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Abstract
We propose a new algorithm called DPC+ to en-
force partial path consistency (PPC) on qualitative
constraint networks. PPC restricts path consistency
(PC) to a triangulation of the underlying constraint
graph of a network. As PPC retains the sparseness
of a constraint graph, it can make reasoning tasks
such as consistency checking and minimal labelling
of large qualitative constraint networks much eas-
ier to tackle than PC. For qualitative constraint
networks defined over any distributive subalgebra
of well-known spatio-temporal calculi, such as the
Region Connection Calculus and the Interval Al-
gebra, we show that DPC+ can achieve PPC very
fast. Indeed, the algorithm enforces PPC on a qual-
itative constraint network by processing each trian-
gle in a triangulation of its underlying constraint
graph at most three times. Our experiments demon-
strate significant improvements of DPC+ over the
state-of-the-art PPC enforcing algorithm.

1 Introduction
One of the major concerns in AI is dealing with spatio-
temporal information, which is involved in many AI applica-
tions, such as automatic data maintenance and visualization
in Geographic Information Systems (e.g., [Wallgrün, 2012]),
robotic navigation (e.g., [Wolter, 2008]), and computer-aided
design (e.g., [Bhatt et al., 2009]). Qualitative Spatial and
Temporal Reasoning (QSTR) is devoted to processing such
kind of information correctly and efficiently. In particular, the
techniques in QSTR focus on finding ways to efficiently solve
several fundamental reasoning problems, such as the consis-
tency problem, the minimal labelling problem, and the redun-
dancy problem. The consistency problem asks if a constraint
network has a solution. The minimal labelling problem re-
quests the strongest implied relations in a constraint network,
i.e., the implied relations comprising only tuples that partic-
ipate in a solution of the network. The redundancy problem
[Li et al., 2015] is a newly studied problem in QSTR that
aims to simplify the representation of a constraint network by
removing its redundant constraints, i.e., the constraints that
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can be entailed by the rest of the network. We refer to [Cohn
and Renz, 2008] for more information regarding fundamental
reasoning problems in QSTR.

Path consistency (PC) is an important local consistency
condition for constraint networks. Given a constraint network
N , PC can be established in N by applying the path consis-
tency algorithm (PC)1 in [Montanari, 1974; van Beek, 1989],
which makes all pairs of variables path consistent with any
third variable in N by considering the completion of the un-
derlying constraint graph of N . It has long been known that
PC can decide the consistency of maximal tractable subalge-
bras of several very important qualitative spatial and temporal
calculi. Recently, PC became more useful as it was shown to
be able to solve the minimal labelling problem and decisively
assist in solving the redundancy problem of any distributive
subalgebra of several well-known calculi. A subalgebra is
called distributive if (weak) composition distributes over non-
empty intersections of its relations. The concept of distribu-
tive subalgebras was recently proposed in [Li et al., 2015]
and further discussed in [Long and Li, 2015]; some previous
related work identified certain subalgebras to be distributive
as well (cf. [van Beek and Cohen, 1990]).

With the expansion of the internet, the age of Big Data has
arrived. Without emphasis on scalability, the current tech-
niques in QSTR have become less suitable to deal with the
situation where tens of thousands or even millions of spa-
tiotemporal objects are involved. For example, PC has a
time complexity of O(n3), which already makes it hardly
scalable for large real-world datasets with even less than a
few thousands of variables. In the past few years, research
in QSTR has focused on trying to deal with this situation.
In particular, Chmeiss and Condotta [2011] and Sioutis and
Koubarakis [2012] adopted the partial path consistency al-
gorithm (PPC) [Bliek and Sam-Haroud, 1999], as a substi-
tute for the original path consistency algorithm PC, for some
fundamental reasoning tasks of certain qualitative spatial and
temporal calculi. Given a constraint network N , PPC en-
forces partial path consistency (PPC) on N , which is PC re-
stricted to a triangulation of the underlying constraint graph
ofN . As such, PPC can exploit the sparseness of a constraint
graph, in contrast to PC, and therefore be more efficient than

1In what follows, we use bold sans serif font to denote an algo-
rithm name (e.g., the PC enforcing algorithm is denoted by PC).



