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Résumé

Dans cet article, nous traitons de la logique spatio-
temporelle qui résulte de combinaison de la logique tem-
porelle propositionnelle (PTL) avec le langage de con-
traintes spatiales qualitatives L1. Nous proposons une
méthode de résolution à base de tableaux sémantiques
basée sur la méthode des tableaux de Wolper pour PTL.
Par ailleurs, nous étudions les effets de l’utilisation des
propriétés de compacité et de patchwork pour le raison-
nement spatio-temporelle. Nous étudions notamment
l’effet de ces propriétés sur la complexité du problème
de satisfiabilité de L1 en remplaçant notamment la pro-
priété de cohérence globale utilisée habituellement dans
la littérature. Ceci permet la généralisation à un plus
grand nombre de langages de contraintes spatiales qual-
itatives. Enfin, les résultats obtenus permettent de prou-
ver la validité de notre méthode des tableaux pour L1.

Abstract

We study the spatiotemporal logic that results by
combining the propositional temporal logic (PTL) with
a qualitative spatial constraint language, namely, the L1

logic, and present a first semantic tableau method that
given a L1 formula φ systematically searches for a model
for φ. Our approach builds on Wolper’s tableau method
for PTL, while the ideas provided can be carried to other
tableau methods for PTL as well. Further, we investigate
the implication of the constraint properties of compact-
ness and patchwork in spatiotemporal reasoning. We
use these properties to strengthen results regarding the
complexity of the satisfiability problem in L1, by replac-
ing the stricter global consistency property used in liter-
ature and generalizing to more qualitative spatial con-
straint languages. Finally, the obtained strengthened re-
sults allow us to prove the correctness of our tableau
method for L1.

1 Introduction

Time and space are fundamental cognitive concepts
that have been the focus of study in many scien-
tific disciplines, including Artificial Intelligence and,
in particular, Knowledge Representation. Knowledge
Representation has been quite successful in dealing
with the concepts of time and space, and has devel-
oped formalisms that range from temporal and spa-
tial databases [18], to quantitative models developed
in computational geometry [14] and qualitative con-
straint languages and logical theories developed in
qualitative reasoning [7, 21].

Towards constraint-based qualitative spatiotempo-
ral reasoning, most of the work has relied on for-
malisms based on the propositional temporal logic
(PTL), also known as linear temporal logic, and the
qualitative spatial constraint language RCC-8 [21, 20].
PTL [9] is the well known temporal logic comprising
operators U (until), # (next point in time), 2 (always),
and 3 (eventually) over various flows in time, such as
〈N, <〉. RCC-8 is a fragment of the Region Connection
Calculus (RCC) [15] and is used to describe regions
that are non-empty regular subsets of some topologi-
cal space by stating their topological relations to each
other. The topological relations comprise relations
DC (disconnected), EC (externally connected), EQ
(equal), PO (partially overlapping), TPP (tangential
proper part), TPPi (tangential proper part inverse),
NTPP (non-tangential proper part), NTPPi (non-
tangential proper part inverse). These 8 relations are
depicted in [15, Fig. 4]. One of the most important of
such formalisms is the ST −1 logic [5]. For example, one
can have the following statement using that formalism:
3TPP (X,Y ), which translates to “eventually region
X will be a tangential proper part of region Y ”.

In this paper, we consider a generalization of the



ST −1 logic, denoted by L1, which is the product of
the combination of PTL [9] with any qualitative spa-
tial constraint language, such as RCC-8 [15], Cardinal
Direction Algebra (CDA) [4, 11], and Block Algebra
(BA) [6], and make the following contributions: (i) we
show that satisfiability checking of a L1 formula is
PSPACE-complete if the qualitative spatial constraint
language considered has the constraint properties of
compactness and patchwork [12] for atomic networks,
thus, strengthening previous related results that re-
quired atomic networks to be globally consistent [2, 3],
and (ii) we present a first semantic tableau method
that given a L1 formula φ systematically searches for
a model for φ. This method builds on the tableau
method for PTL of Wolper [19], and makes use of our
strengthened results to ensure soundness and com-
pleteness. It is important to note, that Wolper’s
method serves as the basis to illustrate our line of rea-
soning, and that the techniques presented can be car-
ried to other more efficient tableau methods for PTL
as well.

As opposed to the ST −1 logic [5], L1 does not
rely on the semantics or a particular interpretation of
the qualitative spatial constraint language used, but
rather on constraint properties, namely, compactness
and patchwork [12]. These properties have been found
to hold for RCC-8, Cardinal Direction Algebra (CDA),
Block Algebra (BA), and their derivatives [8].

The organization of the paper is as follows. In Sec-
tion 2 we recall the definition of a qualitative spatial
constraint language, along with the properties of com-
pactness, patchwork, and global consistency. Section 3
introduces the L1 logic, and in Section 4 we explain its
implication with compactness and patchwork. In Sec-
tion 5 we present our tableau method for checking the
satisfiability of a L1 formula. In Section 6 we conclude
and give directions for future work.

