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Abstract. We improve the state-of-the-art method for checking the con-
sistency of large qualitative spatial networks that appear in the Web of
Data by exploiting the scale-free-like structure observed in their under-
lying graphs. We propose an implementation scheme that triangulates
the underlying graphs of the input networks and uses a hash table based
adjacency list to efficiently represent and reason with them. We generate
random scale-free-like qualitative spatial networks using the Barabási-
Albert (BA) model with a preferential attachment mechanism. We test
our approach on the already existing random datasets that have been
extensively used in the literature for evaluating the performance of qual-
itative spatial reasoners, our own generated random scale-free-like spa-
tial networks, and real spatial datasets that have been made available as
Linked Data. The analysis and experimental evaluation of our method
presents significant improvements over the state-of-the-art approach, and
establishes our implementation as the only possible solution to date to
reason with large scale-free-like qualitative spatial networks efficiently.

1 Introduction

Spatial reasoning is a major field of study in Artificial Intelligence; particularly
in Knowledge Representation. This field has gained a lot of attention during the
last few years as it extends to a plethora of areas and domains that include, but
are not limited to, ambient intelligence, dynamic GIS, cognitive robotics, spa-
tiotemporal design, and reasoning and querying with semantic geospatial query
languages [15,18,22]. In this context, an emphasis has been made on qualitative
spatial reasoning which relies on qualitative abstractions of spatial aspects of the
common-sense background knowledge, on which our human perspective on the
physical reality is based. The concise expressiveness of the qualitative approach
provides a promising framework that further boosts research and applications in
the aforementioned areas and domains.

The Region Connection Calculus (RCC) is the dominant Artificial Intelligence
approach for representing and reasoning about topological relations [23]. RCC
can be used to describe regions that are non-empty regular subsets of some
topological space by stating their topological relations to each other. RCC-8 is
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Fig. 1: Two dimensional examples for the eight base relations of RCC-8

the constraint language formed by the following 8 binary topological relations
of RCC: disconnected (DC), externally connected (EC), equal (EQ), partially
overlapping (PO), tangential proper part (TPP ), tangential proper part inverse
(TPPI), non-tangential proper part (NTPP ), and non-tangential proper part
inverse (NTPPI). These eight relations are depicted in Figure 1 (2D case).

In the literature of qualitative spatial reasoning there has been a severe lack
of datasets for experimental evaluation of the reasoners involved. In most cases,
datasets consist of randomly generated regural networks that have a uniform
node degree distribution [27] and scale up to a few hundred nodes in experimental
evaluations [12, 32]. These networks are often very hard to solve instances that
do not correspond to real case scenarios [31] and are mainly used to test the
efficiency of different algorithm and heuristic implementations. There has been
hardly any investigation or exploitage of the stuctural properties of the networks’
underlying graphs. In the case where the datasets are real, they are mainly
small and for proof of concept purposes, such as the one used in [9], with the
exception of a real large scale and successfully used dataset employed in [29],
viz., the admingeo dataset [14]. In fact, we will make use of this dataset again
in this paper, along with an even bigger one that scales up to nearly a million
of topological relations.

It has come to our attention that the real case scenario datasets we are
particularly interested in correspond to graphs with a scale-free-like structure,
i.e., the degree distribution of the graphs follows a power law. Scale-free graphs
seem to match real world applications well and are widely observed in natural
and human-made systems, including the Internet, the World Wide Web, and the
Semantic Web [3, 4, 16, 30]. We argue that the case of scale-free graphs applies
also to qualitative spatial networks and we stress on the importance of being
able to efficiently reason with such scale-free-like networks for the following two
main reasons:

– The natural approach for describing topological relations inevitably leads to
the creation of graphs that exhibit hubs for particular objects which are cited
more than others due to various reasons, such as size, significance, and im-
portance. These hubs are in fact the most notable characteristic in scale-free
graphs [4,16]. For example, if we were to describe the topological relations in
Greece, Greece would be our major hub that would relate topologically to all
of its regions and cities, followed by smaller hubs that would capture topo-



logical relations within the premises of a city or a neighborhood. It would
not really make sense to specify that the porch of a house is located inside
Greece, when it is already encoded that the house is located inside a city of
Greece. Such natural and human-made systems are most often described by
scale-free graphs [3, 4, 16,30].