PC, especially when dealing with large and sparsely struc-
tured qualitative constraint networks. Note that when the re-
sult of a triangulation for a given constraint network N is a
complete graph, PPC will enforce PC on N . Further, it was
shown by Sioutis et al. [2015b] and Long and Li [2015] that
PPC can have the same reasoning power as PC on the com-
mon edges between a triangulation and the completion of the
underlying constraint graph of N . In particular, if N is de-
fined over some distributive subalgebra, the relations on these
edges will be minimal after enforcing PPC w.r.t. a triangula-
tion onN , as would be the case with PC. This kind of hybrid
restrictions on both the structure of the constraint graph and
the allowed relations have also been discussed in the context
of constraint satisfaction problems to identify tractable sub-
classes (see [Cohen et al., 2012]). PPC can also be helpful to
efficiently identify the same set of non-redundant constraints
inN as PC, by only considering the relations on these edges.

In addition, there is a parallel research stream in the
field of the Simple Temporal Problem (STP). Xu and
Choueiry [2003] realized that the STP has convexity prop-
erties analogous to those of convex CSPs and, thus, imple-
mented a particular PPC enforcing algorithm for the STP,
much like PPC, which was originally implemented for con-
vex CSPs [Bliek and Sam-Haroud, 1999]. Later, Planken et
al. [2008] noticed that the algorithm of Xu and Choueiry is
not very efficient, as it is sometimes quadratic in the num-
ber of triangles in a triangulation of the underlying con-
straint graph of a given STP instance, which is also the
case with PPC for CSPs and qualitative constraint networks.
Therefore, based on an algorithm developed by Dechter et
al. [1991], viz., the directional path consistency algorithm
(DPC), Planken et al. proposed a new PPC enforcing algo-
rithm, called P3C, which has a worst-case time complexity
that is linear in the aforementioned number of triangles.

It is then natural to ask if there is a similar algorithm to
P3C for qualitative spatial and temporal calculi, as it would
be quite useful for solving the associated reasoning tasks
more efficiently, especially when large and sparsely struc-
tured qualitative constraint networks were involved. Our con-
tributions with respect to answering that question are as fol-
lows. We develop a similar algorithm to P3C, called DPC+,
and prove that it can correctly enforce PPC on a qualitative
constraint network that is defined over some distributive sub-
algebra. DPC+ can achieve PPC (and PC when a complete
graph is used as the result of a triangulation) by processing
each triangle in a triangulation of the underlying constraint
graph of a given qualitative constraint network no more than
three times. As PPC (and PC) in general process each such
triangle many more times than that, we show that DPC+ is
more efficient than PPC (and PC) in theory. Our experimen-
tal results with both real-world and synthetic datasets also
confirm in practice that DPC+ can be significantly more ef-
ficient than PPC (and PC).

The remainder of the paper is organized as follows. After
introducing some related concepts and results in Sections 2
and 3 respectively, we present and analyse our new algorithm
for achieving PPC in Section 4, and experimentally illustrate
its efficiency in Section 5. Section 6 concludes the paper.

2 Preliminaries
A binary relation is a set of ordered pairs of entities. Suppose
U is a domain of spatial or temporal entities. We write Rel(U)
for the Boolean algebra of binary relations on U . A qualita-
tive calculus [Ligozat and Renz, 2004]M on U is defined as
a finite Boolean subalgebra of Rel(U) that has an atom corre-
sponding to the identity relation idU on U , and that is closed
under converse, i.e., R is inM iff its converse

R−1 = {(a, b) ∈ U × U : (b, a) ∈ R}
is inM. The basic relations in a qualitative calculusM are
the atoms in M, which form a partition of U × U . In what
follows, we denote the set of basic relations by B. A relation
R inM is a subset of B, i.e., an element of 2B. Specifically,
the set of all basic relations in M is the universal relation,
denoted by ?. For example, PA has the basic relations <, >,
and =, and the universal relation ? in PA is {<,>,=}.

In this paper, we are interested in the six well-known quali-
tative calculi of Point Algebra (PA) [Vilain and Kautz, 1986],
Interval Algebra (IA) [Allen, 1983], Cardinal Relation Alge-
bra (CRA) [Frank, 1991; Ligozat, 1998], Block Algebra (BA)
[Balbiani et al., 2002], and two instances of the Region Con-
nection Calculus (RCC5/8) [Randell et al., 1992].

Let ◦ denote the usual composition of relations, i.e., R ◦
S = {(x, y) : ∃z s.t. (x, z) ∈ R ∧ (z, y) ∈ S}. The weak
composition of two basic relations α and β, denoted by α � β,
is defined as {γ ∈ B : γ ∩ (α ◦ β) 6= ∅}. When the relations
are not basic, we have R � S =

⋃
{α � β : α ∈ R, β ∈ S}.