2 Preliminaries

A (binary) qualitative temporal or spatial constraint
language [17] is based on a finite set B of jointly ex-
haustive and pairwise disjoint (JEPD) relations de-
fined on a domain D, called the set of base relations.
The base relations of set B of a particular qualitative
constraint language can be used to represent the defi-
nite knowledge between any two entities with respect
to the given level of granularity. B contains the iden-
tity relation Id, and is closed under the inverse opera-
tion (−1). Indefinite knowledge can be specified by dis-
junctions of possible base relations, and is represented
by the set containing them. Hence, 2B represents the
total set of relations. 2B is equipped with the usual
set-theoretic operations (union and intersection), the

inverse operation, and the weak composition opera-
tion denoted by � [17]. A network from any qualitative
spatial constraint language, such as RCC-8 [15], Cardi-
nal Direction Algebra (CDA) [4, 11], or Block Algebra
(BA) [6], can be formulated as a qualitative constraint
network (QCN) as follows (a RCC-8 example of which
is shown in Figure 1).

Definition 1 A QCN is a tuple (V,C) where V is a
non-empty finite set of variables and C is a mapping
that associates a relation C(v, v′) ∈ 2B to each pair
(v, v′) of V ×V . Mapping C is such that C(v, v) = {Id}
and C(v, v′) = (C(v′, v))−1 for every v, v′ ∈ V .

If b is a base relation, {b} is a singleton relation.
An atomic QCN is a QCN where each constraint is a
singleton relation. Note that we always regard a QCN
as a complete network. Given two QCNs N = (V,C)
and N ′ = (V ′, C ′), N ∪ N ′ denotes the QCN N ′′ =
(V ′′, C ′′), where V ′′ = V ∪V ′, C ′′(u, v) = C ′′(v, u) = B
for all (u, v) ∈ (V \V ′)×(V ′ \ V ), C ′′(u, v) = C(u, v)∩
C ′(u, v) for every u, v ∈ V ∩V ′, C ′′(u, v) = C(u, v) for
every (u, v) ∈ (V × V ) \ (V ′ × V ′), and C ′′(u, v) =
C ′(u, v) for every (u, v) ∈ (V ′ × V ′) \ (V × V ). Given
a QCN N = (V,C) and u, v ∈ V , C(u, v) will be also
denoted by N [u, v].

We can interpret any QCNN = (V,C) using a struc-
ture of the form MS = (D, α), where α is a mapping
that associates elements of D to elements of V . For
the case of RCC-8 for example, if T is some topologi-
cal space [13], letR(T ) denote the set of all non-empty
regular closed subsets in T . Then, the domain D of
RCC-8 is the set R(T ), which can be infinite. A struc-
ture MS = (D, α) is a model for a QCN N = (V,C),
also called a solution, if mapping α can yield a spatial
configuration where the relations between the spatial
variables can be described by C. It follows that a QCN
is satisfiable if there exists a model for it. A partial
solution for N on V ′ ⊆ V is the mapping α restricted
to V ′.

Checking the satisfiability of a RCC-8, CDA, or BA
network is NP-complete in the general case [16, 11, 6].
However, there exist large maximal tractable sub-
classes of RCC-8, CDA, and BA, which allow for prac-
tical and efficient reasoning. In particular, checking
the satisfiability of a QCN (V,C) of RCC-8, CDA, or
BA comprising only relations from one of its maxi-
mal tractable subclasses containing all singleton re-
lations and the universal relation B, can be done in
O(|V |3) time using the �-consistency algorithm (also
called algebraic closure), that iteratively performs the
following operation until a fixed point C is reached:
∀v, v′, v′′ ∈ V , C(v, v′) ← C(v, v′) ∩ (C(v, v′′) �
C(v′′, v′)) [17].
Let us recall the definition of global consistency.
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Figure 1: RCC-8 configurations

Definition 2 A QCN N = (V,C) is globally consis-
tent if and only if, for any V ′ ⊂ V , every partial so-
lution on V ′ can be extended to a partial solution on
V ′ ∪ {v} ⊆ V , for any v ∈ V \ V ′.

We now recall the definitions of the constraint prop-
erties of patchwork and compactness in the context
of qualitative reasoning and give an example of how
the former properties combined are less strict than
global consistency alone. (To be precise, [12] intro-
duced patchwork for atomic QCNs, and [8] generalized
it also for non-atomic ones).

Definition 3 ([8, 12]) A qualitative temporal or spa-
tial constraint language has patchwork, if for any fi-
nite satisfiable constraint networks N = (V,C) and
N ′ = (V ′, C ′) defined in this language where for any
u, v ∈ V ∩ V ′ we have that C(u, v) = C ′(u, v), the
constraint network N ∪N ′ is satisfiable.

In light of patchwork, which concerns finite net-
works, compactness ensures satisfiability of an infinite
sequence of finite satisfiable extensions of a network.

Definition 4 ([8]) A qualitative temporal or spatial
constraint language has compactness, if any infinite
set of constraints defined in this language is satisfiable
whenever all its finite subsets are satisfiable.

Intuitively, patchwork ensures that the combina-
tion of two satisfiable constraint networks that agree
on their common part, i.e., on the constraints be-
tween their common variables, continues to be satisfi-
able, while compactness allows for defining satisfiable
networks of infinite size. Global consistency implies
patchwork, but the opposite is not true. Even though
RCC-8 has patchwork [8], it does not have global con-
sistency [17].