– Real qualitative spatial datasets that are known today, such as admingeo [14]
and gadm-rdf1, come from the Semantic Web, also called Web of Data, which
is argued to be scale-free [30]. Further, more real datasets are to be offered
by the Semantic Web community since RCC-8 has already been adopted
by GeoSPARQL [22], and there is an ever increasing interest in coupling
qualititave spatial reasoning techniques with linked geospatial data that are
constantly being made available [19, 21]. Thus, there is a real need for scal-
able implementations of constraint network algorithms for qualitative and
quantitative spatial constraints as RDF stores supporting linked geospatial
data are expected to scale to billions of triples [19,21].
In this paper, we concentrate on the consistency checking problem of large

scale-free-like qualitative spatial networks and make the following contributions:
(i) we explore and take advantage of the stuctural properties of the considered
networks and propose an implementation scheme that triangulates their under-
lying graphs to retain their sparseness and uses a hash table based adjacency list
to efficiently represent and reason with them, (ii) we make the case for a new
series of random datasets, viz., large random scale-free-like RCC-8 networks, that
can be of great use and value to the qualitative reasoning community, and (iii)
we experimentally evaluate our approach against the state-of-the-art reasoners
GQR [12], Renz’s solver [27], and two of our own implementations which we
briefly present here, viz., Phalanx and Phalanx5, and show that it significantly
advances the state-of-the-art approach.

The organization of this paper is as follows. Section 2 formally introduces
the RCC-8 constraint language, chordal graphs along with the triangulation pro-
cedure, and scale-free graphs and the model we follow to create them. In Sec-
tion 3 we overview the state-of-the-art techniques and present our approach. In
Section 4 we experimentally evaluate our approach against the state-of-the-art
reasoners, and, finally, in Section 5 we conclude and give directions for future
work.

We assume that the reader is familiar with the concepts of constraint net-
works and their corresponding constraint graphs that are not defined explicitly
in this paper due to space constraints. Also, in what follows, we will refer to
undirected graphs simply as graphs.

2 Preliminaries

In this section we formally introduce the RCC-8 constraint language, chordal
graphs along with the triangulation procedure, and scale-free graphs together
with the Barabási-Albert (BA) model.

1http://gadm.geovocab.org/

http://gadm.geovocab.org/


2.1 The RCC-8 constraint language

A (binary) qualitative temporal or spatial constraint language [25] is based on a
finite set B of jointly exhaustive and pairwise disjoint (JEPD) relations defined
on a domain D, called the set of base relations. The set of base relations B
of a particular qualitative constraint language can be used to represent definite
knowledge between any two entities with respect to the given level of granularity.
B contains the identity relation Id, and is closed under the converse operation
(−1). Indefinite knowledge can be specified by unions of possible base relations,
and is represented by the set containing them. Hence, 2B represents the total
set of relations. 2B is equipped with the usual set-theoretic operations (union
and intersection), the converse operation, and the weak composition operation.
The converse of a relation is the union of the converses of its base relations.
The weak composition � of two relations s and t for a set of base relations B
is defined as the strongest relation r ∈ 2B which contains s ◦ t, or formally,
s� t = {b ∈ B | b ∩(s◦ t) 6= ∅}, where s◦ t = {(x, y) | ∃z : (x, z) ∈ s∧ (z, y) ∈ t} is
the relational composition [25,28]. In the case of the qualitative spatial constraint
language RCC-8 [23], as already mentioned in Section 1, the set of base relations
is the set {DC,EC,PO,TPP ,NTPP ,TPPI,NTPPI,EQ}, with EQ being the
identity relation (Figure 1).

Definition 1. An RCC-8 network comprises a pair (V,C) where V is a non
empty finite set of variables and C is a mapping that associates a relation
C(v, v′) ∈ 2B to each pair (v, v′) of V × V . C is such that C(v, v) ⊆ {EQ}
and C(v, v′) = (C(v′, v))−1.

