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Abstract. Knowledge Representation and Reasoning has been quite
successfull in dealing with the concepts of time and space separately.
However, not much has been done in designing qualitative spatiotem-
poral representation formalisms, let alone reasoning systems for that
formalisms. We introduce a qualitative constraint-based spatiotempo-
ral framework using Point Algebra (PA), that allows for defining for-
malisms based on several qualitative spatial constraint languages, such
as RCC-8, Cardinal Direction Algebra (CDA), and Rectangle Algebra
(RA). We define the notion of a qualitative spatiotemporal constraint
network (QSTCN) to capture such formalisms, where pairs of spatial
networks are associated to every base relation of the underlying network
of PA. Finally, we analyse the computational properties of our framework
and provide algorithms for reasoning with the derived formalisms.
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1 Introduction

Qualitative Reasoning is based on qualitative abstractions of aspects of the
common-sense background knowledge, such as space and time, on which our
human perspective on the physical reality is based. Spatiotemporal reasoning
has become a significant field of research in Qualitative Reasoning, and, more
generally, in Knowledge Representation and Reasoning. This field is essential for
a plethora of areas and domains that include dynamic GIS, cognitive robotics,
spatiotemporal design, and planning [5, 13].

The Point Algebra (PA) [2,3,21] is one of the dominant Artificial Intelligence
approaches for representing and reasoning about qualitative temporal relations,
and forms the basis of several richer temporal languages, such as Interval Algebra
(IA) [1]. In particular, PA encodes temporal relations between two points in the
timeline. Likewise, a fragment of the Region Connection Calculus [16], namely,
RCC-8, Cardinal Direction Algebra (CDA) [8], and Rectangle Algebra (RA) [12],
are among the dominant Artificial Intelligence approaches for representing and
reasoning about qualitative spatial relations. In particular, RCC-8 encodes topo-
logical relations between two regions that are non-empty regular subsets of some



topological space, CDA encodes direction relations between spatial objects, and
RA encodes relative position relations between multi-dimensional objects. All
these qualitative constraint languages have been extensively studied separately,
but there has not been a framework so far that allows for combining them in
unique formalisms in order to reason about both time and space effectively.

The spectrum of spatiotemporal formalisms has mainly focused on adopting
the propositional temporal logic (PTL), and combining it with RCC-8 [22] or
even richer fragments than RCC-8, such as the modal logic S4u [9] interpreted
over topological spaces. A study of such formalisms along with their computa-
tional properties can be found in [23]. Most of the PTL-based formalisms are
very elegant and expressive, but deciding their satisfiability is PSPACE-complete
at best [9]. Delving deeper into modal logics, there have been multimodal logic
approaches to qualitative spatiotemporal reasoning studied in the works of Bur-
rieza et al. [6, 7], Muñoz-Velasco et al. [15], and Golinska-Pilarek et al. [11].

Unfortunately, constraint-based formalisms have not been paid the attention
they deserve except in the work of Gerevini et al. [10] where the Interval Algebra
(IA) [1] is combined with RCC-8 in a unique spatiotemporal formalism called
STCC.

We take a similar approach to that of Gerevini et al. [10] by creating a
framework that allows for combining a qualitative temporal constraint language
with a spatial one, namely, PA with any spatial language such as RCC-8, CDA,
and RA, and make the following contributions: (i) we define our framework in
detail and describe the notion of a qualitative spatiotemporal constraint network
(QSTCN), (ii) we analyse the computational properties of our framework and
provide algorithms for reasoning with the derived formalisms.