Example. Let us consider the spatial configuration
shown in Figure 1(a). Region y is a doughnut, and
region x is externally connected to it, by occupying
its hole. Further, region z is externally connected
to region y. For RCC-8 we know that the constraint
network {EC(x, y), EC(y, z), EC(x, z)} is satisfiable
as it is �-consistent. However, the valuation of region
variables x and y is such that it is impossible to
extend it with a valuation of region variable z so

that EC(x, z) may hold. Patchwork allows us to
disregard any partial valuations and focus on the
satisfiability of the network. Then, we can consider
a valuation that respects the constraint network.
Such a valuation is, for example, the one presented
in Figure 1(b) along with its atomic QCN on the right.

3 The L1 spatiotemporal logic

In general, a spatial QCN, as described in Section 2,
constitutes a static spatial configuration in some do-
main, over a set of spatial variables V . To be able
to describe a spatial configuration that changes over
time, we can combine PTL [9] with a qualitative spa-
tial constraint language in a unique formalism. The
domain D of a QCN will always remain the same, but
the spatial variables in it may spatially change with
the passing time (e.g., in shape, size, or orientation).
We can interpret formulas of such a spatiotemporal
formalism using a spatiotemporal structure defined as
follows.

Definition 5 A ST-structure is a tuple MST =
(D,N, α), where α is a mapping that associates ele-
ments of D to the spatial variables of a set V at a
point of time i ∈ N. Thus, α(i) denotes the set of
elements of D that are associated with the spatial vari-
ables of V at point of time i. By extending notation,
α(v, i), where v ∈ V , denotes the element of D that is
associated with spatial variable v at point of time i.

For example, in the case of RCC-8, α would be a
mapping associating elements of R(T ) to spatial re-
gion variables at a point of time i ∈ N. The set
of atomic propositions AP in the case of standalone
PTL [9] is replaced by the set of base relations B of
the qualitative spatial constraint language considered.
We will call such a spatiotemporal formula over B a
L0 formula. Thus, the set of L0 formulas over B is
inductively defined as follows: if P ∈ B then P is a
L0 formula, and if ψ and φ are L0 formulas then ¬φ,
φ ∨ ψ, #φ, 2φ, 3φ, and φU ψ are L0 formulas.

A simple example of a L0 formula is
2NTPP (Athens, Greece), stating that Athens
will always be located in Greece. To increase the
expressiveness of the L0 logic we can allow the appli-
cation of operator # to spatial variables, i.e., we can
have the following statement in RCC-8: 2EQ(Greece,
#Greece), which translates to “Greece will never
change its borders”. We call the enriched logic the L1

logic.

Definition 6 Given a L1 formula φ over B, we write
〈MST, i〉 |= φ for the fact thatMST satisfies φ at point



of time i, with i ∈ N (or formula φ is true in MST

at point of time i). The semantics is then defined as
follows:
• 〈MST, i〉 |= P (#nv,#mv′) iff the relation that

holds between α(v, i + n) and α(v′, i + m) is the
relation P , with P ∈ B

• 〈MST, i〉 |= ¬φ iff 〈MST, i〉 6|= φ
• 〈MST, i〉 |= φ∨ψ iff 〈MST, i〉 |= φ or 〈MST, i〉 |=
ψ
• 〈MST, i〉 |= φU ψ if there exists a k ∈ N such that
i ≤ k, 〈MST, k〉 |= ψ, and for all j ∈ N, if i ≤ j
and j < k then 〈MST, j〉 |= φ

Formulas of the form 3φ and 2φ are abbreviations
for >U φ and ¬(>U ¬φ) respectively. A structure
MST = (D,N, α), for which 〈MST, 0〉 |= φ, is a model
for φ. It follows that a L1 formula φ is satisfiable
if there exists a model for it. Note that a formula
of the form #kP (#lv,#mv′) is equivalent to formula
P (#l+kv,#m+kv′). The size of P (#l+kv, #m+kv′) is
then defined to be equal to max{l+ k,m+ k}. Like in
[2], we define the size of any L1 formula φ, denoted by
|φ|, inductively as follows: P (#lv,#mv′) = max{l,m};
|¬φ| = |φ|; |φ ∨ ψ| = |φU ψ| = max{|φ|, |ψ|}. The
size of a set of L1 formulas χ = {φ, ψ, . . .}, will be
the maximum size among its formulas, i.e., |χ| =
max{|φ|, |ψ|, . . .}. The number of occurrences of sym-
bols in a L1 formula φ will be denoted by length(φ).

4 Revisiting the satisfiability problem in
L1

In this section, we revisit a result regarding the satisfi-
ability of L1 formulas in a ST-structure, using patch-
work and compactness. These properties strengthen
previous results, in that we do not longer need to re-
strict atomic QCNs to being globally consistent as in
[2, 3], but we can consider atomic QCNs that have com-
pactness and patchwork. As explained in Section 2,
compactness and patchwork combined are less strict
than global consistency alone.

Given a L1 formula φ, Balbiani and Condotta in [2]
show that the satisfiability of formula φ can be checked
by characterizing a particular infinite sequence of fi-
nite satisfiable atomic QCNs representing an infinite
consistent valuation of φ. Each of the QCNs of such
a sequence represents a set of spatial constraints in a
fixed-width window of time. The set of spatial con-
straints at point of time i, is given by the i-th QCN
in the infinite sequence, and shares spatial constraints
with the next QCN. Moreover, in such a sequence,
there exists a point of time after which the correspond-
ing QCNs replicate the same set of spatial constraints.
The global consistency property is then used for the

N0 N1 N2 N3 Ni+1
· · ·

t

· · ·
Ni

Figure 2: A countably infinite sequence of satisfiable
atomic QCNs that agree on their common part

following two tasks:
(i) to prove that by considering all the QCNs of the

aforementioned sequence we obtain a consistent
set of constraints;

(ii) to prove that in such an infinite sequence, a sub-
sequence which begins and ends with two QCNs
representing the same set of spatial constraints
can be reduced to just considering the first QCN.

