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Abstract. We focus on the recently introduced problem of maximizing the num-
ber of satisfied constraints in a qualitative constraint network (QCN), called the
MAX-QCN problem. We present a particular local search method for solving the
MAX-QCN problem of a given QCN, which involves first obtaining a partial sce-
nario S of that QCN and then exploring neighboring scenarios that are obtained by
disconnecting a variable of S and repositioning it appropriately. The experimentation
that we have conducted with qualitative constraint networks from the Interval Alge-
bra shows the interest and promise of our approach for maximizing satisfiability in
qualitative spatial and temporal constraint networks.

1 Introduction
Qualitative spatial and temporal reasoning (QSTR) is a major field of study in Knowledge
Representation that abstracts from numerical quantities of space and time by using qualita-
tive descriptions instead (e.g., precedes, contains, left of). The representational languages
used in the qualitative approach have increasingly gained a lot of attention during the last
decades, as they have the advantage of being conceptually concise and sufficiently expres-
sive for a variety of applications in many areas, such as ambient intelligence, dynamic GIS,
cognitive robotics, and spatiotemporal design [2, 8, 14].

The Interval Algebra (IA) [1] and a subset of the Region Connection Calculus (RCC) [13],
namely RCC8, are the dominant calculi in QSTR for representing qualitative temporal and
spatial information respectively. In particular, IA encodes knowledge about the temporal
relations between intervals in the timeline (see Figure 1a), and RCC8 encodes knowledge
about the spatial relations between regions in some topological space. In addition to IA and
RCC8, numerous other qualitative calculi have been proposed in the literature for repre-
senting spatial and temporal information [10].

The problem of reasoning about qualitative spatial or temporal information can be mod-
elled as a qualitative constraint network (QCN), i.e., a network comprising constraints cor-
responding to qualitative spatial or temporal relations between spatial or temporal variables
respectively. In this paper, we focus on a recently introduced problem in the context of
QSTR, called the MAX-QCN problem [5]. Given a QCN N , the MAX-QCN problem is
the problem of obtaining a spatial or temporal configuration that maximizes the number of
satisfied constraints in N . Solving the MAX-QCN problem is clearly at least as difficult as
solving the consistency problem, which is NP-complete in general. To solve this optimiza-
tion problem, the authors in [5] propose a branch and bound algorithm based on state of



the art techniques for checking the consistency of a QCN, viz., the use of a triangulation
of the constraint graph of the considered QCN to reduce the number of constraints to be
treated, the use of a tractable subclass of relations to reduce the width of the search tree, and
the use of partial �-consistency to efficiently propagate constraints and consequently prune
non-feasible base relations during search. In another approach, the authors in [6] view the
MAX-QCN problem as a partial maximum satisfiability problem (PMAX-SAT) and pro-
pose two related families of encodings. Each proposed PMAX-SAT encoding is based on,
what is called, a forbidden covering with regard to the composition table of the considered
qualitative calculus. Intuitively, a forbidden covering is a compact set of triples that express
all the non-feasible configurations for three spatial or temporal entities.

We follow another approach for solving the MAX-QCN problem of a QCN and present
a particular local search method [11] which involves first obtaining a partial atomic refine-
ment S of that QCN and then exploring neighboring atomic refinements that are obtained
by disconnecting a variable of S and repositioning it appropriately. The search for the best
neighboring atomic refinement is guided by a combination of heuristics for minimizing the
number of unsatisfied constraints in a given neighboring atomic refinement of a QCN, a
tabu list for excluding certain already considered atomic refinements or atomic refinements
that are known to not be candidates for best neighboring atomic refinement, and a particular
restart policy to deal with local minima.

The paper is organized as follows. Some preliminaries on QSTR and the MAX-QCN
problem are made in Section 2. In Section 3, we introduce the notion of neighborhoods
of partial scenarios which will be used in the proposed method and an algorithm to com-
pute them. In Section 4, we define the local search based method proposed to solve the
MAX-QCN problem, namely, the method QLS. In Section 5, we report some experimental
results about QLS. Finally, we conclude and give some perspectives for future works.

