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ABSTRACT
We survey the use and effect of decomposition-based tech-
niques in qualitative constraint-based reasoning, and clarify
the notions of a tree decomposition, a chordal graph, and
a partitioning graph, and their implication with a partic-
ular constraint property that has been extensively used in
literature, namely, patchwork. As a consequence, we prove
that a recently proposed decomposition-based approach that
was presented in [AAAI, 2014 ] for checking the satisfiability
of qualitative spatial constraint networks lacks soundness.
Therefore, the approach becomes quite controversial as it
does not seem to offer any technical advance at all, while
experimental evaluation of it in a following paper presented
in [ICTAI, 2014 ] becomes questionable.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic]: Logic and constraint pro-
gramming

General Terms
Theory

Keywords
Qualitative reasoning, tree decomposition, chordal graph,
partitioning graph, patchwork, constraint network

1. INTRODUCTION
Qualitative Spatial and Temporal Reasoning (QSTR) is a

major field of study in Artificial Intelligence, and, in partic-
ular, in Knowledge Representation. This field studies rep-
resentations of space and time that abstract from numeric
quantities. The concise expressiveness of the qualitative ap-
proach provides a promising framework that boosts research
and applications in a plethora of areas and domains such as
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ambient intelligence, dynamic GIS, cognitive robotics, and
spatiotemporal design [3].

The Interval Algebra (IA) [1] and a subset of the Re-
gion Connection Calculus (RCC) [19], namely RCC-8, are the
dominant Artificial Intelligence approaches for representing
and reasoning about qualitative temporal and topological re-
lations respectively. These qualitative calculi use constraints
to encode knowledge about the spatial or temporal relation-
ships between entities. Thus, qualitative information can be
modelled as a infinite-domain variant of a Constraint Sat-
isfaction Problem (CSP) [15], for which we use the term
Qualitative Constraint Network (QCN). For instance, there
are infinitely many time points or temporal intervals on the
time line and infinitely many regions in a two or three di-
mensional space. One way of dealing with infinite domains
is using constraints over a finite set of binary relations, by
employing a relation algebra [12].

Given a QCN, we are particularly interested in its satis-
fiability problem, that is, deciding whether there exists an
interpretation of all variables of the QCN such that all con-
straints are satisfied by this interpretation. The satisfiabil-
ity problem in IA and RCC-8 is NP-hard in general [17,21].
However, there exist large maximal tractable subclasses for
IA and RCC-8 which can be used to make reasoning much
more efficient even in the general NP-hard case [16, 22]. In
recent years, many works surfaced that use graph decompo-
sition to significantly improve the efficiency and scalability
of practical reasoning [2,6,7,11,13,18,24,25,28,29]. All these
works, make use of a particular contraint property, namely,
patchwork [10, 14]. Intuitively, patchwork ensures that the
combination of two satisfiable QCNs that completely agree
on the constraints between their common variables continues
to be satisfiable.

The contribution of this paper comprises two interdepen-
dent parts: (i) we show that the approach proposed in [18]
violates patchwork in two ways, namely, both in the com-
plete agreement between two satisfiable QCNs and in the
graph decomposition that is obtained, and therefore, lacks
soundness, and (ii), to do so, we recall the notions of a tree
decomposition, a chordal graph, and a partitioning graph
that have been used in literature, and clarify the relation-
ship between one another, but also their implication with
patchwork. As such, our paper can be viewed both as a
response paper to [18], and partially to [23], but also as a
survey on the use and effect of graph decomposition in qual-
itative spatial and temporal reasoning.

The paper is organised as follows. In Section 2 we recall
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Figure 1: The RCC-8 constraint language

the definition of a QCN, along with the property of patch-
work. Section 3 introduces the notions of a tree decomposi-
tion and a chordal graph, and the way they are interrelated
and used in literature. In Section 4 we present the defi-
nition of a partitioning graph [18] and prove that it yields
non-soundness when used with patchwork. In Section 5 we
make a discussion and conclude.

2. PRELIMINARIES
A (binary) qualitative temporal or spatial constraint lan-

guage is based on a finite set B of jointly exhaustive and pair-
wise disjoint (JEPD) relations defined on a domain D [12],
called the set of base relations. The base relations of set B of
a particular qualitative constraint language can be used to
represent the definite knowledge between any two entities
with respect to the given level of granularity. B contains
the identity relation Id, and is closed under the converse
operation (−1). Indefinite knowledge can be specified by
unions of possible base relations, and is represented by the
set containing them. Hence, 2B represents the total set of
relations. 2B is equipped with the usual set-theoretic oper-
ations (union and intersection), the converse operation, and
the weak composition operation denoted by � [20].