Our approach is different to that of Gerevini et al. [10] in that we associate
pairs of spatial networks to every base relation of a network of PA, while Gerevini
et al. associate a spatial network to every variable of a network of Interval Al-
gebra (IA) [10]. Thus, our approach is more flexible and richer. In particular,
Gerevini et al. associate a static spatial configuration to a temporal interval (a
variable of IA) which leads to a very rigid framework; every time two temporal
intervals overlap in any way, it is clear that the associated spatial configurations
must be identical for both intervals, as we can only have a unique spatial config-
uration within a period of time. This leads to NP-completeness even in trivial
cases where one only uses base relations and the two universal1 relations of the
qualitative constraint languages considered (Theorem 2 in [10]). On the other
hand, and as we will explore later in the paper, our framework allows for many
tractability cases that include large fragments of the relations of the qualitative
constraint languages considered. Further, Gerevini et al. handle a maximum of
O(n) spatial configurations for a IA network of n variables. Since we associate
spatial configurations to every base relation of a network of PA, and every such
network of n variables can have O(n2) relations, we consider in total O(n2)

1The universal relation of a qualitative constraint language is the non-restrictive
relation that contains all base relations. It signifies the lack of knowledge between two
entities in a qualitative constraint network.



pairs of spatial configurations. Moreover, taking into account the semantics of
the base relations {<,=, >} of PA, that is, their natural interpretation over time
points in Q, a pair allows us to capture both the past and the future of a spatial
configuration with a particular base relation. For example, we can think of base
relation < as a relation that associates the past of a spatial configuration with
its future. Therefore, we have the ability to define general laws about qualitative
change, which the formalization proposed by Gerevini et al. lacks [10].

The paper is organized as follows. Section 2 introduces the notion of qualita-
tive constraint languages. In Section 3 we define our framework and the concept
of a QSTCN, analyse its computational properties, and present algorithms for
reasoning with derived formalisms. Finally, in Section 4 we conclude and discuss
future work.

2 Preliminaries

A (binary) qualitative temporal or spatial constraint language [18] is based on a
finite set B of jointly exhaustive and pairwise disjoint (JEPD) relations defined
on a domain D, called the set of base relations. The set of base relations B
of a particular qualitative constraint language can be used to represent definite
knowledge between any two entities with respect to the given level of granularity.
B contains the identity relation Id, and is closed under the converse operation
(−1). Indefinite knowledge can be specified by unions of possible base relations,
and is represented by the set containing them. Hence, 2B will represent the
set of relations. 2B is equipped with the usual set-theoretic operations (union
and intersection), the converse operation, and the weak composition operation.
The converse of a relation is the union of the converses of its base relations.
The weak composition � of two relations s and t for a set of base relations B
is defined as the strongest relation r ∈ 2B which contains s ◦ t, or formally,
s � t = {b ∈ B | b ∩(s ◦ t) 6= ∅}, where s ◦ t = {(x, y) | ∃z : (x, z) ∈ s ∧ (z, y) ∈ t}
is the relational composition.

The qualitative temporal constraint language PA [2, 3, 21] consists of the set
of base relations {<,=, >}, where the relation symbols display the natural in-
terpretation over time points in Q. We denote the set of base relations of PA
by BPA. Thus, 2BPA represents the set of relations {∅, <,=, >,≤,≥, 6=,= ∨ 6=},
with = being the identity relation. (Note that 6= is an abbreviation for > ∨ <,
≥ an abbreviation for > ∨ =, and ≤ an abbreviation for < ∨ =.) Likewise,
qualitative spatial constraint languages RCC-8 [16], CDA [8], and RA [12] have
their own set of base relations. As an example, RCC-8 consists of the set of base
relations BRCC8 = {DC (disconnected), EC (externally connected), PO (par-
tially overlaps), TPP (tangential proper part), NTPP (non-tangential proper
part), TPPi (tangential proper part inverse), NTPPi (non-tangential proper
part inverse), EQ (equals)}, with EQ being the identity relation, and 2BRCC8

enumerates a total of 256 relations.
Qualitative temporal or spatial constraint languages can be formulated as

qualitative constraint networks (QCNs) as follows:



Definition 1. A QCN is a pair N = (V,C) where V is a finite set of variables
and C a mapping associating a relation C(v, v′) ∈ 2B, to each pair (v, v′) of
V ×V . C is such that C(v, v) ⊆ Id and C(v, v′) = (C(v′, v))−1 for every v, v′ ∈ V .