In the sequel, we formally show that tasks (i) and
(ii) can be performed using the properties of patch-
work and compactness instead. As a consequence, we
can generalize a result regarding the satisfiability of a
L1 formula φ to a larger class of calculi than the pre-
viously considered in literature. We now introduce the
two aforementioned tasks in the form of two proposi-
tions.

Proposition 1 Let V = {v0, . . . , vn} be a set of vari-
ables, w ≥ 0 an integer, and S = (N0 = (V0, C0),
N1 = (V1, C1), . . .) a countably infinite sequence of
satisfiable atomic QCNs, as shown in Figure 2, such
that:
• for each i ≥ 0, Vi is defined by the set of variables
{v00,. . .,v0n,. . .,vw0 ,. . .,vwn },
• for each i ≥ 0, for all m,m′ ∈ {0, . . . , n},

and for all k, k′ ∈ {1, . . . , w}, Ci(v
k
m, v

k′

m′) =

Ci+1(vk−1m , vk
′−1
m′ ).

We have that if the constraint language considered has
compactness and patchwork for atomic QCNs, then S
defines a consistent set of qualitative constraints.

Proof. Given Ni, we rewrite its set of variables to
{vi0,. . .,vin,. . .,vw+i

0 ,. . .,vw+i
n }. Then, by patchwork we

can assert that for each integer k ≥ 0,
⋃
k≥i≥0Ni is

a consistent set of qualitative constraints. Suppose
though, that

⋃
i≥0Ni is an inconsistent set. By com-

pactness we know that there exists an integer k′ ≥ 0
for which

⋃
k′≥i≥0Ni is inconsistent. This is a contra-

diction. Thus, S defines a consistent set of qualitative
constraints. a
The second proposition follows.

Proposition 2 Let V = {v0, . . . , vn} be a set of vari-
ables, w ≥ 0, t > t′ ≥ 0 three integers, and S = (N0 =
(V0, C0), N1 = (V1, C1), . . .) a countably infinite se-
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Figure 3: A countably infinite sequence of satisfiable
atomic QCNs that contains a sub-sequence which be-
gins and ends with two QCNs representing the same set
of spatial constraints; we can reduce the sub-sequence
to just considering the first QCN and patch it with the
QCN following the sub-sequence

quence of satisfiable atomic QCNs, as shown in Fig-
ure 3, such that:
• for each i ≥ 0, Vi is defined by the set of variables
{v00,. . .,v0n,. . .,vw0 ,. . .,vwn },
• for each i ≥ 0, for all m,m′ ∈ {0, . . . , n},

and for all k, k′ ∈ {1, . . . , w}, Ci(v
k
m, v

k′

m′) =

Ci+1(vk−1m , vk
′−1
m′ ),

• for all m,m′ ∈ {0, . . . , n} and all k, k′ ∈
{0, . . . , w}, Ct′(vkm, vk

′

m′) = Ct(v
k
m, v

k′

m′).
Let S ′ = (N ′0 = (V ′0 , C

′
0),N ′1 = (V ′1 , C

′
1), . . .) be the

infinite sequence defined by:
• for all i ∈ {0, . . . , t′}, N ′i = Ni,
• for all i > t′, V ′i = Vi, and for all
m,m′ ∈ {0, . . . , n} and all k, k′ ∈ {0, . . . , w},
C ′i(v

k
m, v

k′

m′) = Ci+(t−t′)(v
k
m, v

k′

m′).
We have that if the constraint language considered has
compactness and patchwork for atomic QCNs, then S ′
defines a consistent set of qualitative constraints.

Proof.We have Ni which is a satisfiable QCN for all
i ≥ 0. From this, we can deduce that N ′i is a sat-
isfiable QCN for all i ≥ 0. By Proposition 1 we can
deduce that S ′ defines a consistent set of qualitative
constraints. a
We now can obtain the following result:

Theorem 1 Checking the satisfiability of a L1 for-
mula φ in a ST-structure is PSPACE-complete in
length(φ) if the qualitative spatial constraint language
considered has compactness and patchwork for atomic
QCNs.

Proof.(Sketch) Consider the approach in [2] where a
proof of PSPACE-completeness is given for a logic that
considers qualitative constraint languages for which
satisfiable atomic QCNs are globally consistent (see
Theorem 1 in [2]). To be able to replace the use
of global consistency with the use of patchwork and

compactness, we need to use Propositions 1 and 2 in
the proofs of Lemmas 3 and 4 in [2]. The interested
reader can verify that the aforementioned proofs make
use of global consistency to perform exactly the tasks
described by Propositions 1 and 2. Since these propo-
sitions build on compactness and patchwork, we can
prove PSPACE-completeness using these properties in-
stead. a

Theorem 1 allows us to consider more calculi than
the ones considered in literature for which the combi-
nation with PTL yields PSPACE-completeness. Due to
the lack of global consistency for RCC-8 [17], in [5] the
authors restrict themselves to a very particular domain
interpretation of RCC-8 to prove that the ST −1 logic is
PSPACE-complete. As already noted in Section 1, the
ST −1 logic is the L1 logic when the considered quali-
tative constraint language is RCC-8. L1 does not rely
on the semantics of the qualitative constraint language
used, but rather on the constraint properties of com-
pactness and patchwork [12]. Therefore, L1 is by de-
fault able to consider all calculi that have these prop-
erties, such as RCC-8 [15], Cardinal Direction Algebra
(CDA) [4, 11], Block Algebra (BA) [6], and even Inter-
val Algebra (IA) [1] when viewed as a spatial calculus.
The most notable languages that have patchwork and
compactness are listed in [8].