The set of base relations of IA [1] is the set {eq, p, pi,
m, mi, o, oi, s, si, d, di, f , fi}. These thirteen relations
represent the possible relations between time intervals. The
set of base relations of RCC-8 [19] is the set {dc, ec, po, tpp,
ntpp, tppi, ntppi, eq}. These eight relations represent the
binary topological relations between regions that are non-
empty regular subsets of some topological space, as depicted
in Figure 1 (for the 2D case). IA and RCC-8 networks are
qualitative constraint networks (QCNs), with relation eq be-
ing the identity relation in both cases.

Definition 1. A QCN comprises a tuple (V,C) where V
is a non empty finite set of variables and C is a mapping
that associates a relation C(v, v′) ∈ 2B to each pair (v, v′)
of V × V . C is such that C(v, v) = {Id} and C(v, v′) =
(C(v′, v))−1 for every v, v′ ∈ V .

An atomic QCN is a QCN where each constraint is de-
fined by a base relation. Note that we always regard a
QCN as a complete network. The constraint graph of a
QCN N = (V,C) is a graph G = (V,E), for which we
have that (v, v′) ∈ E iff C(v, v′) 6= B. B corresponds to
the universal relation, i.e., the non-restrictive1 relation that
contains all base relations, thus, it does not really pose
a constraint. Given two QCNs N = (V,C) and N ′ =
(V ′, C′), N ∪ N ′ denotes the QCN N ′′ = (V ′′, C′′) where
V ′′ = V ∪ V ′, C′′(u, v) = C′′(v, u) = B for all (u, v) ∈

1The result of the weak composition of any relation with
the universal relation is the universal relation.

(V \ V ′) × (V ′ \ V ), C′′(u, v) = C(u, v) ∩ C′(u, v) for ev-
ery u, v ∈ V ∩ V ′, C′′(u, v) = C(u, v) for every (u, v) ∈
(V × V ) \ (V ′ × V ′), and C′′(u, v) = C′(u, v) for every
(u, v) ∈ (V ′ × V ′) \ (V × V ). C(vi, vj) will also be denoted
by Cij .

Checking the satisfiability of QCN of IA or RCC-8 is NP-
complete in general [17, 21]. However, there exist the large

maximal tractable subclasses HIA for IA [16] and Ĥ8, C8,
and Q8 for RCC-8 [22] for which the satisfiability prob-
lem is tractable. Satisfiability checking of a QCN of IA or
RCC-8 comprising only relations from a maximal tractable
subclass of relations can be done in O(|V |3) time by a path-
consistency2 algorithm for example that iteratively performs
the following operation to all triples of variables until a
fixed point C is reached: ∀i, j, k ∈ V , Cij ← Cij ∩ (Cik �
Ckj) [16,22].3

We now recall the definition of the patchwork property
that was originally introduced in [14] and was shown to hold
for atomic QCNs of IA and RCC-8.

Definition 2 ([14]). A constraint language has patch-
work, if for any finite satisfiable constraint networks N =
(V,C) and N ′ = (V ′, C′) defined in this language such that
∀u, v ∈ V ∩ V ′ we have that C(u, v) = C′(u, v), the con-
straint network N ∪N ′ is satisfiable.

Huang generalized the use of patchwork for non-atomic
QCNs [10], providing us with the following proposition:

Proposition 1 ([10]). Path-consistent QCNs of IA, or
RCC-8, comprising relations from one of the maximal tractable
subclasses HIA, or Ĥ8, C8, and Q8 resp., have patchwork.
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Figure 2: Patching two QCNs

Intuitively, patchwork ensures that the combination of two
satisfiable constraint networks that agree on their common
part, i.e., the constraints between their common variables,
continues to be satisfiable. As an example, we can view
the two QCNs of RCC-8 in Figure 2. The QCNs are atomic
and are also path-consistent, therefore, by application of the
patchwork property their union is satisfiable since they agree
on the constraints between their common variables, namely,
on C02. (Note that it is not necessary to calculate relation
C13 unless required by the specifics of a use case.)

2The literature suggests the term algebraic closure [20]
instead, which is equivalent to a path-consistency algorithm
where the weak composition operator � is used [20], so we
will use this more traditional term throughout the paper.