Note that we always regard a QCN as a complete network. Given two QCNs
N = (V,C) and N ′ = (V,C ′), N ∩ N ′ denotes the QCN N ′′ = (V,C ′′) where
C ′′ = C(v, v′) ∩ C ′(v, v′) for every v, v′ ∈ V .

Definition 2. A solution of a QCN N = (V,C) is a mapping σ defined from V
to the domain D, such that ∀(v, v′) ∈ V ×V , (σ(v), σ(v′)) satisfies C(v, v′), i.e.,
the base relation b defined by (σ(v), σ(v′)) exists in C(v, v′). N is consistent or
satisfiable iff it admits a solution. A sub-QCN N ′ of N is a QCN (V,C ′) such that
C ′(v, v′) ⊆ C(v, v′) for every v, v′ ∈ V . An atomic QCN is a QCN where each
constraint is defined by a base relation. A scenario of N is an atomic consistent
sub-QCN of N . N admits a solution iff it admits a scenario. Given a QCN N =
(V,C), base relation r is feasible iff there exists a scenario Natomic = (V,Catomic)
of N such that Catomic(v, v

′) = {r}. A QCN N is minimal iff it comprises only
feasible relations.

Checking the consistency of a QCN of PA can be done in polynomial time,
O(n3), using a path consistency algorithm [2].2 It follows that the whole set
of relations of PA, viz., 2BPA , is tractable. On the other hand, QCNs of RCC-8,
CDA, and RA are intractable in the general case. However, there exist large max-
imal tractable subclasses of their relations, for which the satisfiability problem
is tractable. As an example, checking the consistency of a QCN of RCC-8 is NP-
complete in general [19], but there exist the maximal tractable subclasses Ĥ8, C8,
and Q8 [17] for which the satisfibility problem is tractable. Checking the consis-
tency of a QCN of RCC-8, CDA, or RA comprising only relations from maximal
tractable subclasses can be done in polynomial time, O(n3) in particular, using
a path consistency algorithm.

3 A Spatio-Temporal framework based on Point Algebra

We obtain a spatiotemporal framework by defining the concept of a qualita-
tive spatiotemporal constraint network (QSTCN) that builds on PA and allows
plugging in any spatial constraint language, such as RCC-8, CDA, and RA. In
particular, in a QSTCN we assign a pair of spatial QCNs to every base relation
of the underlying QCN of PA. We formally define a QSTCN as follows.

Definition 3. A QSTCN is a tuple N = (VT, VS, C, α), where VT is a finite
set of temporal variables, VS is a finite set of spatial variables, C a mapping
associating a relation C(v, v′) ∈ 2BPA to each pair (v, v′) ∈ VT × VT, and α

a mapping associating a pair of spatial QCNs (N r(v,v′)
v ,N r(v,v′)

v′ ) to each base

2Actually, in [2, chap. 3] there exists an even faster, but very particular algorithm,
that checks the consistency of a QCN of PA in O(n2) time. The path consistency
algorithm is a more general approach that applies to most qualitative calculi.
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Fig. 1: Example of a QSTCN

relation r(v, v′) ∈ C(v, v′), i.e., α(r(v, v′)) = (N r(v,v′)
v ,N r(v,v′)

v′ ). By overloading
notation α(C(v, v′)) = {α(r(v, v′)) | r(v, v′) ∈ C(v, v′)}. C is such that C(v, v) ⊆
{=} and C(v, v′) = (C(v′, v))−1 ∀v, v′ ∈ VT, and α is such that all spatial QCNs
Nv, where v ∈ VT, share the same set of spatial variables VS, N v=v′

v ≡ N v=v′

v′ ,
and α(C(v, v′)) = {(second entry of 2-tuple t, first entry of 2-tuple t) | t ∈
α(C(v′, v)))} for all v, v′ ∈ VT.