In what follows, C(vi, vj) will be also denoted by Cij . Checking the con-
sistency of a RCC-8 network is NP-hard in general [26]. However, there exist
large maximal tractable subsets of RCC-8 which can be used to make reasoning
much more efficient even in the general NP-hard case. These maximal tractable
subsets of RCC-8 are the sets Ĥ8, C8, and Q8 [24]. Consistency checking is then
realised by a path consistency algorithm that iteratively performs the follow-
ing operation until a fixed point C is reached: ∀i, j, k, Cij ← Cij ∩ (Cik � Ckj),
where variables i, k, j form triangles that belong either to a completion [27] or
a chordal completion [29] of the underlying graph of the input network. Within
the operation, weak composition of relations is aided by the weak composition
table for RCC-8 [20]. If Cij = ∅ for a pair (i, j) then C is inconsistent, otherwise
C is path consistent. If the relations of the input RCC-8 network belong to some
tractable subset of relations, path consistency implies consistency, otherwise a
backtracking algorithm decomposes the initial relations into subrelations belong-
ing to some tractable subset of relations spawning a branching search tree [28].

2.2 Chordal graphs and Triangulation

We begin by introducing the definition of a chordal graph. The interested reader
may find more results regarding chordal graphs, and graph theory in general,
in [13].
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Fig. 2: Example of a chordal graph

Definition 2. Let G = (V,E) be an undirected graph. G is chordal or trian-
gulated if every cycle of length greater than 3 has a chord, which is an edge
connecting two non-adjacent nodes of the cycle.

The graph shown in Figure 2 consists of a cycle which is formed by five solid
edges and two dashed edges that correspond to its chords. As for this part, the
graph is chordal. However, removing one dashed edge would result in a non-
chordal graph. Indeed, the other dashed edge with three solid edges would form
a cycle of length four with no chords. Chordality checking can be done in (linear)
O(|V | + |E|) time for a given graph G = (V,E) with the maximum cardinality
search algorithm which also constructs an elimination ordering α as a byproduct
[5]. If a graph is not chordal, it can be made so by the addition of a set of new
edges, called fill edges. This process is usually called triangulation of a given
graph G = (V,E) and can run as fast as in O(|V | + (|E⋃

F (α)|)) time, where
F (α) is the set of fill edges that result by following the elimination ordering α,
eliminating the nodes one by one, and connecting all nodes in the neighborhood
of each eliminated node, thus, making it simplicial in the elimination graph. If
the graph is already chordal, following the elimination ordering α means that
no fill edges are added, i.e., α is actually a perfect elimination ordering [13]. For
example, a perfect elimination ordering for the chordal graph shown in Figure 2
would be the ordering 1 → 3 → 4 → 2 → 0 of its set of nodes. In general,
it is desirable to achieve chordality with as few fill edges as possible. However,
obtaining an optimum graph triangulation is known to be NP-hard [5]. In a
RCC-8 network fill edges correspond to universal relations, i.e., non-restrictive
relations that contain all base relations.

Chordal graphs become relevant in the context of qualitative spatial reason-
ing due to the following result obtained in [29] that states that path consistency
enforced on the underlying chordal graph of an input network can yield consis-
tency of the input network:

Proposition 1. For a given RCC-8 network N = (V,C) with relations from
the maximal tractable subsets Ĥ8, C8, and Q8 and for G = (V,E) its underlying
chordal graph, if ∀(i, j), (i, k), (j, k) ∈ E we have that Cij ⊆ Cik � Ckj, then N
is consistent.

Triangulations work particularly well on sparse graphs with clustering prop-
erties, such as scale-free graphs. We are about to experimentally verify this in
Section 4.



2.3 Scale-free graphs

We provide the following simple definition of a scale-free graph and elaborate on
the details:

Definition 3. Graphs with a power law tail in their node degree distribution are
called scale-free graphs [3].