A constraint (xRy) associates a relation Rij ∈ 2B with
the pair of variables (x, y). For example, for two time point
variables t1 and t2, t1 < t2 suggests that any assignment to
t1 and t2 respectively should satisfy relation <.

Definition 1. A qualitative constraint network (QCN) over
a qualitative calculus M is a tuple (V, C), where V =
{v1, . . . , vn} is a non-empty finite set of variables and C is
a set of constraints for each pair (vi, vj) of V × V .

In this paper, we require that the relations between vari-
ables in a QCN are symmetric, i.e., Rij = R−1ji , and Rii =

idU for all vi, vj ∈ V . A subnetwork N ′ = (V ′, C′) of
N = (V, C) is a network such that V ′ = V and ∀vi, vj ∈ V
we have R′ij ⊆ Rij , where R′ij is a relation in C′ and Rij a
relation in C.

The (underlying) constraint graph of a QCN N , denoted
by GN , is a graph that has the variables of N as its set of
vertices, and a set of edges, denoted by E(GN ), that contains
an edge {vi, vj} iff Rij 6= ? and vi 6= vj .

In graph theory, there is a special family of undirected
graphs, called the triangulated or chordal graphs. An undi-
rected graph G = (V,E) is chordal if every cycle of length
greater than 3 has a chord, i.e., an edge connecting two non-
consecutive vertices of the cycle [Blair and Peyton, 1993].
Note that a complete graph of any order is also a chordal
graph. For each v ∈ V , the adjacency set adj(v) is defined as
{w ∈ V : {v, w} ∈ E}. A vertex v is simplicial if adj(v) in-
duces a complete graph. Every chordal graph has a simplicial
vertex. Moreover, after removing a simplicial vertex and its
incident edges from a chordal graph, the resulting subgraph
remains chordal. The order in which simplicial vertices of se-



quential subgraphs are successively removed is called a per-
fect elimination ordering. Suppose that (vn, vn−1, . . . , v1) is
a perfect elimination ordering of G, then we will denote by
Fk the set {vj : {vj , vk} ∈ E ∧ j < k}. Note that the sub-
graph induced by Fk is a complete subgraph of G.

Let M be a qualitative calculus. A subalgebra S of M
contains all basic relations and a subset of non-basic relations
inM, and is closed under converse, weak composition, and
intersection. The concept of a distributive subalgebra, first
proposed in [Li et al., 2015] and further discussed in [Long
and Li, 2015], turns out to be useful for developing efficient
algorithms to accomplish reasoning tasks such as deciding
the consistency or solving the minimal labelling problem of a
given qualitative constraint network.
Definition 2. A subalgebra S ofM is distributive ifR� (S∩
T ) = (R �S)∩ (R �T ) and (S ∩T )�R = (S �R)∩ (T �R)
for any R,S, T ∈ S with S ∩ T 6= ∅.

Throughout the paper, we consider the calculi of PA, IA,
RCC5/8, CRA, and BA, and the term “distributive subalge-
bra” specifically refers to a distributive subalgebra of one of
these calculi. WhenM is one of these calculi, it satisfies the
following property [Dylla et al., 2013; Düntsch, 2005].

M is a relation algebra. (1)

The Peircean Law (also known as the Cycle Law) [Dylla et
al., 2013; Long and Li, 2015] holds for relation algebras.
Fact 1. For relations R,S, T of a relation algebra, the
Peircean Law requires that

(R � S) ∩ T 6= ∅⇔ (R−1 � T ) ∩ S 6= ∅
⇔ (T � S−1) ∩R 6= ∅.

Distributive subalgebras also have a useful property that is
closely related to the well-known Helly’s Theorem [Danzer
et al., 1963].
Definition 3. A subclass S of a qualitative calculus is called
Helly if, for any finite n relations R1, . . . , Rn ∈ S, we have

n⋂
i=1

Ri 6= ∅ iff (∀1 ≤ i 6= j ≤ n) Ri ∩Rj 6= ∅.

Theorem 2 ([Long and Li, 2015]). Suppose M is a qual-
itative calculus that is also a relation algebra. Let S be a
subalgebra ofM. Then S is distributive iff it is Helly.

With this property, to check if a set of relations have a non-
empty intersection, one only needs to check if the intersection
of each pair of relations from that set is non-empty.

3 Properties of PC and PPC
Path consistency is an important local consistency condition
for several reasoning problems of CSPs. In the context of
qualitative spatial and temporal calculi, the usual composition
is replaced with weak composition. We have the following
definition of path consistency regarding QCNs:
Definition 4. A QCN N = (V, C) is path consistent (PC) iff
∀vi, vk, vj ∈ V we have that Rij ⊆ Rik � Rkj .