Example 1. An example of a QSTCN N is presented in Figure 1. To begin with,
N builds upon a QCN of PA that comprises the set of temporal variables {x, y, z}
and the set of constraints {x < y, y < z, x < z} (using infix notation). In a sense,
a scenario of a QCN of PA yields a totally ordered set of points in a finite time-
line ranging over values in Q. Thus, it allows us to a acquire a description of
how a spatial configuration evolves over time. For every base relation between
every pair of variables of the QCN of PA, a pair of spatial configurations is at-
tached. For the sake of our example, we can view these configurations as QCNs
of RCC-8. All QCNs of RCC-8 share the same set of spatial variables VS, which
in our case comprises the image of the moon and the sun. In fact, our example
describes an eclipse. The pair of QCNs of RCC-8 attached to the base relation
< between temporal variables x and y is the pair (N x<y

x ,N x<y
y ). N x<y

x com-
prises the set of constraints {PO(moon, sun)}, and N x<y

y comprises the set of
constraints {EQ(moon, sun)}. Upon instatiation of the base relation < between
variables x and y, variable x acquires QCN N x<y

x and variable y acquires QCN
N x<y

y .

In the above example, we can think of relation < as a relation that associates
the past of a spatial configuration with its future. Likewise, relation > associates
the future of a spatial configuration with its past, and relation = describes only
one unique spatial configuration at a point of time, i.e., N v=v′

v ≡ N v=v′

v′ for all
v, v′ ∈ VT. Another way to think of a base relation of a QCN of PA is like the
command c of a Hoare triple {p} c {q}, where p and q are its assertions, p is



named the precondition and q the postcondition. When the precondition is met,
executing the command establishes the postcondition. In our example, N x<y

y is
identical to N y<z

y . However, in general we do not require spatial QCNs associated
to a variable v ∈ VT from different sources to be identical to one another.

The formalization that we propose does not only permit us to describe a
spatial configuration that changes over time, but also to state general laws of
how the spatial configuration changes by describing the transition from its past
to its future within a pair. The formalization proposed by Gerevini et al. [10],
lacks this ability to define general laws about qualitative change. Depending on
the qualitative spatial constraint language considered, one can use the pairs of
spatial configurations to restrict the movement, the direction, the position, the
topology, or any other sort of property of a spatial configuration between two
different points in time. This makes our approach very favorable for applications
in many fields that deal with qualitative change, such as dynamic GIS, cognitive
robotics, spatiotemporal design, and spatiotemporal planning [5, 13].

Definition 4. A solution of a QSTCN N = (VT, VS, C, α) is a solution of the
underlying QCN of PA, that is compatible with a solution of every spatial QCN
associated to every v ∈ VT. N is consistent or satisfiable iff it admits a solution.
A sub-QSTCN N ′ of N is a QSTCN where the underlying QCN of PA is a sub-
QCN of the underlying QCN of PA of N and all associated spatial QCNs are sub-
QCNs of the corresponding spatial QCNs of N . An atomic QSTCN is a QSTCN
where the underlying QCN of PA is atomic and all associated spatial QCNs are
atomic. A scenario of N is an atomic consistent sub-QSTCN of N . N admits a
solution iff it admits a scenario.

Theorem 1. Checking the consistency of a given QSTCN N is NP-complete.

Proof. Suppose that you are provided with a candidate scenario of a given
QSTCN N = (VT, VS, C, α). To check whether the candidate scenario is indeed a
scenario of the given QSTCN, we must first use the path consistency algorithm
to check if the temporal scenario is consistent, which takes O(n3) time, where
n = |VT|. Then, we can check the consistency of all the linear in the number n
of temporal variables spatial QCNs in O(n · m3) time, where m = |VS|, again
with the path consistency algorithm. NP-hardness follows from the fact that
checking the consistency of a single spatial QCN is NP-complete (intractable).
Hence, checking the consistency of a given QSTCN N is NP-complete. ut

The rest of this section is devoted to characterizing cases for which we have
tractability.