5 Semantic tableau for L1

In this section, we present a semantic tableau method
that given a L1 formula φ systematically searches for
a model for φ. The method builds on the tableau
method for PTL of Wolper [19], and makes use of the
results of Section 4 to ensure soundness and complete-
ness.

5.1 Rules for constructing a semantic tableau

The decomposition rules of the temporal operators
are based on the following identities, which are called
eventualities (where 2 abbreviates ¬3¬):

• 3φ ≡ φ ∨#3φ
• φ U ψ ≡ ψ ∨ (φ ∧#(φ U ψ))

Note that decomposing eventualities can lead to an
infinite tableau. However, we will construct a finite
tableau by identifying nodes that are labeled by the
same set of formulas, thus, ensuring that infinite pe-
riodicity will not exist. To test a L1 formula φ for
satisfiability, we will construct a directed graph. Each
node n of the graph will be labeled by a set of formulas,
and initially the graph will contain a single node, la-
beled by {φ}. Similarly to Wolper [19], we distinguish
between elementary and non-elementary formulas:



Definition 7 A L1 formula is elementary if its main
connective is # (viz., #-formula), or if it corresponds
to a base relation P ∈ B.

Then, the construction of the graph proceeds by using
the following decomposition rules which map each non-
elementary formula φ into a set of sets of formulas:
• ¬P (#nv,#mv′) → {{P ′(#nv,#mv′)} | P ′ ∈ B \
{P}}

• ¬¬φ→ {{φ}}
• ¬# φ→ {{#¬φ}}
• φ ∧ ψ → {{φ, ψ}}
• ¬(φ ∧ ψ)→ {{¬φ}, {¬ψ}}
• 3φ→ {{φ}, {#3φ}}
• ¬3φ→ {{¬φ,¬# 3φ}}
• φ U ψ → {{ψ}, {φ,#(φ U ψ)}}
• ¬(φ U ψ)→ {¬ψ,¬φ ∨ ¬# (φ U ψ)}
During the construction, we mark formulas to which

a decomposition rule has been applied to avoid decom-
posing the same formula twice. If ψ is a formula, ψ∗
denotes ψ marked.

5.2 Systematic construction of a semantic tableau

A tableau T can be seen as a directed graph where
each of its nodes n is labeled with a set of formulas
T (n). The root node is labeled with the singleton set
{φ} for the L1 formula φ whose satisfiability we wish
to check. The children of the nodes are obtained by
applying the rules presented in Section 5.1.

Given a set of L1 formulas χ over the set of vari-
ables {x0, . . . , xl}, we denote by expandV ars(χ) the
set {#0x0,. . .,#0xl,. . .,#|χ|x0,. . .,#|χ|xl}. We first de-
fine a translation of a node of a tableau to a QCN.

Definition 8 Let n be a node of a tableau T for a
L1 formula φ, and {x0, . . . , xl} the set of variables in
φ. Then, N (n) will denote the QCN = (V,C), where

V = {v00, . . ., v0l , . . ., v
|φ|
0 , . . ., v

|φ|
l }, and C(vkm, v

k′

m′) =

{P (#kxm,#k′xm′)} if P (#kxm,#k′xm′) ∈ T (n), and
C(vkm, v

k′

m′) = (B if vkm 6= vk
′

m′ else {Id}) otherwise, ∀
m,m′ ∈ {0, . . . , l} and ∀ k, k′ ∈ {0, . . . , |φ|}.

Let us also define the notions of a state and a pre-
state, which we will be referring to a lot in what fol-
lows.

Definition 9 A node n that contains only elementary
and marked formulas and for which we have that N (n)
is atomic is called a state, and a node m that is either
the root node or the direct child node of a state (which
leaps to the next point of time) is called a pre-state.

We give a definition of eventuality fulfillment that will
be of use later on.

Algorithm 1: Clotho(φ)

in : A L1 formula φ.
output : A semantic tableau T for φ.

1 begin
2 create root node {φ} and mark it unprocessed;
3 while ∃ unprocessed node n do
4 if T (n) contains an unmarked non-elementary

formula ψ then
5 mark node n processed;
6 foreach γ ∈ Γ, where Γ is the result of

applying a decomposition rule to ψ do
7 create a child node m;
8 T (m) ← (T (n)− {ψ}) ∪ γ ∪ {ψ∗};
9 mark node m unprocessed;

10 else if T (n) contains only elementary and
marked formulas then

11 mark node n processed;
12 filling ← ∅;
13 foreach u, v ∈ expandV ars(φ) do
14 if @ P (u, v) ∈ T (n) then
15 filling ← filling ∪ {B(u, v)};

16 if filling 6= ∅ then
17 create a child node m;
18 T (m) ← T (n) ∪ filling;
19 mark node m unprocessed;

20 else if T (n) contains #-formulas then
21 create a child node m;
22 T (m) ← {ψ | # ψ ∈ T (n)};
23 T (m) ← T (m) ∪ {P (#i−1u,#j−1v) |

P (#iu,#jv) ∈ T (n) if i, j ≥ 1};
24 mark node m unprocessed;

Definition 10 Let T be a tableau, and π a path in T
defined from nodes n1, n2, . . ., nj. Any eventuallity
3ε2 or ε1 U ε2 ∈ T (ni), with 1 ≤ i ≤ j, is fulfilled in π
if there exists k, with i ≤ k ≤ j, such that ε2 ∈ T (nk).