Path consistency concerns all triples of variables. This
could be an overkill for many reasoning tasks. The idea of

enforcing path consistency on a triangulation of the constraint
graph of a given CSP was first proposed by Bliek and Sam-
Haroud [1999] through the partial path consistency algorithm
(PPC). Later, Chmeiss and Condotta [2011] and Sioutis and
Koubarakis [2012] adopted PPC for IA and RCC8 respec-
tively, and Amaneddine et al. [2013] and Long and Li [2015]
further extended this idea to all of the calculi discussed here.
Definition 5. A QCN N = (V, C) is partially path consis-
tent (PPC) w.r.t. a graph G = (V,E) iff ∀{vi, vj}, {vi, vk},
{vk, vj} ∈ E we have that Rij ⊆ Rik � Rkj .

Note that PPC is the same as PC when the graph G in the
definition of PPC is complete. In this paper, every considered
calculus also satisfies the following property:

Every atomic QCN overM that is PC is satisfiable. (2)

For a calculus with Properties (1) and (2), PPC has the same
reasoning power as PC on the common edges between a tri-
angulation and the completion of the constraint graph of a
qualitative constraint network that is defined over a distribu-
tive subalgebra, in the following sense.
Proposition 3 ([Sioutis et al., 2015b; Long and Li, 2015]).
Let N = (V, C) be a QCN that is defined over a distribu-
tive subalgebra of a qualitative calculus that satisfies (1) and
(2), and G = (V,E) a chordal graph such that GN ⊆ G.
Then, enforcing PPC w.r.t. G on N decides the consistency
of N , and results in the same labelling of the relations that
correspond to the edges of G as enforcing PC.

We say that N is minimal if for each constraint (xRy) in
N , R is the minimal (or strongest) relation between x and y
that is entailed by N , where (xRy) is entailed by N if every
solution of N satisfies (xRy).
Theorem 4 ([Long and Li, 2015; Li et al., 2015]). Let S be a
distributive subalgebra of a qualitative calculus that satisfies
(1) and (2). Then every path consistent QCN that is defined
over S is minimal.

The last two results show that given a QCN that is defined
over a distributive subalgebra, enforcing PPC on it is able to
make the relations corresponding to the edges of a triangula-
tion of its constraint graph become minimal.

PC and PPC are also useful with regard to the redundancy
problem. A constraint (xRy) in a QCN N is redundant if
N \ {(xRy)} entails (xRy).
Definition 6. A QCN = (V, C) is all-different if ∀vi 6= vj ∈
V , N does not entail (viidUvj).

The following result regarding the redundancy problem
was first shown for RCC5/8, but applies to any of the calculi
considered here (cf. [Sioutis et al., 2015b, Appendix]).
Theorem 5 ([Sioutis et al., 2015b]). Let N = (V, C) be a
satisfiable all-different QCN that is defined over a distributive
subalgebra satisfying (1) and (2), and G = (V,E) a chordal
graph such that GN ⊆ G. Then, if N is PPC w.r.t. G, a
constraint (viRijvj) is non-redundant in the PC subnetwork
of N if and only if we have that {vi, vj} ∈ E and Rij 6=⋂
{Rik � Rkj : {vi, vk}, {vk, vj} ∈ E}.
Note that whenG is a complete graph, this result falls back

to the case where N is PC, as discussed in [Li et al., 2015].



Algorithm 1: DPC(N ,α)
Input: A QCN N = (V, C) with n variables, and an

ordering α = (vn, . . . , v1) of V .
Output: True or False, a graph G = (V,E), and an

updated N .

1 G← (V,E ← E(GN ));
2 for vk from vn to v1 do
3 Fk ← {vs : {vs, vk} ∈ E ∧ s < k};
4 foreach vi, vj ∈ Fk with i < j do
5 if {vi, vj} 6∈ E then
6 E ← E ∪ {{vi, vj}};
7 temp← Rij ∩ (Rik � Rkj);
8 if temp ⊂ Rij then
9 Rij ← temp;

10 Rji← temp−1;
11 if Rij = ∅ then
12 return (False,G,N );
13 return (True,G,N );

Because of these observations, it is clear that PC and PPC
are quite useful in solving various reasoning tasks. It is then
reasonable and important to develop an algorithm that can
achieve PC or PPC as efficiently as possible.

