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Abstract—There has been interest in recent literature in
tackling very large real world qualitative spatial networks,
primarily because of the real datasets that have been, and
are to be, offered by the Semantic Web community and scale
up to millions of nodes. The proposed techniques for tackling
such large networks employ the following two approaches
for retaining the sparseness of their underlying graphs and
reasoning with them: (i) graph triangulation and sparse matrix
implementation, and (ii) graph partitioning and paralleliza-
tion. Regarding the latter approach, an implementation has
been offered recently, presented in [AAAI, 2014]. However,
although the implementation looks promising and with space
for improvement, an improper use of competing solvers in the
evaluation process resulted in the wrong conclusion that it is
able to provide fast consistency for very large qualitative spatial
networks with respect to the state-of-the-art. In this paper, we
review the two aforementioned approaches and provide new
results that are different to the results presented in [AAAI,
2014] by properly re-evaluating them with the benchmark
dataset of that paper. Thus, we establish a clear view on the
state-of-the-art solutions for reasoning with large real world
qualitative spatial networks efficiently, which is the main result
of this paper.

Keywords-qualitative spatial reasoning; topological relation;
triangulation; graph partitioning; evaluation; parallelization

I. INTRODUCTION

Spatial reasoning is a major field of study in Artificial
Intelligence; particularly in Knowledge Representation. This
field has gained a lot of attention during the last few years
as it extends to a plethora of areas and domains that include,
but are not limited to, ambient intelligence, dynamic GIS,
cognitive robotics, spatiotemporal design, and reasoning and
querying with semantic geospatial query languages [1]–[3].
In this context, an emphasis has been made on qualitative
spatial reasoning which relies on qualitative abstractions of
spatial aspects of the common-sense background knowledge,
on which our human perspective on the physical reality
is based. The concise expressiveness of the qualitative ap-
proach provides a promising framework that further boosts
research and applications in the aforementioned areas and
domains. The Region Connection Calculus (RCC) is the
dominant Artificial Intelligence approach for representing
and reasoning about topological relations [4]. RCC can be
used to describe regions that are non-empty regular sub-
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Fig. 1: Two dimensional examples for the eight base rela-
tions of RCC-8

sets of some topological space by stating their topological
relations to each other. RCC-8 is the constraint language
formed by the following 8 binary topological relations
of RCC: disconnected (DC), externally connected (EC),
equal (EQ), partially overlapping (PO), tangential proper
part (TPP ), tangential proper part inverse (TPPI), non-
tangential proper part (NTPP ), and non-tangential proper
part inverse (NTPPI). These eight relations are depicted
in Figure 1 (2D case).

It has come to our attention that the real case scenario, real
world, datasets we are particularly interested in correspond
to graphs with a scale-free-like structure, i.e., the degree
distribution of the graphs follows a power law. Scale-free
graphs seem to match real world applications well and are
widely observed in natural and human-made systems, in-
cluding the Internet, the World Wide Web, and the Semantic
Web [5]–[8]. We argue that the case of scale-free graphs
applies also to qualitative spatial networks and we stress on
the importance of being able to efficiently reason with such
scale-free-like networks for the following two main reasons:

• The natural approach for describing topological relations
inevitably leads to the creation of graphs that exhibit
hubs for particular objects which are cited more than
others due to various reasons, such as size, significance,
and importance. These hubs are in fact the most notable
characteristic in scale-free graphs [5], [6]. For example, if
we were to describe the topological relations in Greece,
Greece would be our major hub that would relate topolog-
ically to all of its regions and cities, followed by smaller
hubs that would capture topological relations within the



premises of a city or a neighborhood. It would not really
make sense to specify that the porch of a house is located
inside Greece, when it is already encoded that the house is
located inside a city of Greece. Such natural and human-
made systems are most often described by scale-free
graphs [5]–[8].