3Some of the cited works are based on encodings of QCNs
into Boolean formulas. However, the formulas are con-
structed in such a way that each solution of the formula
corresponds to a path-consistent QCN with relations from
some maximal tractable subclass of relations, and vice versa.
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3. TREE DECOMPOSITION AND
CHORDAL GRAPH

In this section we recall the notions of a tree decomposi-
tion and a chordal graph and review their use and effect in
qualitative spatial and temporal reasoning in combination
with patchwork4.

A tree decomposition is formally defined as follows:

Definition 3 ([8]). A tree decomposition of a graph
G = (V,E) is a tuple (T,X) where T = (I, F ) is a tree and
X = {Xi | i ∈ I} a collection of clusters (subsets of V ) that
satisfy the following properties:
• For every v ∈ V there is at least one node i ∈ I such

that v ∈ Xi.
• For every (u, v) ∈ E there exists a node i ∈ I such that

both u, v ∈ Xi.
• Let i1, i2, i3 be three nodes in I such that i2 lies on the

path between i1 and i3 in T . Then, if v ∈ V belongs to
both Xi1 and Xi3 , v must also belong to Xi2 .

Let us view the example presented in Figure 3. In the
upper part of the figure we can view a graph G = (V,E),
which can be the constraint graph of a QCN. For the mo-
ment, we consider only the solid edges to be part of G and
we disregard the dashed edges (3, 4) and (4, 5). A tree de-
composition of G comprises a tree T = (I, F ) and a cluster
Xi for every node i ∈ I of that tree as shown in the lower
part of the figure, e.g., Xa = {0, 1, 2}.

Tree decompositions have been explicitly introduced in
qualitative reasoning by Condotta et al. in [7], and implicitly
by Li et al. in [13] and Huang et al. in [11]. (What is
presented in [11] properly contains the work in [13], thus,
we will stick to the former work in what follows.)

In [7] the authors apply path-consistency on the clusters
of a tree decomposition of the constraint graph of a QCN.
The graphs induced by the clusters of the tree decomposition
are completed with the introduction of a new set of edges,
called fill edges, that correspond to the universal relation for

4Some of the cited works use a property called amalgama-
tion, which is equivalent to patchwork for atomic networks.

a QCN. These fill edges for the example graph of Figure 3
are edges (3, 4) and (4, 5). As such, the clusters of the tree
decomposition are considered to be cliques, namely, sets of
vertices such that every two vertices in a set are connected
by an edge. This is done for two reasons: (i) by definition
path-consistency considers a complete graph to decide sat-
isfiability of the corresponding constraint network, and (ii)
the common vertices between any two complete graphs in-
duce a complete graph, thus, the corresponding constraint
networks will completely agree on the constraints between
their common variables and the patchwork property can be
used. Patchwork is then applied to patch together the path-
consistent atomic QCNs that correspond to the graphs in-
duced by the clusters of the tree decomposition in a tree-like
manner and construct a satisfiable network.

In [11] the authors enlist a structure known as dtree (de-
composition tree), which, as the name suggests, is very close
to a tree decomposition. Without going further into de-
tail, a dtree is a full binary tree where the root represents
a given graph and for every non-leaf node, its two children
represent a partitioning of the parent graph into two sub-
graphs. Thus, although a dtree is not a tree decomposition,
it provides a way to construct a tree decomposition out of a
given graph. A dtree and a tree decomposition are therefore
equivalent in the context of qualitative reasoning, since omit-
ting path-consistency checks across children of dtree nodes
(as described in [11]) corresponds to omitting those checks
across clusters of the tree decomposition into which the dtree
is converted, as has been specifically pointed out in [7]. Sim-
ilarly to [7], children of dtree nodes are treated as cliques,
and patchwork is considered to patch together the path-
consistent atomic QCNs of either IA or RCC-8 in a tree-like
recursive manner and construct a satisfiable network.

The obersvant reader will note that it would be convenient
to operate directly on a tree decomposition (T,X) of a given
graph G, where X would be a collection of cliques. In this
context chordal graphs become relevant. Formally, a chordal
graph is defined as follows:

Definition 4 ([8]). Let G = (V,E) be an undirected
graph. G is chordal (or triangulated) if every cycle of length
greater than 3 has a chord, which is an edge connecting two
non-adjacent nodes of the cycle.