We first define a classical constraint satisfaction problem (CSP [14]) NS that
corresponds to the spatial aspect of a QSTCN N where the spatial QCNs rep-
resent definite knowledge between entities, i.e., they are atomic. Inconsistent
atomic QCNs are filtered out with a path consistency algorithm. An atomic
QCN can be seen as a constant value, as it yields a unique minimal signature of
itself.



Definition 5. Given a QSTCN N = (VT, VS, C, α) where the associated spatial
QCNs are atomic, NS = 〈X,D,R〉 will correspond to the constraint satisfaction
problem where:
– the set of variables X = {x1, . . . , xn} with n = |VT|,
– the set of domains D = {d1, . . . , dn} where di = {⋂({first entry of 2-tuple t
| t ∈ α(C(vi, vj))} or {second entry of 2-tuple t | t ∈ α(C(vj , vi))}) | vj ∈ VT}
for all i with 0 ≤ i ≤ n,

– and the set of binary constraints R = {r(xi, xj) | 0 ≤ i, j ≤ n} where
each r(xi, xj) = {first entry of 2-tuple t ∈ di and second entry of 2-tuple t
∈ dj | t ∈ α(C(vi, vj))}.

The observant reader will note that respecting the definitions for the set of
variables X, the set of domains D, and the set of constraints R for NS, will result
in a node and arc consistent network.

Example 2. Let us consider the QSTCNN = (VT, VS, C, α), where VT = {x, y, z},
C(x, y) ⊆ {<}, C(y, z) ⊆ {>}, C(x, z) ⊆ {<,=}, α(C(x, y)) = {(ax<y

x , bx<y
y )},

α(C(y, z)) = {(by>z
y , cy>z

z )}, and α(C(x, z)) = {(ax<z
x , cx<z

z ),(bx=z
x , bx=z

z )}. Note
that a, b, and c correspond to different atomic spatial QCNs over a set of variables
VS, i.e., we can consider them as constant domain values. We can view the CSP
NS with a set of variables {xs, ys, zs}, value domain {a} for variable xs, value
domain {b} for variable ys, value domain {c} for variable zs, and constraints
r(xs, ys) = {(ax<y

x , bx<y
y )}, r(ys, zs) = {(by>z

y , cy>z
z )}, and r(xs, zs) = {(ax<z

x ,
cx<z
z )}. (Note that r(xs, zs) ⊂ α(C(x, z)).)

Proposition 1. Given a QSTCN N = (VT, VS, C, α) where the associated spatial
QCNs are atomic, we have that for NS = 〈X,D,R〉 the size of domain di for
each variable xi ∈ X is at most 3, and each constraint r ∈ R contains at most
three 2-tuples.

Proof. It is easy to see that each v ∈ VT can be associated with at most three
different atomic QCNs, as there can be at most three PA base relations in any
constraint C(v, v′), where v′ ∈ VT, and each PA base relation contributes a
single atomic spatial QCN to v (and a single atomic spatial QCN to v′). Thus,
the possible atomic spatial QCNs for each v ∈ VT will be the intersection of
all atomic spatial QCNs contributed from each constraint C(v, v′), which can
be at most three. Further, each PA base relation can contribute a single unique
2-tuple, thus, each constraint C(v, v′) can contribute at most three. ut

We note that in a CSP a binary constraint r(xi, xj) between variables xi
and xj can be represented as a (0, 1)-matrix with |di| rows and |dj | columns
by imposing an ordering on the domains of the variables [14]. The entries that
correspond to the 2-tuples of a binary constraint have value 1, and all others
have value 0.

Definition 6 ([4]). A binary relation r(xi, xj) represented as a (0, 1)-matrix is
row convex iff in each row all of the 1s are consecutive; that is, no two 1s within
a single row are separated by a 0 in that same row.



Based on the definition of the notion of row convexity we can obtain the
definition of the weaker notion of directional row convexity which is sufficient
for the results in our paper.