2 Preliminaries

A (binary) spatial or temporal qualitative calculus [10] considers a domain D of spatial or
temporal entities respectively and a finite set B of jointly exhaustive and pairwise disjoint
(JEPD) relations defined on that domain called base relations. Each base relation of B rep-
resents a particular configuration between two spatial or temporal entities. The set B con-
tains the identity relation Id, and is closed under the converse operation (−1). A (complex)
relation corresponds to a union of base relations and is represented by the set containing
them. Hence, 2B represents the set of relations. Given x, y ∈ D and r ∈ 2B, x r y will
denote that x and y satisfy a base relation b ∈ r. The set 2B is equipped with the usual
set-theoretic operations (union and intersection), the converse operation, the complement
operation and the weak composition operation. The converse of a relation is the union of
the converses of its base relations. The complement of a relation r, denoted by r, is the
relation {b ∈ B : b 6∈ r}. The weak composition � of two base relations b, b′ ∈ B is the
relation of 2B defined by b � b′ = {b′′ : ∃x, y, z ∈ D such that x b y, y b′ z and x b′′ z}.
For two relations r, r′ ∈ 2B, r � r′ is the relation of 2B defined by r � r′ = ⋃

b∈r,b′∈r′ b � b′.
In the sequel, B̂ will denote the smallest subset of 2B which contains the singleton relations
of 2B and the universal relation and, which is closed under the operations −1, � and ∩.

As an illustration, consider the well known temporal qualitative calculus introduced by
Allen [1] and called the Interval Algebra (IA). Allen represents the temporal entities by the
intervals of the line and considers a set of 13 base relations BIA = {eq, p, pi,m,mi, o, oi, s,
si, d, di, f, fi} represented in Figure 1a.
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Fig. 1: The base relations of IA (a), a consistent QCNN of IA (b), a consistent scenario S ofN (c),
a solution of N and S (d), the QCN N ↑v3 , i.e. the relaxation of N w.r.t. v3 (e). Notice that for the
represented QCNs, the constraint between two variables v and v′ is not represented when it is equal
to B or v = v′ or when the constraint between v′ and v is already represented.

Spatial or temporal information about a set of entities can be represented by a qualita-
tive constraint network (QCN), which is a pair of a set of variables and a set of constraints.
Each constraint is defined by a relation of 2B and specifies the set of acceptable qualitative
configurations between two spatial or temporal variables. Formally, a QCN is defined as
follows: a QCN is a pair N = (V,C) where V is a non-empty finite set of variables, and
C is a mapping that associates a relation C(v, v′) ∈ 2B with each pair (v, v′) of V × V .
Further, mapping C is such that C(v, v) ⊆ {Id} and C(v, v′) = (C(v′, v))−1. Given a
QCN N = (V,C) and v, v′ ∈ V , the relation C(v, v′) will also be denoted by N [v, v′].

Concerning a QCN N = (V,C), we have the following definitions. A solution σ of
N is a valuation σ of each variable V by an element of D such that for every pair (v, v′)
of variables in V , (σ(v), σ(v′)) satisfies a base relation belonging to the relation C(v, v′).
N is consistent iff it admits a solution. N will be said trivially inconsistent iff one of its
constraints is defined by the empty relation. A sub-QCN N ′ of N , denoted by N ′ ⊆ N , is
a QCN (V,C ′) such that C ′(v, v′) ⊆ C(v, v′) ∀v, v′ ∈ V . A scenario S is a QCN that each
contraint is defined by a singleton relation, i.e., a relation defined by exactly one base rela-
tion. A scenario S of N is a scenario which is a sub-QCN of N . Given a variable v ∈ V ,
the relaxation of N w.r.t. v, denoted by N ↑v is the QCN N = (V,C ′) defined by : for all
v′, v′′ ∈ V , C ′(v′, v′′) = B if v′ 6= v′′ and, v′ = v or v′′ = v, C ′(v′, v′′) = C(v′, v′′)
else. In the sequel N[v,v′]/r with a relation r ∈ 2B, will denote the QCN defined on V
corresponding to N for which the relation defining constraint between v and v′ has been
substitued by the relation r.

Given two (undirected) graphs G = (V,E) and G′ = (V ′, E′), G is a subgraph of
G′, denoted by G ⊆ G′, iff V ⊆ V ′ and E ⊆ E′. A graph G = (V,E) is a chordal (or
triangulated) graph iff each of its cycles of length> 3 has a chord, i.e., an edge joining two
vertices that are not adjacent in the cycle [7]. The constraint graph of a QCN N = (V,C)
is the graph (V,E), denoted by G(N ), for which we have that (v, v′) ∈ E iff C(v, v′) 6= B.