Scale-free graphs are graphs that have a power law node degree distribution.
The degree of a node in a graph is the number of connections it has to other
nodes (or the number of links adjacent to it) and the degree distribution P (k)
is the probability distribution of these degrees over the whole graph, i.e, P (k)
is defined to be the fraction of nodes in the network with degree k. Thus, if
there are n number of nodes in total in a graph and nk of them have degree k,
we have that P (k) = nk/n. For scale-free graphs the degree distribution P (k)
follows a power law which can be expressed mathematically as P (k) ∼ k−γ ,
where 2 < γ < 3, although γ can lie marginally outside these bounds.

There are several models to create random scale-free graphs that rely on
growth and preferential attachment [7]. Growth denotes the increase in the num-
ber of nodes in the graph over time. Preferential attachment refers to the fact
that new nodes tend to connect to existing nodes of large degree and, thus,
means that the more connected a node is, the more likely it is to receive new
links. In real case scenarios, nodes with a higher degree have stronger ability to
grab links added to the network. In a topological perspective, if we consider the
example of Greece that we described in Section 1, Greece would be the higher
degree node that would relate topologically to new regions (e.g., Imbros) in a
deterministic and natural manner. In mathematical terms, preferential attach-
ment means that the probability that a existing node i with degree ki acquires
a link with a new node is p(ki) = ki∑

i ki
.

Among the different models to create random scale-free graphs, the Barabási-
Albert (BA) model is the most well-studied and widely known one [1, 3]. The
BA model considers growth and preferential attachment as follows. Regarding
growth, it starts with an initial number m0 of connected nodes and at each fol-
lowing step it adds a new node with m ≤ m0 edges that link the new node to
m different existing nodes in the graph. When choosing the m different existing
nodes to which the new node is linked, the BA model assumes that the probabil-
ity p that the new node will be connected to node i depends on the degree ki of
node i with a value given by the expression p ∼ ki∑

i ki
, which is the preferential

attachment that me mentioned earlier. The degree distribution resulting from
the BA model is a power law of the form P (k) ∼ k−3, thus, it is able to create
a subset of the total scale-free graphs that are characterised by a value γ such
that 2 < γ < 3. The scaling exponent is independent of m, the only parameter
in the model (other than the total size of the graph one would like to obtain of
course).

Scale-free graphs are particularly attractive for our approach because they
have the following characteristics: (i) scale-free graphs are very sparse [10, 30],



(a) regural graph (b) scale-free graph

Fig. 3: Structures of a random regular graph with an average degree k = 9 and
a scale-free graph with a preferential attachment m = 2, both having 100 nodes

and (ii) scale-free graphs have a clustering coefficient distribution that also fol-
lows a power law, which implies that many low-degree nodes are clustered to-
gether forming very dense subgraphs that are connected to each other through
major hubs [11].

Due to the aforementioned characteristics, scale-free graphs present them-
selves as excellent candidates for triangulation, as sparseness keeps time com-
plexity for triangulation low and chordal graphs also exhibit a clustering struc-
ture [13], thus, they are able to fit scale-free graphs quite effectively. As an
illustration of scale-free graphs, Figure 3 depicts a random regural graph, such
as the ones used for experimental evaluation in the field of qualitative spatial
reasoning, and a random scale-free graph generated using the BA model. Notice
that the bigger the node is, the higher its degree is (these nodes are the hubs).

3 Overview of our approach

In this section we describe our own implementations of generic qualitative rea-
soners that build on state-of-the-art techniques, and our practical approach of
choice for tackling large scale-free-like RCC-8 networks.

State-of-the-art techniques. We have implemented Phalanx and Phalanx5 in
Python that are the generalised and code refactored versions of PyRCC8 and
PyRCC85 respectively, originally presented in [29]. Phalanx5 is essentially Phalanx
with a different path consistency implementation that allows reasoning over
chordal completions of the input qualitative networks, as described in [29]. In
short, Phalanx and Phalanx5 support small arbitrary binary constraint calculi
developed for spatial and temporal reasoning, such as RCC-8 and Allen’s interval
algebra (IA) [2], in a way similar to GQR [12]. Further, Phalanx and Phalanx5
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Fig. 4: Hash table based adjacency list for representing an RCC-8 network