4 New Algorithm for PPC
In this section, we show how to enforce PC or PPC on a
QCN that is defined over a distributive subalgebra in an effi-
cient manner. Before introducing our algorithm, we first take
a look at a weaker local consistency condition that is, never-
theless, sufficient to decide the consistency of such a QCN.

4.1 Directional Path Consistency
Directional path consistency is another important local con-
sistency condition, which can be used for deciding the consis-
tency of a QCN that is defined over a distributive subalgebra.
It was first proposed in the context of the Simple Temporal
Problem (STP; [Dechter et al., 1991]).
Definition 7. A QCN N = (V, C) is directionally path con-
sistent (DPC) with respect to an ordering of its variables
α = (v1, . . . , vn) iff for all vi, vk, vj ∈ V with i, j < k
we have that Rij ⊆ Rik � Rkj .

As noted, DPC is already sufficient to decide the consis-
tency of a QCN that is defined over a distributive subalgebra.
Proposition 6 ([Sioutis et al., 2016]). Let N = (V, C) be a
QCN that is defined over a distributive subalgebra of a qual-
itative calculus that satisfies (1) and (2). Then, if N is DPC
with respect to an ordering of its variables and does not con-
tain an empty relation, N is satisfiable.

DPC (Algorithm 1) achieves DPC by using the idea of
variable elimination [Sioutis et al., 2016]. It iterates vari-
ables with respect to an ordering, and propagates the con-
strainedness of the constraints involving a variable vk, to the
constraints involving only subsequent variables in the order-
ing, with the update rule Rij ← Rij ∩ (Rik � Rkj). This
is as if the variable vk is “eliminated” from the QCN. As a
by-product, DPC also triangulates the constraint graph of a

Algorithm 2: DPC+(N , α)

Input: A QCN N = (V, C) with n variables, and an
ordering α = (vn, . . . , v1) of V .

Output: True or False, a graph G = (V,E), and an
updated N .

1 (result,G,N )← DPC(N ,α);
2 if result = False then
3 return (False,G,N );
4 for vk from v1 to vn do
5 foreach vi s.t. i < k and {vi, vk} ∈ E(G) do
6 Fk ← {vj : {vj , vk} ∈ E(GN ) ∧ j < k};
7 Rik ←

⋂
vj∈Fk

Rij � Rjk;
8 Rki ← R−1ik ;
9 return (True,G,N );

QCN and produces a chordal graph G that has the ordering α
as a perfect elimination ordering.
Theorem 7 ([Sioutis et al., 2016]). Let N = (V, C) be a
QCN that is defined over a distributive subalgebra of a qual-
itative calculus satisfying (1) and (2), and α = (vn, . . . , v1)
an ordering of V . Then, DPC returns (True, G,N ′) if and
only if N is satisfiable, where G is a chordal graph such that
GN ⊆ G and α is a perfect elimination ordering of it, and
N ′ is the DPC w.r.t. α subnetwork of N .

4.2 The New Algorithm DPC+
Although enforcing DPC is efficient, it is not guaranteed to
achieve PPC or PC and, thus, cannot solve the minimal la-
belling problem or assist in solving the redundancy problem
of a given QCN. We hereby propose a new algorithm that
achieves PPC (and PC with a simple modification) by build-
ing on the DPC enforcing algorithm DPC. Given a QCN N
and an ordering α = (vn, . . . , v1) of its variables, we first
enforce DPC w.r.t. α on N using DPC. Then, we update
relations by iterating the variables in reverse order. In par-
ticular, for a variable vk (k is from 1 to n), we consider the
set Fk of variables that are adjacent to vk and preceded by
vk in α. The relation between each vi ∈ Fk and vk is up-
dated with

⋂
vj∈Fk

Rij � Rjk. The detailed steps are shown
in Algorithm 2. We call this new algorithm DPC+.

The following theorem shows that DPC+ establishes PPC
in a satisfiable QCN that is defined over a distributive subal-
gebra. Note that if we replace the graph G in line 1 with the
complete graph of the same order, DPC+ will achieve PC.
Theorem 8. LetN = (V, C) be a QCN that is defined over a
distributive subalgebra of a qualitative calculus that satisfies
(1) and (2), and α = (vn, . . . , v1) an ordering of V . Then,
DPC+ returns (True, G,N ′) if and only if N is satisfiable,
where G is a chordal graph such that GN ⊆ G and α is a
perfect elimination ordering of it, and N ′ is the PPC w.r.t. G
subnetwork of N .

Proof. After calling DPC in line 1, N becomes DPC w.r.t.
α and we get a chordal graph G such that GN ⊆G and α is a
perfect elimination ordering of it. In what follows, we denote
by N (0) the DPC network before applying the next steps of
DPC+ and by N the updated network obtained afterwards.