Given a QCN N = (V,C) and a graph G = (V,E), N is partially �-consistent
w.r.t. graph G or �G-consistent [4] iff for ∀(v, v′), (v, v′′), (v′′, v′) ∈ E, we have that
C(v, v′) ⊆ C(v, v′′)�C(v′′, v′). The closure under �G-consistency ofN , denoted by �G(N ),
is the greatest �G-consistent sub-QCN of N . This closure can be computed in O(δ|E|)



time [4,15], where δ is the maximum degree of G. Note that if G(N ) ⊆ G, �G(N ) is equiv-
alent to N , i.e. has the same solutions than N .

Given a graph G = (V,E), a partial scenario w.r.t. G, also called G-scenario, is a QCN
(V,C) such that C(v, v) = {Id} for all v ∈ V , C(v, v′) = B for all (v, v′) 6∈ E, and
|C(v, v′)| = 1 for all (v, v′) ∈ E. As illustration, let us consider the inconsistent QCN N ′
represented in Figure 2a. Its constraint graph G(N ′) is represented in Figure 2b. Moreover,
a triangulated graph G such that G(N ′) ⊆ G is illustrated in Figure 2c. The four QCNs S0,
S1, S2 and S3 in Figure 2 are four �G-consistent (and consistent) G-scenarios.

Now, we highlight a property useful in the sequel :

Definition 1. The partial �-consistency will be said complete for B̂ iff for any triangulated
graph G = (V,E) and any �G-consistentN such thatN [v, v′] = B for any (v, v′) ∈ E and
N [v, v′] ∈ B̂ for any (v, v′) 6∈ E we have N which is a consistent QCN.

Notice that the partial �-consistency is complete B̂ for many qualitative calculi [9, 15], in
particular for IA and RCC8.
Given a QCN N = (V,C), the MAX-QCN problem is the problem of finding a consistent
scenario over V that minimizes the number of unsatisfied constraints in N (or maximizes
the number of satisfied constraints in N ). In order to more formally define the MAX-QCN
problem we introduce the binary operator α which takes as parameters two QCNs and
returns the number of non overlapping constraints of these two QCNs. Formally, given
two N = (V,C) and N ′ = (V,C ′), α(N ,N ′) is the integer defined by α(N ,N ′) =
1
2 .|{(v, v′) ∈ V ×V : v 6= v′ and C(v, v′)∩C ′(v, v′) = ∅}|. As illustration, by considering
again the QCNs in Figure 2, we have α(S0,N ′) = α(S1,N ′) = 3, α(S2,N ′) = 2 and
α(S3,N ′) = 4. Given a QCN N = (V,C), a solution of the MAX-QCN problem for N is
a consistent scenario S on V , said optimal scenario of N , such that there is no consistent
scenario S ′ on V with α(S,N ) > α(S ′,N ). The notion of optimal scenario can been
extended to the partial scenarios in a direct manner: given a QCN N = (V,C), an optimal
G-scenario ofN is a consistent G-scenario S such thatG = (V,E) is a graph such that there
is no consistent G-scenario S ′ with α(S,N ) > α(S ′,N ) and such that G is a triangulated
graph (V,E) with G(N ) ⊆ G. Notice that all consistent scenario of an optimal G-scenario
of a QCN N is an optimal scenario of N . From [5, 6], we have:
Property 1. LetQ be a qualitative calculus for which the partial �-consistency is complete
for B̂ and N = (V,C) a QCN in Q. For any triangulated graph G = (V,E) such that
G(N ) ⊆ G and �G-consistent G-scenario S we have : (1) S is an optimal G-scenario of N ,
(2) any consistent scenario of S is an optimal scenario of N and (3) a consistent scenario
of S can be computed in polynomial time.
The method that we will define in the sequel is adapted for QCNs of a qualitative calculus
Q that has the aforementioned property, i.e. a qualitative calculus Q for which the partial
�-consistency is complete for B̂. From this, the method can consider partial scenarios rather
than complete scenarios. The useful to consider partial scenarios is to render the treatment
more fast by discarding some constraints of the considered QCNs.