We then have the following proposition:

Proposition 2 ([8]). Graph G = (V,E) is chordal if
and only if it has a tree decomposition (T, {X1, . . . , Xn})
where cluster Xi is a clique of G for every i ∈ {1, . . . , n}.

For example, the graph presented in Figure 3, with the
dashed edges included, is chordal. Chordality checking can
be done in (linear) O(|V | + |E|) time for a given graph
G = (V,E) with the maximum cardinality search algorithm
which also constructs an elimination ordering ω as a byprod-
uct [27]. If a graph is not chordal, it can be made so by the
addition of fill edges. This process is usually called trian-
gulation of a given graph G = (V,E) and can run as fast
as in O(|V | + (|E

⋃
F (ω)|)) time, where F (ω) is the set of

fill edges that result by following the elimination ordering ω,
eliminating the nodes one by one, and connecting all nodes
in the neighborhood of each eliminated node, thus, making
it simplicial in the elimination graph. If the graph is already
chordal, following the elimination ordering ω means that no



fill edges are added, i.e., ω is actually a perfect elimination
ordering [8]. For example, a perfect elimination ordering for
the chordal graph shown in Figure 3 would be the ordering
0→ 1→ 2→ 3→ 4→ 7→ 5→ 6→ 9→ 8→ 10 of its set
of nodes. In general, it is desirable to achieve chordality with
as few fill edges as possible. However, obtaining an optimum
graph triangulation with the minimum number of fill edges
is known to be NP-hard [30]. As noted earlier, fill edges
correspond to the universal relation for a QCN. As such,
the chordal constraint graph of a given QCN is exactly its
constraint graph augmented with constraints corresponding
to the universal relation to make it chordal.

In the light of Propositions 1 and 2, research efforts fo-
cused on making the constraint graph of a given QCN chordal
and applying path-consistency on that chordal graph, while
fully utilizing maximal tractable subclasses of relations and
not just the class of base relations that was typically used
to only describe atomic networks. Towards this direction,
we have the works of Chmeiss et al. for IA [6] and Sioutis et
al. for RCC-8 [25]. These works were later combined in [2]
to give the following result which is the strongest yet con-
cerning path-consistency, patchwork, and maximal tractable
subclasses of relations:

Proposition 3 ([2]). For a given QCN N = (V,C)
of RCC-8, or IA, with relations from one of the maximal
tractable subclasses Ĥ8, C8, and Q8, or HIA resp., and for
G = (V,E) its chordal constraint graph, if ∀(i, j), (i, k), (j,
k) ∈ E we have that Cij ⊆ Cik �Ckj, then N is satisfiable.

Proposition 3 generalizes the results of all works that
were discussed earlier in this section and make use of path-
consistency as the main tool to check satisfiability, and has
a great effect in the efficiency and scalability of practical
reasoning. In particular, regarding native search, an algo-
rithm based on the work of [4] was devised, called partial
path-consistency [6], that performs path-consistency on the
chordal graph G = (V,E) of a given QCNN in O(δ|E|) time,
where δ is the maximum vertex degree of G. Partial path-
consistency is able to decide the satisfiability of N when it
comprises relations from some maximal tractable subclass of
relations. The search space for non-tractable QCNs was also

reduced to O(α|E|) from O(α|V |
2

) for a backtracking algo-
rithm [22], where α is the branching factor provided by some
maximal tractable subclass of relations (e.g., α = 1.4375 for

subclass Ĥ8 for RCC-8 [22]). Regarding approaches based on
encodings of QCNs into Boolean formulas, i.e., SAT-based
approaches, the implication of Proposition 3 led to signifi-
cant memory and speed improvements for both IA [29] and
RCC-8 [28] targeted implementations.

Before closing this section with another general and strong
result that concerns tree decompositions and patchwork,
let us introduce the treewidth of a graph. The width of a
tree decomposition (T, {X1, . . . , Xn}) is max

1≤i≤n
|Xi| − 1. The

treewidth of a graph G is the minimum width possible for
arbitrary tree decompositions of G.

Theorem 1 ([5,11]). For any k, the satisfiability prob-
lem for QCNs of IA and RCC-8 of treewidth at most k can
be solved in polynomial time.

An algorithm for Theorem 1 is provided both in [11] and
in [5]. (The algorithm in [5] is particular to RCC-8, but it
can be generalized to IA based on common properties.)
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4. PARTITIONING GRAPH
In this section we prove that the decomposition-based ap-

proach presented in [18] for checking the satisfiability of
QCNs of RCC-8 lacks soundness, as the notion of a parti-
tioning graph defined in that work is not coherent with the
use of patchwork upon which it solely relies, in two ways
which we enumerate and analyse in the form of issues.