Suppose thatNk is the partial network of the updatedN re-
stricted to variables {vk, vk−1, . . . , v1}, i.e., the updated par-
tial network after considering {vk, vk−1, . . . , v1} in the for
loop in line 4 of DPC+. Note that Nn = N . It suffices to
show that Nk is PPC given that Nk−1 is PPC. To this end,
we only need to consider Fk and show that ∀vi, vj ∈ Fk, we
have Rik 6= ∅, Rij ⊆ Rik � Rkj , and Rik ⊆ Rij � Rjk.

To simplify our proof, we first adjust the updating rule in
line 7 of DPC+ from Rik ←

⋂
vj∈Fk

Rij � Rjk to Rik ←⋂
vj∈Fk

Rij � R(0)
jk , whereR(0)

jk is the relation between vj and
vk in the original DPC network, viz., N (0). We denote the
adjusted algorithm by DPC+∗. We will first prove that the
conclusion holds for DPC+∗.

We first show that Rik 6= ∅ for all vi ∈ Fk. Note that
∀vj , vj′ ∈ Fk, by DPC of N (0), we have Rjj′ ⊆ R

(0)
jj′ ⊆

R
(0)
jk � R

(0)
kj′ . By DPC of Nk−1, we have Rjj′ ⊆ Rji � Rij′ .

Therefore, ∅ 6= Rjj′ ⊆ R
(0)
jk � R

(0)
kj′ ∩ Rji � Rij′ . By the

Peircean Law, we have (Rij � R(0)
jk ) ∩ (Rij′ � R(0)

j′k) 6= ∅.
According to the Helly property of distributive subalgebras,
we have Rik =

⋂
vj∈Fk

Rij � R(0)
jk 6= ∅.

Next, we show that Rij ⊆ Rik � Rkj . Note that as Rjk =⋂
vj′′∈Fk

Rjj′′ � R(0)
j′′k, we have

Rik � Rkj = (
⋂

vj′∈Fk

Rij′ � R(0)
j′k) � (

⋂
vj′′∈Fk

R
(0)
kj′′ � Rj′′j).

By distribution of weak composition, we have

Rik � Rkj =
⋂

vj′∈Fk

⋂
vj′′∈Fk

Rij′ � R(0)
j′k � R

(0)
kj′′ � Rj′′j .

As N (0) is DPC, we have Rj′j′′ ⊆ R
(0)
j′j′′ ⊆ R

(0)
j′k � R

(0)
kj′′ ,

and as Nk−1 is PPC, we have Rij ⊆ Rij′ � Rj′j′′ � Rj′′j .
ThereforeRij ⊆ Rij′ � R(0)

j′k � R
(0)
kj′′ � Rj′′j , ∀vj′ , vj′′ ∈ Fk,

and hence Rij ⊆ Rik � Rkj .
Next, we show that Rik ⊆ Rij � Rjk. In fact,

Rik =
⋂

vj′∈Fk

Rij′ � R(0)
j′k ⊆

⋂
vj′∈Fk

Rij � Rjj′ � R(0)
j′k

=Rij � (
⋂

vj′∈Fk

Rjj′ � R(0)
j′k) = Rij � Rjk.

Since vj is arbitrary in Fk and Rj′k ⊆ R(0)
j′k, we also have

Rik =
⋂

vj′∈Fk

Rij′ � R(0)
j′k =

⋂
vj′∈Fk

Rij′ � Rj′k. (3)

Therefore, under the updating rule of DPC+∗, we have
that Nk is PPC if Nk−1 is PPC and, thus, DPC+∗ enforces
PPC on N . Regarding DPC+, its updating rule will up-
date the first Rik by using relations in Nk−1 and N (0), and
then update the following Ri′k by using the updated Rik, and
so on. By induction, we can prove that each updated Rik

is stronger than R(0)
ik and weaker than

⋂
vj′∈Fk

Rij′ � R∗j′k,
where R∗j′k is obtained by DPC+∗. By (3), the relations ob-
tained by DPC+ are the same as those obtained by DPC+∗.

As DPC+∗ enforces PPC on N , we have that DPC+ also
enforces PPC on N .