• Real qualitative spatial datasets that are known today, such
as the ones used in [9]1 which we also use here, come
from the Semantic Web, also called Web of Data, which is
argued to be scale-free [7]. Further, more real datasets are
to be offered by the Semantic Web community as RCC-8
has already been adopted by GeoSPARQL [3], and there is
an ever increasing interest in coupling qualititave spatial
reasoning techniques with linked geospatial data that are
constantly being made available [10], [11]. Thus, there
is a real need for scalable implementations of constraint
network algorithms for qualitative and quantitative spatial
constraints as RDF stores supporting linked geospatial
data are expected to scale to billions of triples [10], [11].
In literature, the state-of-the-art techniques for tackling

such large networks employ the following two approaches
for retaining the sparseness of their underlying graphs and
reasoning with them: (i) graph triangulation and sparse
matrix implementation, and (ii) graph partitioning and par-
allelization. Regarding the first approach, a simple solu-
tion has been presented in [12] that utilizes a hash table
based adjacency list to fit and reason with an underlying
chordal graph of the large input network. Regarding the
latter approach, a more complex implementation has been
offered by Nikolaou and Koubarakis in [9], that employs
graph partitioning to reduce the initial size of the large
input network and exploits the degree of parallelism offered
by current computer architectures by checking consistency
of these smaller subnetworks in parallel. Due to improper
use of the competing solvers, the authors of [9] obtained
the wrong conclusion that their implementation is able to
provide fast consistency for very large qualitative spatial
networks with respect to the state-of-the-art. In particular,
and as we will analyse further in our experimental evaluation
in Section IV, the authors used outdated and inappropriate
solvers, wrong flags for competitive solvers, and tree inputs
for algorithms that rely on 3-cliques (triangles) to operate
on. Thus, their implementation was in a race against itself.

In this paper, we concentrate on the consistency checking
problem of large scale-free-like qualitative spatial networks
and make the following contributions: (i) we review the
two aforementioned approaches and contradict the results of
Nikolaou and Koubarakis in [9] by properly re-evaluating
them with the benchmark dataset of that paper, (ii) we
establish a clear view on the state-of-the-art solutions for
reasoning with large real world qualitative spatial networks
efficiently. It is important to note, that we do not dispute

1http://cgi.di.uoa.gr/∼charnik/oss/gp-rcc8/

the concept of graph partitioning with parallelization for
fast consistency checking of very large real world RCC-8
networks altogether, but just state the mere fact that the
implementation in [9] fails, if anything, to support it, while
misleading in an attempt to do so.

The organization of this paper is as follows. Section II
formally introduces the RCC-8 constraint language, chordal
graphs along with the triangulation procedure, and graph
partitioning. In Section III we briefly overview the state-of-
the-art solutions that make use of triangulation and graph
partitioning, but also competitive ones that do not make
use of these techniques. In Section IV we experimentally
evaluate all proposed solutions for tackling very large real
world RCC-8 networks with the real dataset benchmark used
in [9]1, and, finally, in Section V we conclude.

We assume that the reader is familiar with the concepts
of constraint networks and their corresponding constraint
graphs that are not defined explicitly in this paper due to
space constraints. Also, in what follows, we will refer to
undirected graphs simply as graphs and we will use the terms
real world and scale-free-like interchangeably.

II. PRELIMINARIES

In this section we formally introduce the RCC-8 constraint
language, chordal graphs along with the triangulation pro-
cedure, and graph partitioning.

The RCC-8 constraint language: A (binary) quali-
tative temporal or spatial constraint language [13] is based
on a finite set B of jointly exhaustive and pairwise disjoint
(JEPD) relations defined on a domain D, called the set of
base relations. The set of base relations B of a particular
qualitative constraint language can be used to represent
definite knowledge between any two entities with respect
to the given level of granularity. B contains the identity
relation Id, and is closed under the converse operation (−1).
Indefinite knowledge can be specified by unions of possible
base relations, and is represented by the set containing
them. Hence, 2B represents the total set of relations. 2B is
equipped with the usual set-theoretic operations union and
intersection, the converse operation, and the weak compo-
sition operation. The converse of a relation is the union of
the converses of its base relations. The weak composition
� of two relations s and t for a set of base relations B
is defined as the strongest relation r ∈ 2B which contains
s ◦ t, or formally, s � t = {b ∈ B | b ∩(s ◦ t) 6= ∅},
where s ◦ t = {(x, y) | ∃z : (x, z) ∈ s ∧ (z, y) ∈ t}
is the relational composition [13], [14]. In the case of
the qualitative spatial constraint language RCC-8 [4], as
already mentioned in Section I, the set of base relations is
the set {DC,EC,PO,TPP ,NTPP ,TPPI ,NTPPI ,EQ},
with EQ being the identity relation (Figure 1).