Let G = (V,E) be an undirected graph and k a positive
integer. If U ⊆ V , then G(U) will denote the subgraph
of G that is induced by the set of vertices U . A set {Vi ⊆
V | 1 ≤ i ≤ k} with k pairwise-disjoint elements such that
k⋃

i=1

Vi = V , is called a k-way partitioning of G. Finally,

let ∅ denote the empty, edgeless, graph. We now recall the
definition of a partitioning graph from [18] as follows:

Definition 5 ([18]). Let G = (V,E) be a graph and
{V1, . . . , Vk} a k-way partitioning of G for some positive in-
teger k. A partitioning graph P of G is an undirected graph
(VP , EP , λP , GP ), where VP = {v1, . . . , vk} is the set of its
nodes, Ep the set of its edges, λP : VP → 2V a function
that maps each node of P to a partition (subset of V ) of G,
and GP a set of k subgraphs (parts) of G . The following
conditions must be satisfied:
• If Gi ∈ GP then the set of vertices of Gi is a superset
U of λP (vi) and the set of its edges is E(G(U)).
• Any edge in G should be present in at least one sub-

graph Gi ∈ GP .
• Edge (vi, vj) ∈ EP if and only if Gi ∩ Gj 6= ∅ (i.e., if

and only if Gi and Gj share a common edge).

We now enumerate the issues that lead to non-soundness
and provide counter-examples for each case.

Issue 1.
The first issue has to do with the fact that a complete

agreement on the constraints between the common variables
of two networks is not achieved in order to allow the appli-
cability of patchwork. Let us consider the example of Fig-
ure 4. Graph G is partitioned into two parts, namely, G1

and G2. The partitioning graph is shown in the lower part
of the figure, and it comprises the set of nodes {a, b} and
an empty set of edges. Node a corresponds to subgraph G1

and node b to subgraph G2. Its set of edges EP is empty
as subgraphs G1 and G2 do not share a common edge, thus,
the only possible edge (a, b) does not exist. In [18] the au-
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thors perform path-consistency on the subgraphs of a graph
separately, in a parallel fashion, and then rely on the set of
edges EP to identify the subgraphs among which a complete
agreement has to be ensured (the reader is kindly asked to
refer to line 7 in the function of Algorithm 2 in [18]). If,
as in this example, such an edge does not exist, a complete
agreement is never achieved. This can be the cause of failing
to identify inconsistencies. Let us assume that graph G, as
depicted in Figure 4, is the constraint graph of a given QCN
comprising constraints C01 = C12 = C23 = C30 = {TPP}.
This yields an inconsistent network, as it basically infers that
region 0 is properly contained in region 2, and vice versa.
Applying path-consistency on that network would result in
the empty relation assignment for constraint C02 (inconsis-
tency). However, that constraint is never checked in our ex-
ample. Although the authors implicitly complete subgraphs
G1 and G2 in order to apply path-consistency, they do not
complete these subgraphs when computing their intersection
as specified in the last bullet of Definition 5. Even if they
did implicitly consider complete subgraphs for that part of
the definition, and edge (a, b) indeed existed, line 7 in the
function of Algorithm 2 in [18] still requires that an agree-
ment should be achieved for every common edge of G1 and
G2 (the initial non-complete subgraphs), which is none. If
they implicitly considered complete subgraphs for that part
of the algorithm too, then this particular issue for a 2-way
partitioning would be resolved. We have also verified this
issue experimentally with the implementation used in [18].

Before proceeding to the next issue, let us assume that the
first issue is fixed with everything that we propose, and a
2-way partitioning is actually valid for applying patchwork.
We mean to show, that the concept of a partitioning graph is
beyond repair, unless it is structured in a way that it defines
a tree decomposition, which beats the purpose of having to
define a partitioning graph in the first place.

Issue 2.
This issue has to do with the fact that even if the first

issue is resolved, the partitioning graph can suffer from the
existence of cycles that are created by subgraphs of a given
graph. Let us consider the example of Figure 5. Graph G
is partitioned into four parts, namely, G1, G2, G3, and G4.