present significant improvements over PyRCC8 and PyRCC85 regarding scalabil-
ity and speed. In particular, the new reasoners handle the constraint matrix that
represents a qualitative network more efficiently during backtracking search, i.e.,
they do not create a copy of the matrix at each forward step of the backtracking
algorithm (as is the case with Renz’s solver [27]), but they only keep track of the
values that are altered at each forward step to be able to reconstruct the matrix
in the case of backtracking. This mechanism is also used to keep track of unas-
signed variables (i.e., relations that do not belong to tractable subsets of relations
and are decomposed to subrelations at each forward step of the backtracking al-
gorithm) that may dynamically change in number due to the appliance of path
consistency at each forward step of the backtracking algorithm. For example,
the path consistency algorithm can prune a relation that belongs to a tractable
subset of relations into an untractable relation, and vice versa. This allows us to
apply the heuristics that deal with the selection of the next unassigned variable
faster, as we keep our set of unassigned variables minimal. The path consistency
algorithm implementation has been also modified to better handle the cases
where weak composition of relations leads to the universal relation. In these
cases we can continue the iterative operation of the path consistency algorithm
since the intersection of the universal relation with any other relation leaves the
latter relation intact. Finally, there is also a weight over learned weights dynamic
heuristic for variable selection, but we still lack the functionality of restart and
nogood recording that has been implemented in the latest version of GQR, re-
lease 15002, in the time of writing this paper [33]. In any case, and in defense
of GQR which was found to perform poorly in [29] under release 1418, we state
that the latest version of GQR has undergone massive scalability improvements
and is currently the most complete and fastest reasoner for handling reasonably
scaled random regular qualitative networks. However, in the experimens to fol-
low, we greatly outperform GQR for large QCNs of scale-free-like structure. At
this point, we can also claim that Renz’s solver [27] has been fairly outdated, as
it will become apparent in the experiments that we employ it for.

2http://sfbtr8.informatik.uni-freiburg.de/R4LogoSpace/downloads/

gqr-1500.tar.bz2

http://sfbtr8.informatik.uni-freiburg.de/R4LogoSpace/downloads/gqr-1500.tar.bz2
http://sfbtr8.informatik.uni-freiburg.de/R4LogoSpace/downloads/gqr-1500.tar.bz2


We improve the state-of-the-art techniques for tackling large scale-free-like
RCC-8 networks by opting for a hash table based adjacency list to represent
and reason with the chordal completion of the input network. The variables of
the input network (or the nodes) are represented by index numbers of a list,
and each variable (or node) is associated with a hash table that stores key-value
pairs of variables and relations. Figure 4 shows how an example RCC-8 network
is represented by our hash table based adjacency list approach. Self-loops (of
the identity relation EQ) have been omitted from the network. The dashed edge
(1, 4) corresponds to a fill edge that results after triangulating the initial non-
chordal network consisting of solid edges. This fill edge is stored in the hash table
based adjacency list as a universal relation, denoted by symbol ∗. For a given
RCC-8 network N = (V,C) and for G = (V,E) its underlying chordal graph, our
approach requires O(|V |+ |E| ·b) memory, where b is the size needed to represent
a relation from the set of relations 2B of RCC-8. Having a constraint matrix to
represent the input RCC-8 network (that is typically used by the state-of-the-art

reasoners), results in a O(|V |2 · b) memory requirement, even if chordal graphs
are used leaving a big part of the matrix empty, as is the case with Phalanx5,
or Sparrow for IA [8]. Further, we still retain an O(1) average access and up-
date time complexity which becomes O(δ) in the amortized worst case, where
δ is the average degree of the chordal graph that corresponds to the input net-
work. Given that we target large scale-free-like, and, thus, sparse networks, this
only incures a small penalty for the related experiments performed. The path
consistency implementation also benefits from this approach as the queue data
structure which is based on has to use only O(|E|) of memory to store the rela-

tions compared to the O(|V |2) memory requirement of Phalanx, GQR, and Renz’s
solver. Regarding triangulation, our hash table based adjacency list is coupled
with the implementation of the maximum cardinality search algorithm and a
fast fill in procedure (as discussed in Section 2.2), as opposed to the heuristic
based, but rather naive, triangulation procedure implemented in [29]. Though
the maximum cardinality search algorithm does not yield minimal triangulations
if the underlying graph of the input network is not chordal, it does guarantee
than no fill edges are inserted if the graph is indeed chordal. In addition, even
for the non-chordal cases we obtain much better results with this approach and
have a fine trade-off between time efficiency and good triangulations.

