Algebra, or RCC-8, and a bijection α : V → {0, 1, . . . , n−1},
we have that algorithm ExtractSolution terminates and re-
turns (True,µ), only if µ is a solution of N .

Proof. If ExtractSolution terminates and returns (True,µ),
we will show that the mapping µ is created in such a way
as to correspond to a solution of N . By Theorem 4 we have
that algorithm VarElimination is sound and complete for de-
ciding the satisfiability of N , so lines 2–4 ensure that N
is in fact satisfiable. As such, we focus solely on extract-
ing a solution of N . Algorithm VarElimination refines N in
place, rendering it←−� -consistent with respect to the ordering
(α−1(0),α−1(1),. . .,α−1(n − 1)) of V that is defined by the
bijection α (see the proof of Theorem 4). N is then fur-
ther refined to a scenario of N using the procedure specified
in Proposition 7. This procedure is implemented exactly
in lines 5–11 of the algorithm. A solution µ of N is then



obtained in line 12, using some known method from the lit-
erature for valuating the variables of N in order to satisfy
it. In particular, a valuation method for an atomic satis-
fiable QCN of Block Algebra is presented in [3], valuation
methods for atomic satisfiable QCNs of Point Algebra and
Interval Algebra are presented in [37], a valuation method
for an atomic satisfiable QCN of Cardinal Direction Calcu-
lus is presented in [24], and several valuation methods for an
atomic satisfiable QCN of RCC-8 are presented in [5,21,28].
We can conclude that algorithm ExtractSolution terminates
and returns (True,µ), only if µ is a solution of N .

4. EXPERIMENTATION
We evaluate the performance of our implementation of the
←−� -consistency enforcing VarElimination algorithm, against
state-of-the-art implementations of �G-consistency and �-con-
sistency enforcing algorithms, for checking the satisfiability
of a given QCN defined over a distributive subclass of rela-
tions. Algorithm VarElimination is implemented under the
hood of a novel reasoner called Pyrrhus. A state-of-the-art
�
G-consistency enforcing algorithm implementation is pro-
vided by reasoner Sarissa and a state-of-the-art �-consistency
enforcing algorithm implementation is provided by reasoner
Phalanx, both of which are in-house implementations and
are presented in [31]. Pyrrhus, like any of our other afore-
mentioned reasoners, is a generic and open source qualita-
tive constraint-based spatial and temporal reasoner written
in pure Python3 and can be found online in the following
address: http://www.cril.fr/˜sioutis/work.php.

Technical Specifications.
The experimentation was carried out on a computer with

an Intel Core i7-2820QM processor with a 2.30 GHz fre-
quency per CPU core, 8 GB of RAM, and the Trusty Tahr
x86 64 OS (Ubuntu Linux). Pyrrhus, Sarissa, and Phalanx
were run with PyPy 2.2.14, which implements Python 2.7.
Only one of the CPU cores was used.

Dataset and Measures.
We considered random RCC-8 networks generated by the

BA(n,m) model [4], the use of which in qualitative constraint-
based reasoning is well motivated in [31], and real-world
RCC-8 datasets that have been recently used in [22,33]

In particular, we used the BA(n,m) model to create ran-
dom scale-free graphs of order n with a preferential attach-
ment value m; each such graph was then treated as the
constraint graph of a given QCN of RCC-8, by labeling the
constraints of the QCN corresponding to edges of the graph
with relations from the maximal distributive subclass D64

8

of RCC-8 [22], and the rest of the constraints of the QCN
strictly with the universal relation, viz., B. We considered
10 satisfiable and 10 unsatisfiable RCC-8 network instances
of BA(n,m) for each order 1000 ≤ n ≤ 10000 of their con-
straint graphs with a 1000-vertex step and a preferential
attachment value of m = 2. Both satisfiable and unsatisfi-
able network instances were randomly filtered out of a large
number of 1 000 network instances to ensure validity of the
results. Regarding real-world RCC-8 datasets, we employed
the ones recently used in [22,33], described as follows (in the
description by constraints we mean non-universal relations).

3https://www.python.org/
4http://pypy.org/

• nuts: an RCC-8 network of a nomenclature of territo-
rial units with 2 235/3 176 variables/constraints.5

• adm1: an RCC-8 network of the administrative geogra-
phy of Great Britain with 11 762/44 832 variables/con-
straints [14].
• gadm1: an RCC-8 network of the German administra-

tive units with 42 749/159 600 variables/constraints.5

• gadm2: an RCC-8 network of the world’s administrative
areas with 276 729/589 573 variables/constraints.6

• adm2: an RCC-8 network of the administrative geogra-
phy of Greece with 1 732 999/5 236 270 variables/con-
straints.5

• footprints: an RCC-8 network of geographic “foot-
prints” in the Southampton area of the UK with 3 470/
446 847 variables/constraints [22].
• statareas: an RCC-8 network of statistical areas in

Tasmania with 1 562/10 101 variables/constraints [22].
The aforementioned datasets are satisfiable. Further, the
relations of each dataset are contained in one of the maximal
distributive subclasses D41

8 and D64
8 of RCC-8 [22].

Our experimentation involves two measures, which we de-
scribe as follows. The first measure considers the number of
constraint checks performed by a local consistency enforc-
ing algorithm implementation. Given a QCN N = (V,C)
and vi, vk, vj ∈ V , a constraint check is performed when we
compute relation r = C(vi, vj) ∩ (C(vi, vk) � C(vk, vj)) and
check if r ⊂ C(vi, vj), so that we can propagate its con-
strainedness. (Weak compositions that yield relation B are
disregarded.) The second measure concerns the CPU time
and is strongly correlated with the first one, as the runtime
of local consistency enforcing algorithm implementations re-
lies heavily on the number of constraint checks performed.