Definition 1: An RCC-8 network comprises a pair (V,C)
where V is a non-empty finite set of variables and C is a
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Fig. 2: Example of a chordal graph

mapping that associates a relation C(v, v′) ∈ 2B to each
pair (v, v′) of V × V . C is such that C(v, v) ⊆ {EQ} and
C(v, v′) = (C(v′, v))−1.

In what follows, C(vi, vj) will be also denoted by Cij .
Checking the consistency of a RCC-8 network is NP-
hard in general [15]. However, there exist large maximal
tractable subclasses of RCC-8 which can be used to make
reasoning much more efficient even in the general NP-
hard case. These maximal tractable subclasses of RCC-8
are the sets Ĥ8, C8, and Q8 [16]. Given a RCC-8 network
N = (V,C), consistency checking is then realised by a path
consistency algorithm that iteratively performs the following
operation until a fixed point C is reached: ∀i, j, k, Cij ←
Cij ∩ (Cik �Ckj), where variables i, k, j form triangles that
belong either to a completion [17] or a chordal completion
[18] of the underlying graph of the input network. Within
the operation, weak composition of relations is aided by the
weak composition table for RCC-8 [19]. If Cij = ∅ for a pair
(i, j) then N is inconsistent, otherwise N is path consistent.
If the relations of the input RCC-8 network belong to
some tractable subclass of relations, such as Ĥ8, C8, and
Q8 [16], path consistency implies consistency, otherwise a
backtracking algorithm decomposes the initial relations into
subrelations belonging to some tractable subclass of relations
spawning a branching search tree [14].

Chordal graphs and Triangulation: We begin by
introducing the definition of a chordal graph. The interested
reader may find more results regarding chordal graphs, and
graph theory in general, in [20].

Definition 2 ([20]): Let G = (V,E) be an undirected
graph. G is chordal or triangulated if every cycle of length
greater than 3 has a chord, which is an edge connecting two
non-adjacent nodes of the cycle.

The graph shown in Figure 2 consists of a cycle which
is formed by five solid edges and two dashed edges that
correspond to its chords. As for this part, the graph is
chordal. However, removing one dashed edge would result
in a non-chordal graph. Indeed, the other dashed edge with
three solid edges would form a cycle of length four with
no chords. Chordality checking can be done in (linear)
O(|V | + |E|) time for a given graph G = (V,E) with the

maximum cardinality search algorithm which also constructs
an elimination ordering α as a byproduct [21]. If a graph is
not chordal, it can be made so by the addition of a set of
new edges, called fill edges. This process is usually called
triangulation of a given graph G = (V,E) and can run as
fast as in O(|V |+(|E

⋃
F (α)|)) time, where F (α) is the set

of fill edges that result by following the elimination ordering
α, eliminating the nodes one by one, and connecting all
nodes in the neighborhood of each eliminated node, thus,
making it simplicial in the elimination graph. If the graph is
already chordal, following the elimination ordering α means
that no fill edges are added, i.e., α is actually a perfect
elimination ordering [20]. For example, a perfect elimination
ordering for the chordal graph shown in Figure 2 would be
the ordering 1 → 3 → 4 → 2 → 0 of its set of nodes. In
general, it is desirable to achieve chordality with as few fill
edges as possible. However, obtaining an optimum graph
triangulation is known to be NP-hard [21]. In a RCC-8
network fill edges correspond to universal relations, i.e., non-
restrictive relations that contain all base relations.

Chordal graphs become relevant in the context of qualita-
tive spatial reasoning due to the following result obtained
in [18] that states that path consistency enforced on the
underlying chordal graph of an input network can yield
consistency of the input network:

Proposition 1 ([18]): For a given RCC-8 network N =
(V,C) with relations from the maximal tractable subclasses
Ĥ8, C8, and Q8 and for G = (V,E) its underlying chordal
graph, if ∀(i, j), (i, k), (j, k) ∈ E we have that Cij ⊆ Cik �
Ckj , then N is consistent.

Chordal graphs suit sparse graphs with clustering prop-
erties, such as scale-free graphs, particularly well [12]. We
are about to experimentally verify this in Section IV.