4.3 Analysis of the DPC+ Algorithm
As an adaptation of the P3C algorithm in [Planken et al.,
2008] to qualitative spatial and temporal calculi, the DPC+
algorithm only needs to update each triangle in a graph at
most three times. This means that the time complexity of
DPC+ is linear in the number of triangles t in the graph, if
we assume that t dominates the number of vertices and edges.
Theorem 9. Let N = (V, C) be a QCN, and α =
(vn, . . . , v1) an ordering of V . Then, DPC+ returns
(True, G,N ′) in Θ(t+ |V |+ |E|) time whenN is satisfiable,
where G = (V,E) is a chordal graph such that GN ⊆ G,
and t is the number of triangles in G.

Proof. The DPC algorithm considers each triangle in G ex-
actly once. For each {vi, vk} ∈ E such that i < k, lines 6–8
in DPC+ will consider all the triangles involving vi and vk
once. Therefore, each triangle {vi, vj , vk} such that i, j < k
and {vi, vk}, {vj , vk} ∈ E will be considered at most twice
and, as such, by iterating vk from v1 to vn, every triangle
in the graph will be considered at most twice. Note that as
DPC+ needs to scan through the vertices and edges, DPC+
runs in Θ(t+ |V |+ |E|) time when N is satisfiable.

In terms of the maximum vertex degree ∆ of G, with the
above analysis, it is easy to see that DPC+ has a time com-
plexity of O(n∆2), where n is the number of variables.

While DPC+ only needs to check each triangle in a graph
at most three times, the state-of-the-art PPC enforcing algo-
rithm PPC usually requires to check each such triangle many
more times than that (e.g., as many times as 3|B|). This is also
the case with the PC enforcing algorithm PC, since when a
complete graph is used as the result of a triangulation, PPC
falls back to PC. Therefore, we expect DPC+ to be more
efficient than PPC and PC. Indeed, as shown in the follow-
ing section, for large and sparsely structured networks, the
advantage of DPC+ over PPC (and PC) is very significant.

5 Experimental Results
We evaluate the performance of our implementation of the
DPC+ algorithm, against an implementation of the state-of-
the-art PPC enforcing algorithm (PPC), for QCNs that are
defined over a distributive subalgebra. We also employ an im-
plementation of the state-of-the-art DPC enforcing algorithm
(DPC) to pinpoint the overhead that DPC+ adds to DPC.

Technical Specifications. The experimentation was car-
ried out on a computer with an Intel Core i7-2820QM proces-
sor with a 2.30 GHz frequency per CPU core, 8 GB of RAM,
and the Trusty Tahr x86 64 OS. All algorithms were coded
in Python and run with PyPy 2.2.1 [pyp, ], which implements
Python 2.7. Only one CPU core was used.

Datasets and Measures. We considered random RCC8
networks generated by the BA(n,m) model [Barabasi and
Albert, 1999], the use of which in qualitative constraint-based
spatial and temporal reasoning is well motivated in [Sioutis et
al., 2015a], and real-world RCC8 datasets that have been re-
cently used in [Sioutis et al., 2015b; Li et al., 2015]



In particular, we used the BA(n,m) model to create ran-
dom scale-free graphs as the constraint graphs of the RCC8
QCNs. We considered 10 satisfiable RCC8 networks of
model BA(n,m) for each order 1000 ≤ n ≤ 10000 of their
constraint graphs with a 1000-vertex step and a preferential
attachment value of m = 2. The edges of these graphs were
labelled with relations from the maximal distributive subclass
D64

8 of RCC8 [Li et al., 2015]. Regarding real-world RCC8
datasets, we employed the ones recently used in [Sioutis et
al., 2015b; Li et al., 2015], viz., nuts (nomenclature of ter-
ritorial units)2 with 2 235/3 176 variables/constraints (by con-
straints we mean non-universal relations), adm1 (administra-
tive geography of Great Britain) [Goodwin et al., 2008] with
11 762/44 832 variables/constraints, gadm1 (German admin-
istrative units)2 with 42 749/159 600 variables/constraints,
gadm2 (the world’s administrative areas) [gad, 2012] with
276 729/589 573 variables/constraints, adm2 (the admin-
istrative geography of Greece)2 with 1 732 999/5 236 270
variables/constraints, fprints (geographic “footprints” in
the Southampton area of the UK) [Li et al., 2015] with
3 470/446 847 variables/constraints, and stareas (statisti-
cal areas in Tasmania) [Li et al., 2015] with 1 562/10 101 vari-
ables/constraints. These datasets are satisfiable. Each dataset
comprises only relations that are contained in one of the max-
imal distributive subclasses of RCC8 [Li et al., 2015].