3 Neighborhood of Partial Consistent Scenarios
The proposed search method that will be detailed in the next section, moves from partial
consistent scenario to partial consistent scenario until a shut-off criterion is reached. Given
a consistent partial scenario S w.r.t. a graph G, the candidate partial scenario to be con-
sidered in the future step will be called neighbors of S and the set they comprise will be
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Fig. 2: An inconsistent QCNN ′ of IA (a), the constraint graph ofN ′, i.e. G(N ′) (b), a triangulation
G of G(N ′) (c), a consistent G-scenario S0 ofN ′ (d), the relaxation of S w.r.t. variable v1 (e). Three
neighbors S1, S2, and S3 of S w.r.t. G (f, g, and h respectively).

denoted by Nb(S, G). Intuitively, a neighbor of the consistent G-scenario S is a consistent
G-scenario different from S that can be obtained by disconnecting a variable of S and repo-
sitioning it. A neighbor of S w.r.t. G is a consistent G-scenario of a relaxation of S with
respect to one of its variables. The set of neighbors of a partial scenario is defined as:
Definition 2. Let S = (V,C) be a consistent G-scenario, where G = (V,E) is a graph.
The set of neighbors of S w.r.t. G is the set:

Nb(S, G) =
⋃
v∈V
{S ′ : S ′ 6= S and S ′ is a consistent G-scenario of S↑v}.

As illustration, let us consider the QCN N ′ = (V,C) in Figure 2a, the graph G = (V,E)
in Figure 2c, and the consistent G-scenario S0 in Figure 2d. Among the neighbors of S0
w.r.t. graph G, we have the three partial scenarios S1, S2, and S3 (depicted in Figures 2f,
2g, and 2h respectively). Note that S1 and S2 are consistent G-scenarios of the relaxation
of S0 w.r.t. v1 (Figure 2e), whereas S3 results from the relaxation of S0 w.r.t. v2.

At each step of the proposed method, among the neighbors of the current partial sce-
nario, the future chosen partial scenario is selected among the best neighbors, i.e., the neigh-
bors satisfying a maximal number of constraints of the considered QCN and not belonging
to a particular set of partial scenarios that can be seen as a tabu list. We will present an
efficient algorithm to compute this set of best neighbors; prior to this, we define that set:
Definition 3. LetN = (V,C) be a QCN, S = (V,C ′) a consistent G-scenario, whereG =
(V,E) is a graph, and T a set of G-scenarios. The set of partial scenarios BestNb(N ,S, G, T )
is defined by: BestNb(N ,S, G, T ) = {S ′ ∈ Nb(S, G) \ T : there exists no S ′′ ∈
Nb(S, G) \ T such that α(N ,S ′′) < α(N ,S ′)}.
Now, we present function bestNeighbors, which allows computing the set of best neigh-
bors of a partial scenario. Function bestNeighbors receives four parameters, namely, a
QCN N = (V,C) for which we want to solve the MAX-QCN problem, a triangula-
tion G = (V,E) of G(N ), a consistent G-scenario S = (V,C ′) for which we want to
compute the best neighbors, and a set T of G-scenarios that contains the partial scenar-
ios to be excluded. The aim of bestNeighbors is to compute the set of partial scenarios



Function bestNeighbors(N ,S,G,T )
in : A QCNN = (V,C), a triangulation G = (V,E) of G(N ), a consistent G-scenario

S = (V,C′), and a set of G-scenarios T .
output : The set of best neighbors of S w.r.t.N , G and T .

1 begin
2 bestNb← ∅; bestα← +∞;
3 foreach v ∈ V do bestNeighborsAux(N ,S,G,T ,S↑v) ;
4 return bestNb;

Procedure bestNeighborsAux(N ,S, G,T ,N ′)
in : Two QCNsN = (V,C) andN ′ = (V,C′′), a triangulation G = (V,E) of G(N ), a

consistent G-scenario S = (V,C′), and a set T of G-scenarios ofN .
1 begin
2 N ′ ← �

G(N ′); α← α(N ,N ′);
3 ifN ′ is trivially inconsistant or α > bestNb then return; ;
4 Select (v, v′) ∈ E such thatN ′[v, v′] is not a singleton relation;
5 if such a pair (v, v′) exists then
6 Select a base relation b ∈ N ′[v, v′];
7 bestNeighborsAux(N ,S,G,T ,N ′[v,v′]/{b});
8 bestNeighborsAux(N ,S,G,T ,N ′[v,v′]/(N ′[v,v′]\{b}));
9 return;

10 ifN ′ 6∈ T then
11 if α < bestNb then
12 bestNb← {N ′}; bestα← α;

13 bestNb← bestNb ∪ {N ′};

BestNb(N ,S, G, T ). In a first step, bestNeighbors initializes the two global variables
bestNb and bestα. bestNb, an initially empty set, will contain the computed best neigh-
bors. bestα corresponds to the number of constraints of N that are unsatisfied by a partial
scenario of set bestNb; this variable is initially assigned a value greater than the number
of constraints of N (symbolized by +∞). In a second step (line 3), in an iterative manner,
the relaxation of partial scenario S w.r.t. each variable v ∈ V is addressed in order to char-
acterize the consistent partial scenarios that are candidates to being best neighbors. This is
done though a call to function bestNeighborsAux.
Function bestNeighborsAux receives five parameters. The first four parameters N , S , G,
and T are similar to the parameters of bestNeighbors. The fifth parameter N ′ is a QCN
defined on the set of variables of N . Function bestNeighbors computes the consistent G-
scenarios ofN ′ that are candidates to being best neighbors of S by taking into account the
candidate best neighbors of bestNb previously computed. In a first step, bestNeighborsAux
prunes some non-feasible base relations ofN ′ by enforcing �G-consistency onN ′. The inte-
ger α of non-overlapping constraints betweenN andN ′ is computed. WhenN ′ is detected
as inconsistent or when the number of non-overlapping constraints between N and N ′ is
greater than the number of unsatisfied constraints w.r.t. the neighbors of bestNb, we can
assert that there exists no consistent G-scenario of N ′ that is better than those previously
computed. Consequently, bestNeighborsAux terminates (line 3). In the contrary case, the
treatment continues by selecting an edge (v, v′) ofG such that the corresponding constraint
of N ′ is defined by a non-singleton relation. When such an edge exists, a base relation b



is extracted from relationN ′[v, v′] and the treatment continues through two recursive calls
to bestNeighborsAux. The first call (line 7) allows exploring the QCN resulting from N ′
by replacing the constraint between v and v′ with relation {b}. The second call (line 8)
concerns the QCN resulting from N ′ by removing b from the constraint between v and
v′. When all the constraints of N ′ corresponding to edges of G are defined by a singleton
relation, we can assert that N ′ is a G-scenario. As G is a triangulation of G(N ) and N ′ is
�
G-consistent, we have thatN ′ is a consistent G-scenario. Also, we know that the number of
non-overlapping constraints between N and N ′ is smaller or equal to bestα, i.e. the num-
ber of non-overlapping constraints between N and any of the partial scenarios of bestNb.
Consequently, ifN ′ does not belong to the set of excluded partial scenarios T ,N ′ must be
considered as a best neighbor of S and added to the set bestNb (lines 10–13).
Theorem 1. Let N = (V,C) and S = (V,C ′) be two QCNs of a qualitative calculus for
which the partial �-consistency is complete for B̂,G = (V,E) a triangulation of G(N ), T a
set of G-scenarios, and S a consistent G-scenario. Function bestNeighbors with parameters
N , S, G, and T correctly computes the set BestNb(N ,S, G, T ).

4 A Local Search Based Algorithm for the MAX-QCN problem

In this section, we present a local search based algorithm, called QLS (Qualitative Local
Search), for solving the MAX-QCN problem. The QLS method takes as parameters a QCN
N = (V,C) defined on a set of base relations B for which partial �-consistency is complete
for partial scenarios and a triangulation G = (V,E) of G(N ). In short, to find a consistent
G-scenario that minimizes the number of unsatisfied constraints of N , the QLS method
moves from consistent G-scenario S to consistent G-scenario S ′ according to the notion
of best neighbors presented in the previous section. The procedure QLS also includes a
heuristic based on a weighting of the constraints to select at each iteration one of the best
neighbors of the current G-scenario. A tabu list to exclude the G-scenarios already visited
and a restart policy have been included. Now, we present in more detail the different steps
realized in an iterative manner by the QLS method.