Graph Partitioning: Given a graph G, the graph
partitioning problem concerns the partitioning of G into
smaller components with specific properties. For instance,
a k-way partitioning divides the vertex set into k smaller
components. A good partitioning is defined as one in which
the number of edges running between separated components
is small. Important applications of graph partitioning include
scientific computing, partitioning various stages of a VLSI
design circuit, task scheduling in multi-processor systems,
and clustering and detection of cliques in social, patholog-
ical, and biological networks [22], [23]. Graph partitioning
problems fall under the category of NP-hard problems [24],
and solutions to these problems are generally derived using
heuristics and approximation algorithms, such as the ones
offered by the METIS2 software [25] employed in [9].

In [9], the authors define the notion of a partitioning
graph, where they require (among other things) that the
smaller components into which the underlying graph G of a

2http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
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Fig. 3: Example of a partitioning graph [9]

given RCC-8 network is partitioned, are augmented, where
appropriate, with endpoints of edges that run across them
and completed through the introduction of fill edges, so that
path consistency can be enforced on them and a complete
agreement on the overlapping part of two components with
respect to their corresponding solutions can be verified,
much like as in [26]. For example, in Figure 3, the 3-way
partitioning graph of an initial graph is depicted, along with
the introduction of (dashed) fill edges that complete the sepa-
rate components. The observant reader will notice that such a
partitioning graph is a particular case of a tree decomposition
[27] of a chordal graph, since a chordal graph yields a natural
tree decomposition of its cliques in linear time [20]. In fact,
if one patches together the components shown in Figure 3,
he will obtain the chordal graph depicted in Figure 2. This
comes as no surprise, as both the works of Huang et al. [26]
(where a structure called dtree is enlisted) and Nikolaou et al.
[9] employ a particular theoretical property that relies on tree
decompositions to guarantee soundness and completeness.
As an example, omitting path consistency checks across
children of dtree nodes [26] corresponds to omitting those
checks across clusters of the tree decomposition into which
the dtree is converted, as has been specifically pointed
out in [28]. Intuitively, tree decompositions are used as a
requirement of acyclicity of cliques. Thus, the authors in
[9] implicitly consider Proposition 1. However, the use of
graph partitioning in this case still makes sense when one
wants to impose additional properties on the components,
such as restraining their size or reducing the number of edges
different components share between one another.

III. OVERVIEW OF STATE-OF-THE-ART TOOLS

In this section we review the state-of-the-art solutions
that exist for tackling very large large scale-free-like RCC-8

networks.

Sarissa: We have implemented Sarissa3 in Python, that
is the latest updated, generalised, and code refactored version
of PyRCC85 originally presented in [18]. Sarissa supports
small arbitrary binary constraint calculi developed for spatial
and temporal reasoning for which Proposition 1 holds, such
as RCC-8 and Allen’s interval algebra (IA) [29], in a way
similar to GQR [30]. Further, Sarissa presents significant
improvements over PyRCC85 regarding functionality, scal-
ability, and speed. In particular, Sarissa opts for a hash table
based adjacency list as a sparse matrix implementation to
represent and reason with the chordal completion of the
input network. The variables of the input network (or the
nodes) are represented by index numbers of a list, and each
variable (or node) is associated with a hash table that stores
key-value pairs of variables and relations. For a given RCC-8
network N = (V,C) and for G = (V,E) its underlying
chordal graph, our approach requires O(|V | + |E| · b)
memory, where b is the size needed to represent a relation
from the set of relations 2B of RCC-8. Further, we still retain
an O(1) average access and update time complexity which
becomes O(δ) in the amortized worst case, where δ is the
average degree of a chordal graph that corresponds to the
input network. Given that we target large scale-free-like,
and, thus, sparse networks [31], this only incures a small
penalty for the related experiments performed. The path
consistency implementation also benefits from this approach
as the queue data structure which is based on has to use
only O(|E|) of memory to store the relations. Regarding
triangulation, the hash table based adjacency list is coupled
with the implementation of the maximum cardinality search
algorithm and a fast fill in procedure (as discussed in
Section II), as opposed to the heuristic based, but rather
naive, triangulation procedure implemented in [18]. Though
the maximum cardinality search algorithm does not yield
minimal triangulations if the underlying graph of the input
network is not chordal, it does guarantee than no fill edges
are inserted if the graph is indeed chordal. In addition, even
for the non-chordal cases we obtain good results with this
approach and have a fine trade-off between time efficiency
and good triangulations. Sarissa is a generic and open source
qualitative reasoner and it was shown to improve the state-
of-the-art techniques for tackling large scale-free-like RCC-8
networks in [12].