Results.
In what follows, WC (for �-consistency or closure under

weak composition) will denote the �-consistency enforcing
algorithm implementation of Phalanx, PWC (for �G-consist-
ency or partial closure under weak composition) will de-
note the �G-consistency enforcing algorithm implementation
of Sarissa, and DWC (for←−� -consistency or directional closure
under weak composition) will denote the ←−� -consistency en-
forcing algorithm implementation of Pyrrhus, viz., the imple-
mentation of algorithm VarElimination. As a final note, the
maximum cardinality search algorithm was used to obtain a
variable elimination ordering for DWC, and a triangulation
of the constraint graph of a given QCN for PWC as described
in [31] (to be able to make sound use of Proposition 3).

Regarding random scale-free RCC-8 networks, the exper-
imental results are shown in Figure 3. DWC performs sig-
nificantly less constraint checks than PWC and WC for both
satisfiable and unsatisfiable network instances, as shown in
Figure 3a. In particular, across all network instances of dif-
ferent size, DWC performs on average 98.2% and 99.8% less
constraint checks than PWC and WC respectively for satisfi-
able network instances, and 70.1% and 92.2% less constraint
checks than PWC and WC respectively for unsatisfiable net-
work instances. This also reflects on the CPU time, as shown
in Figure 3b. In particular, across all network instances of
different size, DWC is on average 94.7% and 98.0% faster
than PWC and WC respectively for satisfiable network in-

5Retrieved from: http://www.linkedopendata.gr/
6http://gadm.geovocab.org/

http://www.cril.fr/~sioutis/work.php
https://www.python.org/
http://pypy.org/
http://www.linkedopendata.gr/
http://gadm.geovocab.org/
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Figure 3: Performance comparison for random scale-free RCC-8 networks

stances, and 20.8% and 1.8% faster than PWC and WC re-
spectively for unsatisfiable network instances; we note that
for unsatisfiable network instances all approaches are in a
virtual tie, as they unveil the inconsistencies in centiseconds
and any difference in performance is thus marginal.

Table 1: Evaluation with real-world RCC-8 datasets

network WC PWC DWC

nuts 0.12s
9 632

0.09s
5 808

0.08s
1 180

adm1 13 783.39s
1 287 288 879

83.36s
18 498 096

0.31s
92 266

gadm1 25 587.76s
1 927 158 080

105.07s
34 140 998

0.82s
339 611

gadm2 6.72s
1 891 032

1.61s
1 885 100

0.56s
483 377

adm2 ∞ 399.60s
118 799 994

2.25s
5 471 745

footprints 345.69s
689 888 647

167.73s
119 117 222

2.99s
14 251 630

statareas 29.48s
29 009 108

0.25s
485 082

0.06s
32 408

Regarding real-world RCC-8 datasets, the experimental
results are summarized in Table 1, where a fraction x

y
de-

notes that an approach required x seconds of CPU time and
performed y constraint checks to decide the satisfiability of
a given network instance. Symbol ∞ denotes that an im-
plementation hit the memory limit. We also note that we
decomposed the large network instances using the simple de-
composition approach proposed in [34]; this pre-processing
step took negligible time to realize. Again, we can see that
DWC significantly outperforms PWC and WC with regard to
both the CPU time required and the number of constraint
checks performed for deciding the satisfiability of a network
instance. It should suffice to mention that for the largest
of the network instances, viz., adm2, DWC decides its satis-
fiability in 2.25 sec, when PWC requires 399.60 sec for the
same task, and WC does not even complete that task as it
hits the memory limit after several hours of reasoning. The
same trend holds for the number of constraint checks per-
formed by the different algorithm implementations.

5. CONCLUSION AND FUTURE WORK
We introduced, studied, and evaluated a novel algorithm

in the context of qualitative constraint-based spatial and
temporal reasoning, that is based on the idea of variable
elimination, a simple and general exact inference approach
in probabilistic graphical models. Given a qualitative con-
straint network N , our algorithm enforces a particular di-
rectional local consistency on N , which we denote by ←−� -
consistency. We focused on distributive subclasses of rela-
tions, i.e., sets of relations closed under converse, intersec-
tion, and weak composition and for which weak composition
distributes over non-empty intersections for all of their rela-
tions. We demonstrated that enforcing ←−� -consistency on a
given qualitative constraint network defined over a distribu-
tive subclass of relations allows us to decide its satisfiability.
The experimentation that we have conducted with random
and real-world qualitative constraint networks defined over
a distributive subclass of relations of the Region Connection
Calculus, shows that our approach exhibits unparalleled per-
formance against competing state-of-the-art approaches for
checking the satisfiability of such constraint networks.

Future work consists of exploring whether ←−� -consistency
can be efficiently used as the backbone of a backtracking
algorithm for checking the satisfiability of arbitrary qualita-
tive constraint networks, i.e., networks defined over any of
the relations of a qualitative constraint language. Our ex-
perimentation suggests that we should be able to have better
performance in general, as any such backtracking algorithm
defined in the literature largely utilizes its core local con-
sistency enforcing algorithm. We would also like to explore
the implication of ←−� -consistency in the minimality prob-
lem [2] and the redundancy problem [22,33]; these problems
exhibit functions that build on the local consistency enforc-
ing algorithms used for checking the satisfiability of a given
qualitative constraint network.
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