We now present Clotho, an algorithm that con-
structs a semantic tableau T for a given formula φ,
as shown in Algorithm 1. At any given point of time,
we construct all the possible atomic QCNs compris-
ing base relations that extend from the given point of
time to a future point of time. This is achieved by
repeatedly applying the decomposition rules to a node
comprising unmarked non-elementary formulas (lines
4 to 9), and sequentially populating a node comprising
only elementary and marked formulas with the univer-
sal relation B (lines 10 to 19) so that it may lead to
a state. The universal relation B is only introduced
on a pair of variables, if there does not exist any base
relation on that same pair. The universal relation B,
as well as any other relation r ∈ 2B, is essentially the
disjunction of base relations, as noted in Section 2.
In particular, B is the disjunction of all the base re-
lations of a given qualitative constraint language. As
such, by decomposing B into base relations using the



Algorithm 2: Atropos(T )

in : A semantic tableau T .
output : True or False.

1 begin
2 do
3 flag ← False;
4 if there is a node n such that N (n) is an

unsatisfiable QCN then
5 eliminate node n; flag ← True;

6 if all the children of a node n have been
eliminated then

7 eliminate node n; flag ← True;

8 if a node n is a pre-state and not Lachesis(T , n)
then

9 eliminate node n; flag ← True;

10 while flag;
11 if 6 ∃ node n ∈ T then return False else return

True;

Function Lachesis(T , n)

in : A semantic tableau T , and a node n.
output : True or False.

1 begin
2 foreach eventuality ε ∈ T (n) do
3 if ε is not fulfilled in any path π = 〈n, . . .〉 then

return False;

4 return True;

disjunctive tableau rule, this approach allows us to ob-
tain one or more nodes harboring atomic QCNs for a
given point of time (viz., states), that represent a set
of atomic spatial constraints in a fixed-width window
of time. Once we have obtained our atomic QCNs for a
given point of time, and assuming that the states that
harbor them contain #-formulas, we can leap to the
next point of time and create pre-states, including all
the atomic spatial constraints of the aforementioned
QCNs that extend from the new point of time to a fu-
ture point of time (lines 20 to 24). This can be seen
as making a +1 time shift and maintaining all possi-
ble knowledge offered by previous states that extends
from the new point of time to a future point of time. It
is important to note that when we create a child node
m of a node n (lines 7, 17, and 21), we only create a
new node if there does not already exist a node in the
graph labeled by T (m). Otherwise, we just create an
arc from node n to the existing node.

Lemma 1 Let T be a tableau for a L1 formula φ that
has resulted after the application of algorithm Clotho.
Then, T is finite. Actually, if φ is over a set of l vari-
ables, then T has at most O(|B|l2·(|φ|+1)3 · 2length(φ))
nodes.

To decide the satisfiability of a L1 formula φ using the
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Figure 4: A L1 formula and its simplified tableau

tableau that is generated by Clotho, we have to elimi-
nate unsatisfiable nodes inductively, until a fixed point
is reached. We present Atropos, an algorithm that
achieves this goal, shown in Algorithm 2. If the root
node is eliminated after the application of Atropos, we
call the tableau closed, and open otherwise. Note that
function Lachesis essentially searches for a path from
a given pre-state to a node that fulfills an eventuality
of the pre-state, as defined in Definition 10.

Example. Let us consider formula φ = {EQ(x ,y),
PO(#x, #y), TPP (x, #x), TPP (y, #y), TPP (x,
#y), 3DC(x, y)}. (For simplicity we assume that
the decomposition rule for ∧ has already been applied
and resulted in the current set form for formula φ.)
The tableau obtained by the application of algorithms
Clotho and Atropos for this formula is shown in
Figure 4. Horizontal dotted lines distinguish between
different points in time, thus, our tableau extends over
three points of time. The root node is 1, the states are
5 to 12, 14, 15, 17, and 18, and the pre-states are 1,
13, and 16. By decomposing the initial formula using
the tableau rules and populating it with universal