gp-rcc8: Reasoner gp-rcc81 is written in C++ and
was introduced in [9] for tackling very large scale-free-
like RCC-8 networks. It employs graph partitioning through
the use of METIS2 to reduce the initial size of the net-
work by decomposing it into k smaller subnetworks and
exploits the degree of parallelism offered by current com-
puter architectures by checking consistency of these smaller

3http://www.cril.fr/∼sioutis/work.php
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subnetworks in a parallel fashion. Graph partitioning alone
imposes a significant overhead since it falls under the
category of NP-hard problems (as discussed in Section II).
Path consistency is enforced by filtering each subnetwork,
merging and intersecting relations that belong to intersecting
subnetworks, and repeating the procedure until a fixpoint is
reached. Regarding consistency checking, and since there
can be exponentially many refinements of the relations
of a subnetwork into relations belonging to some of the
maximal tractable subclasses of relations Ĥ8, C8, and Q8,
things get more complicated, as one needs to find the
refinements that agree on the common parts between the
subnetworks to be able to apply Proposition 1. The solution
to this as presented in [9] is to find candidate refinements
of all relations belonging to the common parts between
subnetworks into base relations and then move on with
checking the consistency of the different subnetworks of
the partitioning graph independently. Thus, gp-rcc8 does
not fully take advantage of the maximal tractable subclasses
of relations Ĥ8, C8, and Q8, and the use of base relations
may explode the search space under circumstances. The
implementation builds on the reasoning engine of the solver
presented in [17] and its performance depends on the choice
of parameters for the partitioning strategy, but also on the
number of k parts one would like to acquire. Objectively,
this constitutes a limitation regarding the practical use of
the software as it is almost impossible to get the optimal
combination of parameters on the first run and the sensi-
tivity of parameters is relatively high [9, Fig. 2a-b]. In the
experimental evaluation to follow in Section IV we made
several runs to obtain a near global minimum regarding its
performance.

GQR: Generic Qualitative Reasoner (GQR4) [30] is
a solver for binary qualitative constraint networks, that
supports arbitrary binary constraint calculi developed for
spatial and temporal reasoning, such as the calculi from
the RCC family, and Allen’s interval algebra (IA) [29].
GQR uses a hand-written queue put together from generic
components (parts of the C++ Standard Template Library
STL), implemented as a virtual class, allowing for easy and
convenient extensions. GQR also employs hash tables and
different methods for creating and handling precomputations
of composition and converse tables. GQR is implemented in
C++ and makes extensive use of templates. Although it does
not employ triangulation or graph partitioning and builds on
a matrix representation that forbids it from being able to
represent large networks of millions of nodes, it remains a
very competitive solver within its range [12]. This is due
to being under active development for several years and
incorporating advanced reasoning techniques, such as restart
and nogood recording [32].

4http://sfbtr8.informatik.uni-freiburg.de/R4LogoSpace/Tools/gqr.html

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate reasoners Sarissa3 under ver-
sion 0.2-beta, gp-rcc81 under version 0.2-alpha, and GQR4

under version 1500 (all accessed at 2014-07-09) with the
real dataset used in [9]1, and show that gp-rcc8 complements
the state-of-the-art regarding enforcing path consistency and
falls very short regarding consistency checking, thus, con-
tradicting the conclusion drawn in [9] about being able to
provide fast consistency checking for very large real world
datasets.