Definition 7 ([4]). Given a binary CSP N = 〈X,D,R〉 and an ordering x1 . . . xn
of its variables, network N is directionally row convex if each of the binary rela-
tions r(xi, xj) represented as a (0, 1)-matrix, where xi occurs before variable xj
in the ordering, is row convex.

Then we have the following result from literature:

Theorem 2 ([4]). Let N = 〈X,D,R〉 be a path consistent binary CSP. If there
exists an ordering of the variables x1, . . . , xn of X (and of their respective do-
mains) such that the constraints of R are directionally row convex, then a solu-
tion for N can be found without backtracking.

By Proposition 1 we can deduce that for a CSP NS = 〈X,D,R〉 that corre-
sponds to a QSTCN N = (VT, VS, C, α) where the associated spatial QCNs are
atomic, all binary constraints in the set of constraints R can be represented by a
i× j (0, 1)-matrix, with i, j ≤ 3, with at most three entries of 1s. By exhaustive
enumeration of all the possible constraints of a CSP NS it can be found that
such a network always is, or can be made, directionally row convex. Therefore,
by Theorem 2 we can have the following result:

Theorem 3. Given a QSTCN N = (VT, VS, C, α) where the associated spatial
QCNs are atomic, applying path consistency on the derived CSP NS = 〈X,D,R〉
is sufficient to guarantee a backtrack-free solution for NS.

Proof. As noted earlier, given a CSP NS = 〈X,D,R〉 that corresponds to a
QSTCN N = (VT, VS, C, α) where the associated spatial QCNs are atomic, all
binary constraints in the set of constraints R can be represented by a i × j
(0, 1)-matrix, with i, j ≤ 3, with at most three entries of 1s. This property will
obviously hold even after path consistency is applied on NS as the size of the
domains can only decrease. Thus, we will obtain a path consistent CSP NS where
the maximum domain size will be at most 3. Then, we can sort the variables of
NS according to their domain size in decreasing order and we will obtain i × j
(0, 1)-matrices, with i, j ≤ 3 and i ≥ j. All 3× 3 (0, 1)-matrices are row convex
since they can have at most three entries of 1s and, thus, only a single 1 can exist
at each row and column, otherwise it would be a i × j (0, 1)-matrix with i < 3
or j < 3. The rest of the matrices of NS, always assuming the aforementioned
ordering, will be i× j (0, 1)-matrices with i ≤ 3 and j ≤ 2 and j ≤ i. It is clear
that for a number of columns less than or equal to 2 (j ≤ 2) the corresponding
matrix is row convex, as we need at least three colummns for a 0 to exist between
two 1s in a single row. Thus, there exists an ordering for which NS is directionally
row convex. The result follows directly from the implication of Theorem 2. ut

It is time to introduce our path consistency algorithm, that operates both on
the temporal and the spatial aspect of a QSTCN N . We note that the composi-
tion of two constraints for the corresponding CSP NS is the standard relational



Algorithm 1: stPC(N , NS)

in : A QSTCN N = (VT, VS, C, α), and CSP NS = 〈X,D,R〉.
output : False if network N results in a trivial inconsistency (contains the

empty relation), True if the modified network N is path consistent.
1 begin
2 Q ← {(i, j) | (i, j) ∈ VT × VT};
3 while Q 6= ∅ do
4 (i, j) ← Q.pop();
5 foreach k ← 1 to VT, (i 6= k 6= j) do
6 t ← C(i, k) ∩ ((C(i, j) � C(j, k)) ∩ α−1(r(is, js) ◦ r(js, ks)));
7 if t 6= C(i, k) then
8 if t = ∅ then return False;
9 C(i, k) ← t; C(k, i) ← t−1;

10 Q ← Q ∪ {(i, k)};
11 t ← C(k, j) ∩ ((C(k, i) � C(i, j)) ∩ α−1(r(ks, is) ◦ r(is, js)));
12 if t 6= C(k, j) then
13 if t = ∅ then return False;
14 C(k, j) ← t; C(j, k) ← t−1;
15 Q ← Q ∪ {(k, j)};

16 return True;

composition. Given for example two 2-tuples of atomic QCNs (a, b) and (b, c),
(a, b) ◦ (b, c) yields 2-tuple (a, c).