relations where appropriate, we reach states 5 to 12,
each one of which harbors a set of base relations that
correspond to an atomic QCN. (Inverse relations
are not shown to save space.) These atomic QCNs
represent a set of atomic spatial constraints in a
fixed-width window of time. After leaping to the next
point of time and, consequently, obtaining pre-state
13, we include all the atomic spatial constraints of the
aforementioned QCNs that extend from the new point
of time to a future point of time. In this particular
case, the atomic spatial constraints of interest narrow
down to the single atomic constraint PO(#x,#y),
common for all states 5 to 12. Of course, since we
are now at the next point of time, the constraint is
rewritten to PO(x, y). Again, we apply the rules and
reach states 14 and 15, each one of which harbors an
atomic QCN. We continue repeating the process until
all our child nodes are labeled by sets of formulas
already met in nodes of the tableau. In this case, the
unique child node of state 18 would be labeled by
the set of formulas of node 16, thus, we create an arc
from 18 to 16. After having constructed our tableau,
we delete unsatisfiable nodes 2, 5 to 11, and 14 using
the �-consistency operation on QCNs N (2), N (5)
to N (11), and N (14) respectively. Inconsistencies
stemming from nodes 2 and 14 are apparent, as
there exist different base relations on a same pair
of variables, whereas inconsistencies in nodes 5 to
11 stem from the fact that relation TPP (y,#x) is
inferred by �-consistency, which contradicts with the
base relation that is defined on variables y and #x
in states 5 to 11. Formula φ is satisfiable, as the
tableau is open, and a model can be constructed out
of the sequence of states 12,15,17 which contains a
self loop on 17 as relation DC(x, y) repeats itself.
These states harbor satisfiable atomic QCNs that
completely agree on their common part due to our
construction. In particular, we have the sequence
N (12)→N (15)→N (17) 	 that satisfies the prerequi-
sites of Proposition 2, hence, satisfiability is met.

5.3 Soundness and completeness of our semantic
tableau method

In this section, we prove that the tableau method as
defined by algorithms Clotho and Atropos is sound and
complete for checking the satisfiability of a L1 for-
mula φ.

Theorem 2 (soundness) If φ has a closed tableau,
then φ is unsatisfiable.

Proof. Let T be a closed tableau for φ, that has re-
sulted after the application of algorithms Clotho and

Atropos. We prove by induction that if a node n is
eliminated, then T (n) is an unsatisfiable set of formu-
las. We distinguish three scenarios:

(i) a node n is eliminated because N (n) is an unsat-
isfiable QCN (lines 4 to 5 in Atropos), thus, T (n)
is an unsatisfiable set of formulas; unsatisfiability
of N (n) can de detected by use of �-consistency,
which also disallows the conjunction of two or
more base relations to be defined on a same pair
of variables (base relations are jointly exhaustive
and pairwise disjoint as noted in Section 2).

(ii) a node n is eliminated because all of its child
nodes are unsatisfiable and have been eliminated
(lines 6 to 7 in Atropos). Child nodes can be
created in the following three cases:
(a) the decomposition rule ψ → Γ, where ψ ∈
T (n), is applied and a child node is created
for each γ ∈ Γ (lines 4 to 9 in Clotho); we
have that ψ is satisfiable iff ∃γ ∈ Γ that is
satisfiable.

(b) implicit knowledge in the parent node n is
made explicit in the child node m through
the introduction of the universal relation B
(lines 10 to 19 in Clotho); by Definition 8
we have that N (n) = N (m), thus, N (n)
is satisfiable iff N (m) is satisfiable, and the
same holds for the set of formulas T (n) and
T (m).

(c) node n is a state and generates pre-state
m with T (m) = {ψ | # ψ ∈ T (n)} ∪
{P (#i−1u,#j−1v) | P (#iu,#jv) ∈ T (n)
if i, j ≥ 1} (lines 20 to 24 in Clotho);
clearly, T (n) is a satisfiable set of formu-
las iff {ψ | # ψ ∈ T (n)} is a satisfiable set
of formulas and iff N (m) is satisfiable.

(iii) a node n is eliminated if it contains an eventu-
ality that cannot be fulfilled in any path in the
tableau (lines 8 to 9 in Atropos); since any model
will correspond to a path in the tableau, we have
that T (n) is an unsatisfiable set of formulas.

As we have considered all possible scenarios, at this
point we conclude our proof. a

Let us obtain a proposition that denotes that two
successive states in a path of an open tableau harbor
QCNs that completely agree on their common part.

Proposition 3 Let π be a path going through an open
tableau T for a L1 formula φ that has resulted after
the application of algorithms Clotho and Atropos, st
and st+1 two states of π belonging to points of time
t and t + 1 respectively, and {x0, . . . , xl} the set of
variables in φ. Then we have that N (st)[v

k
m, v

k′

m′ ] =

N (st+1)[vk−1m , vk
′−1
m′ ] ∀m,m′ ∈ {0, . . . , l} and ∀ k, k′ ∈

{1, . . . , |φ|}.



Proof. State st at point of time t is followed by a
pre-state p at point of time t+ 1 in path π, whose set
of base relations is {P (#i−1u,#j−1v) | P (#iu,#jv) ∈
T (st) if i, j ≥ 1} ∪ {P (#iu,#jv) | #P (#iu,#jv) ∈
T (st)} by construction of our tableau (lines 20 to 24
in Clotho). The set of base relations of T (p) is car-
ried over, possibly enriched, to state st+1 at point of
time t + 1. As such, let us assume that there exists
an additional base relation b(#i−1u,#j−1v) in the set
of base relations of st+1, with i, j ∈ {1, . . . , |φ|}, such
that b(#iu,#jv) 6∈ T (st). In this case, N (st+1) is a
QCN with two base relations defined on a same pair of
variables. This QCN would have been deleted by the
application of Atropos as specified also in the proof
of Theorem 2. Thus, state st+1 could not have been
in path π, resulting in a contradiction. Therefore,

we have that N (st)[v
k
m, v

k′

m′ ] = N (st+1)[vk−1m , vk
′−1
m′ ]

∀ m,m′ ∈ {0, . . . , l} and ∀ k, k′ ∈ {1, . . . , |φ|}, and,
as such, N (st) and N (st+1) completely agree on their
common part. a

Theorem 3 (completeness) If φ has an open
tableau, then φ is satisfiable.