First, we briefly overview the improper use of competing
solvers in [9] that resulted in that conclusion: (i) GQR
was employed without the flag that allows it to use the
maximal tractable subclass Ĥ8, as a result, GQR would try to
instantiate up to (n·(n−1))/2 variables using base relations
for a network of n nodes, even if only a few relations existed
that were not included in Ĥ8 (e.g., for 10 such relations
GQR would initially consider 10 variables, plus, relation B,
the universal non-restrictive relation containing all base re-
lations, exists in Ĥ8 and does not have to be split at all). (ii)
The outdated solver PyRCC85 was used under the version
it appeared in [18], and not under any other version we kept
regularly updated in our website, with Sarissa being its latest
update as a generic solver, available online since 2013. (iii)
Solver rcc8sat [26] was used for tackling tractable networks
of thousands of nodes [9, Tab. 1], when it was shown in
[26] that it is only appropriate and complements the state-
of-the-art when needing to solve very hard network instances
of up to 150-200 nodes, thus, an argument could be made
about that with a small evaluation on the side if necessary.
The result in [9] is still positive information, but somewhat
expected and adds to the improper use of adverse solvers that
change the overall conclusion. (iv) Accompanying the real
dataset to be used also in this paper, there was a synthetic
dataset of networks where their underlying structure was
a tree [9, Fig. 2c]. These networks are trivially consistent,
they are chordal graphs without even triangles, thus, the
evaluation was not about reasoning as path consistency was
trivially employed (it needs 3-cliques to operate on), but
about how fast a solver can go over the variables, keep
the state in case of backtracking (that will never happen),
apply heuristics for choosing the next variable (when one
could pick a random one), until all variables are instatiated.
Partitioning a n node tree in n − 1 parts and instatiating
the corresponding variables in parallel, would always give
you a benefit, especially in combination with the other
three aforementioned issues (e.g., Sarrisa under its latest
update only considers relations that belong to triangles in
the obtained chordal graph, thus, it would mark the tree
network consistent almost immediately without instatiating
any variables, and GQR with the proper flag would initially
consider n−1 variables instead of (n·(n−1))/2). As noted,
the above issues resulted in gp-rcc8 being in a race against

http://sfbtr8.informatik.uni-freiburg.de/R4LogoSpace/Tools/gqr.html
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Fig. 4: Performance comparison for the path consistency operation

itself.

Technical Specifications: The experiments were carried
out on a computer with an Intel Core 2 Quad Q9400 proces-
sor (4 physical cores) with a CPU frequency of 2.66 GHz
per core, 8 GB RAM, and the Precise Pangolin x86 64
OS (Ubuntu Linux). GQR and gp-rcc8 were compiled with
gcc/g++ 4.6.3. Regarding gp-rcc8, the boost5 library under
version 1.48 was also used. Sarissa was run with PyPy6

2.3.1, which fully implements Python 2.7.6. Only one of the
CPU cores was used for GQR and Sarissa, and all four for
gp-rcc8. Regarding the performance of gp-rcc8, the results
represent its near global minimum in every case, as we
ran the reasoner several times for different combinations of
parameters to find the most appropriate one. In particular, for
all experiments the minimum fringe strategy for partitioning
the graph was the most appropriate. The optimal number
of parts in combination with that strategy will be specified
for every dataset in the discussion to follow. Regarding GQR
and Sarissa the flag for using the maximal tractable subclass
Ĥ8 was specified, and for Sarissa an additional flag to apply
a special heuristic was specified for the instances that were
used to evaluate consistency checking performance (viz., -e

5http://www.boost.org/
6http://pypy.org/

local). All measurements consider elapsed real time (wall
clock time).

Dataset: We consider the dataset of real network in-
stances that was used in [9]1, which we describe as follows:
• nuts: a nomenclature of territorial units using RCC-8

relations that contains 2 235/3 176 nodes/edges.7

• adm1: a network that describes the administrative geog-
raphy of Great Britain using RCC-8 relations [33] and
contains 11 761/44 833 nodes/edges.

• gadm1: a network that describes the german ad-
ministrative units using RCC-8 relations and contains
42 749/159 600 nodes/edges.

• gadm2: a network that describes the world’s (global)
administrative areas using RCC-8 relations and contains
276 727/590 443 nodes/edges.8

• gadm2c: this is the same network as gadm2 with incon-
sistencies removed to make it consistent.

• adm2: a network that describes the greek adminis-
trative geography using RCC-8 relations and contains
1 732 999/5 236 270 nodes/edges.7

The aforementioned network instances are tractable, and
they also contain one or two base RCC-8 relations per
edge. Instances for evaluating the consistency checking

7Retrieved from: http://www.linkedopendata.gr/
8http://gadm.geovocab.org/
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(c) Performance comparison for hard-gadm1 (in-
consistent)

Fig. 5: Performance comparison for the consistency operation

performance of the reasoners were constructed in [9] with
the introduction of NP8 relations [17] in the networks’
edges. These instances are hard-nuts, hard-adm1, and
hard-gadm1.

We assess the performance of both path consistency
enforcing and consistency checking for all reasoners.