Algorithm stPC presented in Algorithm 1 receives as input a QSTCN N
and its spatial CSP NS , and performs path consistency on both the under-
lying PA network and network NS. This is achieved by iteratively performing
a composition operation both on the temporal and the spatial aspect of net-
work N in lines 6 and 11. Let us refer to Example 2. We have a QSTCN
N = (VT, VS, C, α), where VT = {x, y, z}, C(x, y) ⊆ {<}, C(y, z) ⊆ {>},
C(x, z) ⊆ {<,=}, α(C(x, y)) = {(ax<y

x , bx<y
y )}, α(C(y, z)) = {(by>z

y , cy>z
z )},

and α(C(x, z)) = {(ax<z
x , cx<z

z ),(bx=z
x , bx=z

z )}, and CSP NS with a set of vari-
ables {xs, ys, zs}, value domain {a} for variable xs, value domain {b} for variable
ys, value domain {c} for variable zs, and constraints r(xs, ys) = {(ax<y

x , bx<y
y )},

r(ys, zs) = {(by>z
y , cy>z

z )}, and r(xs, zs) = {(ax<z
x , cx<z

z )}. The composition
C(x, y) �C(y, z) regarding PA, yields the set of relations {<,=, >} which is the
universal relation BPA. Since C(x, z) ⊆ {<,=} ⊂ BPA, the underlying PA network
of QSTCN N is path consistent. However, the composition r(xs, ys) ◦ r(ys, zs)
yields the set {(ax<z

x , cx<z
z )}. Therefore, since α−1(r(xs, ys) ◦ r(ys, zs)) = {<},

we must intersect {<} with {<,=} to acquire the set of relations {<} for C(x, z).
As a result, network N will be path consistent for both its temporal and spatial
aspect. (Intersection is applied to the composition of pairs of base relations.)

We can assert the following proposition for the case of an atomic QSTCN:

Proposition 2. Given an atomic QSTCN N = (VT, VS, C, α) algorithm stPC
enforces path consistency on N and is able to correctly decide its consistency in
O(n3) time, where n = |VT|.



Proof. It is clear that algorithm stPC enforces path consistency on the underly-
ing QCN of PA and the corresponding CSP NS. Suppose though that the path
consistency of the temporal aspect is not interdependent to the path consistency
of the spatial aspect, and vice versa. Then, there should exist a triple of variables
i, j, and k for which we have that (C(i, j) � C(j, k)) ∩ α−1(r(is, js ◦ C(js, ks))
= ∅. Because of line 6 in the algorithm this is a contradiction, as stPC would
have returned False if this was the case. Since path consistency decides the con-
sistency of an atomic QCN of PA, and it also decides the consistency of CSP NS

by Theorem 3, it holds that it is able to decide the consistency of QSTCN N .
Algorithm stPC is a standard path consistency algorithm as the one described
in [20] for qualitative spatial reasoning which runs in O(n3) time. In our case
we only extend the usual composition operation with an additional check on the
spatial aspect of a given QSTCN N which can be done in constant time. ut

Let us now consider the more complicated case, where a QSTCN N =
(VT, VS, C, α) comprises atomic spatial QCNs and an underlying QCN of PA with
relations from the convex class of relations {∅, <,=, >,≤,≥,= ∨ 6=}, i.e., rela-
tion 6= is not premitted [2]. Then we have the following result from literature:

Theorem 4 ([2]). Let N be a path consistent QCN of PA. If N comprises
relations from the convex class of relations {∅, <,=, >,≤,≥,= ∨ 6=} then N is
minimal and globally consistent and a solution is found with no backtracking.