These techniques are implemented under the hood of our new reasoner which
is called Sarissa. Sarissa, as with our other tools presented here, is a generic and
open source qualitative reasoner written in Python.3

4 Experimental evaluation

In this section we compare the performance of Sarissa with that of Renz’s solver
[27], GQR (release 1500) [12], Phalanx, and Phalanx5, with their best performing
heuristics enabled.

3All tools and datasets used here can be acquired upon request from the authors
or found online in the following address: http://www.cril.fr/~sioutis/work.php.

http://www.cril.fr/~sioutis/work.php
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Fig. 5: Performance of five reasoners for randomly generated networks

We considered both random and real datasets. Random datasets consist of
RCC-8 networks generated by the usual A(n, d, l) model [27] and large RCC-8 net-
works generated by the BA(n,m) model which we first introduce for benchmark-
ing qualitative spatial reasoners in this paper. In short, model A(n, d, l) creates
random regural networks (like the one depicted in Figure 3a) of size n, degree d,
and an average number l of RCC-8 relations per edge, whereas model BA(n,m)
creates random scale-free-like networks (like the one depicted in Figure 3b) of size
n and a preferential attachment valuem. For model BA(n,m) the average number
of RCC-8 relations per edge defaults to |B|/2, where B is the set of base rela-
tions of RCC-8. Real datasets consist of admingeo [14] and gadm-rdf4 that com-
prise 11761/77907 nodes/edges and 276728/590865 nodes/edges respectively. In
short, admingeo describes the administrative geography of Great Britain using
RCC-8 relations, and gadm-rdf the world’s administrative areas likewise. The
experiments were carried out on a computer with an Intel Core 2 Quad Q9400
processor with a CPU frequency of 2.66 GHz, 8 GB RAM, and the Precise Pan-
golin x86 64 OS (Ubuntu Linux). Renz’s solver and GQR were compiled with
gcc/g++ 4.6.3. Sarissa, Phalanx, and Phalanx5 were run with PyPy5 1.9, which
implements Python 2. Only one of the CPU cores was used for the experiments.

Random datasets. For model A(n, d, l) we considered network sizes between 100
and 1000 with a 100 step and l = 4 (= |B|/2) relations per edge. For each size
series we created 270 networks that span over a degree d between 3.5 and 12.0
with a 0.5 step, i.e., 15 network instances were generated for each degree. The
results are shown in Figure 5a. GQR clearly outperforms all other reasoners with
Phalanx coming close 2nd and Renz’s solver last. In the particular case of Sarissa
and Phalanx5 that use chordal graphs we note that they pay an extra cost for
calculating the triangles of relations for each appliance of path consistency as
these are not precomputated and stored in advance for memory efficiency [29].

4http://gadm.geovocab.org/
5http://pypy.org/

http://gadm.geovocab.org/
http://pypy.org/
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Fig. 6: The figure provides evidence of the power law node degree distribution of
the real datasets considered
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Fig. 7: Performance of five reasoners for real datasets

Sarissa also pays an additional cost for not being able to access or update re-
lational values in constant worst case time as it does not use a matrix. It is a
fact that random regural networks are not triangulated very efficiently with our
approach, which results in dense chordal graphs in most of the cases.

For model BA(n,m) we considered 30 networks for each size between 1000
and 10000 with a 1000 step and a preferential attachment value of m = 2. We
found that for this specific value of m and for the network sizes considered,
the networks lie within the phase transition region, where it is equally possible
for networks to be consistent or inconsistent, thus, they are harder to solve.
The results are shown in Figure 5b. Sarissa and Phalanx5 outperform all other
reasoners by a large scale, and Renz’s solver was able to solve only the networks
of 1000 nodes (slower than all others) as it quickly hit the memory limit of our
computer due to many recursive calls (leading to storing many copies of the
matrix). We note that Sarissa is still burdened with the additional cost of not
being able to access or update relational values in constant worst case time. To



the best of our knowledge, the random datasets used in this paper are the biggest
ones to date of all others that exist in literature.