Path Consistency Enforcing: The results can be viewed
in Figure 4. Regarding the medium to large sized instances
nuts, adm1, and gadm1, gp-rcc8 is the clear winner with
its most impressive performance being for adm1 where it
manages to snap its inference costs and decide its consis-
tency in 0.573 sec, when Sarissa needs 200.06 sec, and GQR
17 701.191 sec. Note that GQR, as opposed to Sarissa and
gp-rcc8, enforces path consistency with respect to a com-
plete underlying graph of the input network. To obtain this
performance for gp-rcc8 we had to partition nuts, adm1,
and gadm1 in 50, 250, and 500 parts respectively, after
several runs. However, the tables turn regarding the very
large sized instances gadm2, gadm2c, and adm2 which are
decided in 4.217 sec, 5.930 sec, and 428.756 sec for Sarissa
and in 18.291 sec, 17.698 sec, and 377.111 sec for gp-rcc8
respectively. GQR is of course not able to fit the networks
in its matrix. Thus, Sarissa is 80% faster than gp-rcc8 for
gadm2, 67% faster than gp-rcc8 for gadm2c, and 14%
slower than gp-rcc8 for adm2. Again, we had to partition
gadm2, gadm2c, and adm2 for gp-rcc8 in 2 700, 2 800,
and 12 000 parts respectively, after several runs. Taking into
account the results for the very large instances gadm2,
gadm2c, and adm2, and keeping in mind that gp-rcc8
utilizes all four cores, whereas Sarissa only one, and that
it is impossible to guess the correct parameters for gp-rcc8
a priori, it is fair to argue that gp-rcc8 does not improve
the state-of-the-art regarding path consistency enforcing on
very large real world networks, but complements it at best.
In fact, only the time to partition gadm2 and gadm2c
(around 10 sec) was already over the time for Sarissa to load,

triangulate, and reason with the network. The same situation
applies for adm2 where partitioning its graph took around
5 minutes in our machine. These measurements establish a
lower bound for gp-rcc8 that is close to the performance of
Sarissa, which could even utilize more aggresive (non-linear)
triangulation in case needed.

Consistency Checking: For the given dataset, this ex-
periment utilizes the whole reasoning engine of a reasoner,
as both path consistency and some algorithm to realise
backtracking search need to be employed. As noted, hard
instances where constructed with the introduction of NP8

relations [17] in the networks’ edges. The results can be
viewed in Figure 5, where one can see that gp-rcc8 is
only able to tackle the first and smallest of all instances,
namely, hard-nuts, in a little less than a second. We
had to partition hard-nuts for gp-rcc8 in 100 parts. In
fact, this instance was easy for all reasoners to tackle, even
for GQR who spend most of its time initializing a big
matrix. We were not able to receive an answer from gp-rcc8
regarding hard-adm1 as it hit the 8 GB memory limit
after ∼ 10 minutes. We can only refer to the result in
[9] which was obtained in a similar machine (4-core 2.4
GHz CPU, 64 GB RAM) that states a time of 13 091.96
sec. Sarissa and GQR solve this instance in 173.974 sec
and 4 901.023 sec respectively, thus, both Sarissa and GQR
are a lot faster. We were not able to receive an answer
from gp-rcc8 regarding hard-gadm1 either, even though
Sarissa and GQR comfortably solve the network in 2 557.714
sec and 14 357.267 sec respectively. Referring again to the
result in [9], gp-rcc8 was unable to offer an answer in the
64 GB test machine too. It is clear at this point, and with
respect to the given dataset, that gp-rcc8 falls very short
regarding the state-of-the-art in checking the consistency of
very large networks with a real world structure, which is a
contradiction to what has been concluded in [9]. We must
also state that Sarissa is only a simple implementation with a
triangulation algorithm and a sparse matrix implementation



that any solver, such as GQR, can easily adopt.

V. CONCLUSION

In this paper, we established a clear view on the state-
of-the-art solutions for reasoning with large real world
qualitative spatial networks efficiently, by re-evaluating them
with the benchmark dataset of [9], providing new results
that contradict the results of that paper with respect to that
dataset. As noted in our introduction, it is important to
remind the reader that we do not dispute the concept of
graph partitioning with parallelization for fast consistency
checking of very large real world RCC-8 networks alto-
gether, but just show that due to improper use of competing
solvers the implementation in [9] does not currently support
it. However, the implementation in [9] looks promising and
with space for improvement, and calls for further research.
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