By Proposition 2, Theorem 3, and Theorem 4, we have the following result:

Theorem 5. Given a QSTCN N = (VT, VS, C, α) that comprises atomic spatial
QCNs, algorithm stPC enforces path consistency on N and is able to correctly
decide its consistency in O(n3) time, where n = |VT|, if the path consistent
underlying QCN of PA comprises relations from the convex class of relations
{∅, <,=, >,≤,≥,= ∨ 6=}, .

Proof. Enforcing path consistency with stPC on QSTCN N will result in a glob-
ally consistent underlying QCN of PA by Theorem 4, denoted by NPA, and a
path consistent corresponding spatial CSP NS, in a total of O(n3) time, where
n = |VT|. The proper scenarios (path consistent atomic networks) that exist for
NPA will be interdependent to respective scenarios of NS due to Proposition 2,
and vice versa. Thus, all scenarios of N , are both scenarios of NPA and NS.
Due to global consistency for NPA and the implication of Theorem 3 for NS, a
solution of N can be obtained by instantiating a single base relation of N , and
consistently extending it to a scenario of N in a backtrack-free manner. ut

Up to this point, and as long as tractability was the issue, we have been con-
cerned with a QSTCN N = (VT, VS, C, α) that comprises atomic spatial QCNs.
If the associated spatial QCNs are not atomic, it is not possible to construct the
corresponing spatial CSP NS as provided by Definition 5. This is mainly because
there is no way to know the possible values of the spatial QCNs that we will
obtain in a scenario of QSTCN N , i.e., it is no longer the case that spatial QCNs
yield unique constant values of themselves. Two non-atomic QCNs can intersect



and yield a different value, not just the empty relation ∅. A possible approach
would be to enumerate all the scenarios for each non-atomic QCN and use stPC
in the way that we described so far. However, for a QSTCN that comprises an
atomic underlying QCN of PA we can have the following result and a simple
algorithm sketched in its proof.

Theorem 6. Checking the consistency of a QSTCN N = (VT, VS, C, α) that
comprises an atomic underlying QCN of PA, has the same complexity with check-
ing the consistency of the associated spatial QCNs.

Proof. We can check the consistency of the underlying QCN of PA in O(n3) time,
where n = |VT|, with a path consistency algorithm. We then have to obtain the
set of spatial QCNs that correspond to each v ∈ VT. This would be the set
S = {N1, . . . ,N|VT|} where Ni = {⋂({first entry of 2-tuple t | t ∈ α(C(vi, vj))}
or {second entry of 2-tuple t | t ∈ α(C(vj , vi))}) | vj ∈ VT} for all i with
0 ≤ i ≤ |VT|. Set S can be constructed in O(n2 · m2) time, where m = |VS|.
In the case of atomic QCNs we could create constant values out of them, hash
values, and compare them in constant time. In this case, we need to go over the
O(m2) constraints for each spatial QCN and intersect them with the constraints
of another QCN. After that, checking the consistency of the spatial QCNs is in
P if they are tractable, i.e., they contain relations from a maximal tractable
subclass of relations, in O(n ·m3) time with a path consistency algorithm that
will go over n spatial QCNs, and in NP if the they are not tractable. ut

4 Conclusion and Future work

In this paper, we defined a qualitative constraint-based spatiotemporal frame-
work using Point Algebra (PA), that allows for defining formalisms based on
several qualitative spatial constraint languages, such as RCC-8, Cardinal Di-
rection Algebra (CDA), and Rectangle Algebra (RA). We formally defined the
notion of a qualitative spatiotemporal constraint network (QSTCN), studied its
computational properties for the consistency checking problem, and presented
algorithms for reasoning with derived formalisms.

Future work consists of further exploring cases of tractability, especially for
QSTCNs that comprise non-atomic spatial QCNs. Then, we would like to formally
define algorithms for these general QSTCNs, explore heuristics, introduce random
and real datasets, identify the phase transition region for such datasets, and
create and experiment with a benchmark of QSTCN instances for evaluation.
Further, we would like to extend our framework to pointisable IA [2].
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