Initialization Step. An initial consistent G-scenario S on V to serve as the current
partial scenario is randomly generated (see function randomScenario). The best partial
scenario found, denoted by S∗, is initialized with S . Moreover, an integer weight denoted
by w(v, v′) is associated with each edge (v, v′) ∈ E. For each (v, v′) ∈ E, w(v, v′) is
initialized with 1 if S[v, v′] ⊆ N [v, v′], and 0 otherwise. In the case where the current par-
tial G-scenario satisfies the constraint of N between v and v′, the weight w(v, v′) will be
incremented. Hence, w(v, v′) will represent the number of iterations for which the current
partial G-scenario satisfies the constraint of N between v and v′. On the other hand, a tabu
list T is introduced and initialized with {S}. This tabu list will be used to avoid selecting
new partial scenarios already selected.

Neighbor Generation and Selection Step. By using the function bestNeighbors pre-
sented earlier, the set of best neighbors BestNb(N ,S, G, T ) of S w.r.t. N , G, and T is
generated. Let us denote by BN this set. In the case where BN is an empty set, the pro-
cedure returns to the initialization step. In the contrary case, one partial scenario S ′ from
the set BN is selected using a heuristic that uses assigned weights to each edge of E.
More particularly, a weight w(S ′′) defined by w(S ′′) = 0 +

∑{w(v, v′) : (v, v′) ∈
E and S ′′[v, v′] ⊆ N [v, v′]} is associated with each partial scenario S ′′ of BN. Intuitively,
given a S ′′ ∈ BN, the greater the weight w(S ′′), the more the partial scenario S ′′ corre-
sponds to constraints used by the partial scenarios selected in the previous iterations. Con-



sequently, to satisfy constraints of N which have been the least satisfied by the previous
selected partial scenarios, the partial scenario S ′ is randomly selected among the elements
of the set {S ′′ ∈ BN : w(S ′′) = min{w(S ′′′) : S ′′′ ∈ BN}}.

Acceptance and Restarts Step. The G-scenario S ′ replaces the current partial scenario
S and the best partial scenario found S∗ is possibly updated. Moreover, S ′ is added to the
tabu list T . For each (v, v′) ∈ E such that S∗[v, v′] ⊆ N [v, v′], w(v, v′) is incremented.
On the other hand, when for the nbDivLoops last iterations (with nbDivLoops a positive in-
teger parameter of QLS), the number of unsatisfied constraints ofN by the selected partial
scenario forms an increasing series of diversification is realised by substituing the current
partial scenario S by a partial scenario randomly selected in the tabu list T . Concerning
restarts, after a number of nbRestartDiv diversifications (with nbRestartDiv a positive in-
teger parameter of QLS) a restart stage is realized by returning to the initialization step.

Termination Step. In this step, two additional integer parameters of QLS called maxLoops
and expectedValue (with 0 as default value) are used. Whether the number of iterations is
greater or equals to maxLoops or whether the α(N ,S∗) is less or equals to expectedValue,
the treatment terminates after returning the best partial scenario S∗.

In the next section we will report some experimental results regarding the aforemen-
tioned method QLS and three variations of it denoted by QLS6 r, QLS6w and QLS6T . The
method QLS6 r is the method QLS without using restarts and the method QLS6w corresponds
to the method QLS without using the weights. Hence, for QLS6w, the selected neighbor
is one of the elements of the whole set of best neighbors of the current partial scenario.
QLS6T corresponds to QLS without using a triangulation G of the considered QCN N . In
an equivalent manner, QLS6T is the method QLS for which the parameter G is the complete
graph over V , where V is the set of variable of the input QCN N .

Function randomScenario(G)
in : A graph G = (V,E).
output : A consistent G-scenario on V randomly generated.