Real datasets. For experimenting with our real datasets, viz., admingeo and
gadm-rdf, we created constraint networks of different size, by taking into account
a small number of relations from the initial dataset and increasing it at every
next step. Of course, for both datasets, the whole dataset was used as a final
step. To backup our argument about the scale-free-like structure of real RCC-8
networks, we present Figure 6 that displays the power law degree distribution
of our real networks. As gadm-rdf is a very large network, we display its degree
distribution in log-log scale where the power law function is seen as a straight
line [3]. The results for admingeo are shown in Figure 7a. Sarissa and Phalanx5
have approximately equal performance and significantly outperform all other
reasoners. In the final step, both reasoners run in ∼ 150 sec, when the 3rd best
reasoner for this experiment, viz., Phalanx, runs in ∼ 4 hours. Up to this point
we have considered networks that fit the size of the matrix that accompanies all
state-of-the-art reasoners. We proceed with gadm-rdf, a dataset almost 30 times
bigger than admingeo. The results for gadm-rdf are shown in Figure 7b. Sarissa
is the only implementation that was able to reason with the whole dataset.
Sarissa completes the final step of the 590865 relations in under ∼ 7 sec, when
the 2nd best reasoner for this experiment, viz., Phalanx5, can only reason up
to 100000 relations in ∼ 7 min. GQR reasons up to 100000 relations in ∼ 28
min, Phalanx in double the time of GQR, and, finally, Renz’s solver reasons up
to 500006 relations in ∼ 7 hours. Gadm-rdf is the biggest real dataset to date
to have been succesfully employed in an experimental evaluation of qualitative
spatial reasoners. Surprisingly, Sarissa runs the gadm-rdf experiment faster than
the admingeo one, but this is due to more relations being inferred in the latter
case as a result of dataset particularities that affect the reasoning process.

At this point we conlude our experimental evaluations. Due to space con-
straints we omitted several graphs that would display the amount of edges con-
sidered by each implementation, the effect of the triangulations, and experiments
with the NP8 class of RCC-8 relations [27].

5 Conclusion and Future work

In this paper we have presented an approach that employs chordal graphs and
a hash table based adjacency list implementation to tackle large scale-free-like
qualitative spatial networks, and goes well beyond the state-of-the-art qualitative
spatial reasoners which were found to come short of the task.

One could argue that even though being able to tackle a real dataset of
nearly a million relations fairly easily, our approach is still far from the billion
relations goal set in [19, 21]. However, for the case of tractable RCC-8 networks

6In practice, Renz’s solver was able to fit the 100000 relations of the next step, but
judging by its overall performance it would require several days to reason with them.



and due to a particular patchwork property presented in [17], our approach
allows for building a consistent RCC-8 enriched database incrementally. This
can be achieved by initially reasoning with a small part of the dataset, and then
for every new piece of data only considering relevant existing RCC-8 relations (if
any), reasoning with the resulted fused piece of information, and continuing the
process, while maintaining chordality [6]. In a likewise manner, for quering or
updating data one would only have to consider relations relevant to his regural
or update query. Future work consists of exploring this solution for datasets that
scale up to billions of relations, and also further exploring and optimizing on the
hierarchical structure that real datasets present, as argued in [21]. In particular,
it would be interesting to explore which relations are used more than others in
real datasets and whether this could be of some use or not. We would also like to
investigate if stuctural or hierarchical properties are observed in real IA networks
which we are currently in the process of obtaining from temporally enriched
datasets. Another research direction would be to explore if SAT encodings are
able to tackle large scale-free-like RCC-8 networks, although given that SAT
encodings become too large when network sizes increase beyond a few hundred
nodes this would be highly unlikely.

Finally, we feel that it is very important to motivate the qualitative reasoning
community to get involved with the structure that real datasets present, and to
this direction large random scale-free-like networks can be of great use and value
to further improve existing reasoners and present (possibly mixed) solutions that
can scale up to billions of relations.
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