Proof. Let T be an open tableau for φ, that has
resulted after the application of algorithms Clotho and
Atropos. We need to show that there exists a path of
nodes π which defines a model for φ. We distinguish
two scenarios:

(i) if no eventualities need to be fulfilled, path π can
be simply a path starting from the root node and
going through the tableau, defining a sequence of
states s0,s1,. . .,st, with t ∈ N, and, consequently,
yielding a sequence of QCNs as follows:

N (s0)→ N (s1) . . .→ N (st)

The sequence of QCNs is such that for all states
si and si+1, with i ∈ {0, . . . , t − 1}, along with
a set of variables {x0, . . . , xl} in φ, we have that

N (si)[v
k
m, v

k′

m′ ] = N (si+1)[vk−1m , vk
′−1
m′ ] ∀ m,m′ ∈

{0, . . . , l} and ∀ k, k′ ∈ {1, . . . , |φ|} by Proposi-
tion 3. Thus, the sequence of QCNs corresponds
to the sequence shown in Figure 2, satisfies the
prerequisites of Proposition 1, and is therefore
satisfiable.

(ii) if eventualities need to be fulfilled, we show how
we can construct a path π that fulfills all even-
tualities as follows. For each pre-state p ∈ T
containing an eventuality, we must find a path
πp = 〈p, . . .〉 starting from p, such that all the
eventualities contained in p are fulfilled in πp.
We fulfill all the eventualities of p, one by one,
as follows. For a selected eventuality ε ∈ T (p), it
is possible to find a path πp = 〈p, . . . , p′〉 in which

ε is fulfilled and whose last node is a pre-state p′,
as otherwise the node would have been deleted
by the application of Atropos. By construction
of our tableau, p′ will also contain the rest of the
eventualities that need to be fulfilled (they are
carried over from p to p′), and it follows that we
can extend path πp to fulfill a second one, and so
on, until all the eventualities of p are fulfilled. By
linking together all paths πp ∀ pre-states p ∈ T ,
we can obtain a path π starting from the initial
node and going through the tableau, defining a
sequence of states s0,s1,. . .,st−1, with t ∈ N, with
a final loop between state st−1 and a state st′ ,
with 0 ≤ t′ ≤ t − 1. The loop exists due to the
fact that at point of time t − 1 there exists a
node n, whose child node m is such that T (m)
= T (o), where o is a node at point of time t′. In
particular, we can view the sequence of states as
a sequence of QCNs as follows:

N (s0)→ N (s1) . . .→ N (st′) . . .→ N (st−1)

The sequence of QCNs is such that for all states
si and si+1, with i ∈ {0, . . . , t − 2}, along with
a set of variables {x0, . . . , xl} in φ, we have that

N (si)[v
k
m, v

k′

m′ ] = N (si+1)[vk−1m , vk
′−1
m′ ] ∀ m,m′ ∈

{0, . . . , l} and ∀ k, k′ ∈ {1, . . . , |φ|} by Proposi-
tion 3. Further, if we were to extend path π,
we would obtain a state st with N (st)[v

k
m, v

k′

m′ ]

= N (st′)[v
k
m, v

k′

m′ ] ∀ m,m′ ∈ {0, . . . , l} and ∀
k, k′ ∈ {0, . . . , |φ|} (i.e., st replicates the same set
of spatial constraints with st′ , hence, the loop).
Thus, the sequence of QCNs corresponds to the
sequence shown in Figure 3, satisfies the prereq-
uisites of Proposition 2, and is therefore satisfi-
able.

As we have considered all possible scenarios, at this
point we conclude our proof. a

6 Conclusion

In this paper, we considered a generalized qualitative
spatiotemporal formalism, namely, the L1 logic, which
is the product of the combination of PTL with any
qualitative spatial constraint language, such as RCC-8,
Cardinal Direction Algebra, and Block Algebra, and
showed that satisfiability checking of a L1 formula is
PSPACE-complete if the constraint language consid-
ered has the properties of compactness and patchwork
for atomic networks, thus, strengthening previous re-
sults that required atomic networks to be globally con-
sistent and generalizing to a larger class of calculi.
Further, we presented a first semantic tableau method,
that given a L1 formula φ systematically searches for
a model for φ. The method presented builds on the



tableau method for PTL of Wolper, and makes use of
our strengthened results to ensure soundness and com-
pleteness.

7 Future Work

In this paper, we implicitly considered that the sat-
isfiability problem in a qualitative spatial constraint
language relies on some canonical model, i.e., a struc-
ture that allows to model any (syntactically) consis-
tent QCN. It is a very interesting future direction
to consider domain interpretations that involve deter-
mined entities (constants) for a given qualitative spa-
tial constraint language, and not just abstract infinite
domains as it is normally the case. It has been shown
that such domain intepretations do not always yield
semantic truth when combined with the algorithms
that are typically used in conjuction with some canon-
ical model to derive the satisfiability of a QCN [10].
Therefore, we need to explore this implication in the
satisfiability problem in L1.
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