The partitioning graph is shown in the lower part of the fig-
ure, and the correspondance of its sets of nodes and edges
with the different subgraphs should be clear up to this point.
Note that all subgraphs are complete, thus, they completely
overlap with each other on the common vertices. For ex-
ample, graph G1 completely overlaps with graph G2 on the
edges of the graph defined on the single common vertex 0,
as their intersection yields the complete graph on singe ver-
tex 0. Although such an overlap is trivial, as a complete
graph on a single vertex (singleton graph) does not have
any edges, it is sufficient to ensure the applicability of patch-
work. (Our example can be easily extended to non-trivial
overlaps.) However, due to the last bullet of Definition 5,
the partitioning graph is unable to obtain any edges. In
fact, even if such edges existed in EP , in any possible com-
bination or amount, the partitioning graph would still fail to
capture/break the cycle that is constructed by the complete
subgraphs G1, G2, G3, and G4, namely, the cycle defined by
vertices 0, 1, 2, and 3. This cycle, as shown in the example
of Figure 4, can harbor an inconsistency. Such a cycle exists
also between vertices 3, 4, 5, and 7 in [18, Fig. 1]. Patchwork
alone is only valid for tree decompositions, as they guaran-
tee acyclicity of the graphs induced by their clusters and,
thus, do not harbor cycles with inconsistencies that cannot
be detected by applying path-consistency on the clusters.

From the aforementioned issues we infer the following fact:

Proposition 4. The approach presented in [18] for check-
ing the satisfiability of a QCN of RCC-8 lacks soundness.

Essentially, the approach defines a partial algorithm; a
given satisfiable QCN will be shown to be satisfiable, as the
approach in [18] due to disregarding constraints operates on
a less restrictive constraint graph of the input network where
constraint propagation and consistency checks are limited,
whilst an unsatisfiable QCN may be shown to be satisfiable.

4.1 Impact on Performance
The main contribution of [18] lies in the performance of

its offered implementation, as it promises efficiency that goes
well beyond the state-of-the-art. Computing a k-way parti-
tioning alone is among the graph partitioning problems that
fall under the category of NP-hard problems [9], and solu-
tions to these problems are generally derived using heuris-
tics and approximation algorithms, such as the ones offered
by the METIS5 software employed in [18]. We leave aside
any extra computational complexity that would result from
needing to restrict a partitioning graph to being a tree de-
composition (e.g., by identifying cycles or using some recur-
sion as in [11]), and focus on native search. As explained in
Section 3, native search in qualitative spatial and temporal
reasoning is bound to the number of constraints in a given
QCN, and not to its number of variables as in “traditional”
constraint programming. This is because, in a sense, the
constraints in a given QCN are the true variables for which
we have to assign some relation. Indeed, the search space
defined in [18] relies mainly on the number of constraints in
a given QCN. As a result, the implementation in that paper
benefited from a reduced search space with respect to the one
that should be considered, as we showed earlier that some
constraints can be disregarded. However, even in that case,
a re-evaluation of the implementation used in [18] against

5http://glaros.dtc.umn.edu/gkhome/views/metis

http://glaros.dtc.umn.edu/gkhome/views/metis


state-of-the-art solvers showed that it performs very poorly
with respect to the state-of-the-art [23]. Work in [23] does
not deal with any of the issues that we dealt with in this pa-
per as it assumes a partitioning graph to implicitly define a
tree decomposition, thus, [23] presents mostly lower bounds
on the performance of the implementation used in [18].

5. DISCUSSION
To conclude, we showed that the decomposition-based ap-

proach presented in [18] for checking the satisfiability of
QCNs of RCC-8 lacks soundness, as the notion of a parti-
tioning graph defined in that work is not coherent with the
use of patchwork upon which it solely relies. Further, we
showed how that notion is beyond repair, unless it is re-
formulated to define a tree decomposition, implicitly or ex-
plicitly, and discussed the impact of these observations on
the performance of the offered implementation in [18], which
was already found to be poor in [23].

We think that future efforts regarding decomposition-based
approaches utilizing parallelism, such as the approach at-
tempted in [18], should rely on chordal graphs (tree decom-
positions into cliques), which can both be constructed and
also yield a natural tree decomposition of their cliques in
linear time [8]. The cliques can then be collected at no ex-
tra cost and parallelism might be efficiently utilized. It is
an issue that looks promising and calls for further research.
Recent work suggests that for the type of networks consid-
ered in [18], even parallelism itself can be utilized cost-free
with a simple, yet powerful, approach as presented in [26].
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