The maximum cardinality search algorithm [Tarjan and
Yannakakis, 1984] was used to obtain a variable elimination
ordering for DPC and DPC+, and a triangulation of the con-
straint graph of a given QCN for PPC as described in [Sioutis
et al., 2015a]. We note that in our case any variable elimina-
tion ordering would be adequate for the evaluation to follow,
as it would affect all involved algorithms proportionally and
would not qualitatively distort the obtained result.

Our experimentation involves the following two measures.
The first measure considers the number of constraint checks
performed by a local consistency enforcing algorithm imple-
mentation. Given a QCN N = (V, C) and vi, vk, vj ∈ V ,
a constraint check is performed when we compute relation
r = Rij ∩ (Rik � Rkj) and check if r ⊂ Rij , so that we can
propagate its constrainedness. Weak compositions that yield
relation ? are disregarded. The second measure concerns the
CPU time and is strongly correlated with the first one, as the
runtime of these implementations relies heavily on the num-
ber of constraint checks performed.

Results. The experimental results for random scale-free
RCC8 networks are summarized in Table 1, where a fraction
x
y denotes that an approach required x seconds of CPU time
and performed y constraint checks on average per dataset of
networks during its operation. It is clear that DPC+ per-
forms significantly fewer constraint checks and is much faster
than PPC for all considered networks, while retaining the
good time complexity characteristics of DPC. In particu-
lar, DPC+ enforces PPC on a random scale-free RCC8 net-
work of model BA(n = 10 000,m = 2) in around 2 sec,
when PPC requires approximately 8 times more time than
that for the same task. Regarding real-world RCC8 datasets,
the experimental results are summarized in Table 2, where

2Retrieved from: http://www.linkedopendata.gr/

n DPC DPC+ PPC

1000 0.01s
296.1

0.02s
4 176.6

0.06s
6 761.8

2000 0.02s
589.5

0.08s
9 388.7

0.35s
19 369.3

3000 0.05s
906.9

0.16s
16 355.4

0.97s
45 573.9

4000 0.08s
1224.8

0.30s
24 235.5

1.90s
91 585.4

5000 0.12s
1502.2

0.55s
31 015.2

3.49s
108 591.6

6000 0.16s
1811.4

0.75s
36 247.9

4.70s
138 285.6

7000 0.21s
2096.8

0.90s
41 730.9

6.68s
145 287.5

8000 0.26s
2425.5

1.21s
52 081.0

9.66s
202 238.4

9000 0.34s
2705.6

1.62s
58 537.2

13.30s
244 323.0

10000 0.46s
2985.6

2.17s
67 388.3

17.20s
302 867.4

Table 1: Evaluation with random scale-free RCC8 networks
of model BA(n,m = 2)

network DPC DPC+ PPC

nuts 0.06s
1 180

0.09s
6 080

0.09s
5 808

adm1 0.27s
92 266

1.86s
4 183 065

80.03s
18 498 096

gadm1 0.79s
339 611

4.07s
6 425 394

101.33s
34 140 998

gadm2 0.53s
483 377

1.24s
1 534 541

1.61s
1 885 100

adm2 2.22s
5 471 745

8.97s
29 759 133

398.63s
118 799 994

fprints 2.86s
14 251 630

26.74s
49 726 348

162.72s
119 117 222

stareas 0.04s
32 408

0.09s
156 360

0.24s
485 082

Table 2: Evaluation with real-world RCC8 datasets

a fraction x
y has the same meaning as before. Again, we

can see that DPC+ significantly outperforms PPC with re-
gard to both the CPU time required and the number of con-
straint checks performed for all datasets (with the exception
of nuts, whose constraint graph is almost a tree and, thus,
neither of the algorithms is challenged enough), while adding
only limited overhead to the performance of DPC. As illus-
tration, DPC+ enforces PPC on the largest of the datasets
(adm2) in 8.97 sec, when PPC requires over 44 times more
time than that, viz., a total of 398.63 sec, for the same task. In
general, we noted much more inference occurring with real-
world datasets than with random networks.

6 Conclusion
We proposed a new algorithm, called DPC+, that enforces
partial path consistency (PPC) on a qualitative constraint net-
work w.r.t. a triangulation of its underlying constraint graph.
In particular, we showed that DPC+ can correctly establish
PPC in a qualitative constraint network that is defined over
any distributive subalgebra of well-known spatio-temporal
calculi, such as the Region Connection Calculus and the In-
terval Algebra. We also showed that DPC+ only needs to
process the triangles in a given graph at most three times,
and is therefore much more efficient than the state-of-the-
art PPC enforcing algorithm; experimental results with both
real-world and synthetic datasets confirm this.
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