1 begin
2 N ← BV ; /* BV is the QCN on V whose each constraint is B */
3 foreach (v, v′) ∈ E do
4 Select randomely a base relation b ∈ N [v, v′] such that �G(N[v,v′]/{b}) is not trivially

inconsistent;
5 N ← �

G(N[v,v′]/{b})

6 returnN ;

5 Experiments
In this section, we report a preliminary evaluation of the method QLS presented in the pre-
vious section. We considered the QCNs from IA used in the experiments reported in [6].
These 280 QCNs were randomly generated using the model A(n, d, s) (proposed in [12]),
with n being the number of variables of the generated QCNs, d the density of constraints
defined by a relation other than the trivial relation (i.e. B), and s the average number of
base relations in each constraint. The parameters used to generate the considered QCNs are
n = 20, d varying from 8 to 14.5 with a step of 0.25, and s = 6.5. The relatively small num-
ber of variables n = 20 was decided in order to present results as complete as possible. For
each considered value of d, 10 instances were generated. Concerning triangulations of the
constraint graphs of QCNs, we also use the same ones as those used in [6]. These triangu-
lations were generated using a greedy triangulation algorithm (cf. the GreedyFillIn heuris-



tic [3]). Moreover, the method QLS and its different variations have been implemented in
Java. The main objective of our experiment is to validate the main different ingredients of
the method QLS, i.e., the use of (1) triangulations of the constraint graphs of the QCNs, (2)
the proposed heuristic based on weights on the constraints, and (3) restarts. In order to do
this, we compare QLS with its different variations QLS6R, QLS6W , and QLS6T . Note that for
this comparison we used the value 5 for the parameter nbDivLoops and the same value for
the parameter nbRestartDiv (the best values among the tested values). Moreover, we used
the exact optimal number of unsatisfied constraints for the parameter expectedValue.

The first part of our analysis concerns the optimal number of unsatisfied constraints.
Figure 3a presents the average of the optimal number of unsatisfied constraints found by
the different methods for a maximal number of iterations equal to 4000 (i.e. maxLoops =
4000) which corresponds approximatively to a 15-minutes timeout. The optimal values
found are close enough to the exact optimal values. We note that QLS and QLS6T outper-
form QLS6R and QLS6W . Further, QLS is slightly better than QLS6T . This observation is
reinforced when considering the number of exact optimal values found by each method.
Indeed, for QLS, QLS6R, QLS6W , and QLS6T , the number of QCNs out of the 280 QCNs
used for which the exact value is found is respectively 189, 58, 93, and 160. Moreover,
note that by considering all the methods, 214 exact values are found.

The second part of our analysis concerns a more precise comparison between the two
methods QLS and QLS6T which were found to be close to one another in terms of perfor-
mance in the previous analysis. Figure 3b reports the average time needed by these two
methods for reaching their optimal values. The QCNs considered in this report are the 208
QCNs out of the 280 QCNs for which QLS and QLS6T obtain the same optimal values.
Clearly, in general QLS takes largely less time than QLS6T to obtain the same optimal val-
ues. On the other hand, by examining the total number of (partial) scenarios computed
during the neighbor generation step (not reported due to lack of space), we note that the
respective numbers are close enough to one another regarding QLS and QLS6T . From this,
we can explain the better performance of QLS considering time, due to the fact that the
computation of the neighbors during the generation step is faster than that of QLS6T as the
use of triangulations in the former case allows considering less constraints in general.

The last part of our analysis concerns a comparison between our approach and the one
proposed in [6] which encodes the MAX-QCN problem into the partial maximum satisfi-
ability problem (PMAX-SAT) using a notion called forbidden coverings. Due to lack of
space, we do not give details about this approach. Nevertheless, we mention that we used
the encoding referenced by C5,8FCTEX in [6] for our experiments and that we will use the term
of complete method to refer to the corresponding solving method. We ran the QLS method
and the complete method with a 9000-second timeout. The number of QCNs for which we
obtain the exact optimal value is 261 for QLS and 279 for the complete method. Regard-
ing the solving time, in general the complete method outperforms the QLS method for the
QCNs with a density of non trivial constraints less than 12.5, which are easy to solve for
the complete method. Focusing on the 80 instances with a density greater or equal to 13.0,
for 27 instances the time needed by QLS to find the exact optimal value is less than that
needed by the complete method.

6 Conclusions
To solve MAX-QCN, we propose an original local search based method called QLS which
is generic in the sense that it can be used in the context of numerous qualitative calculi.
Preliminary experimentation shows the interest of our approach, in particular the useful of
the different ingredients components of QLS : the using of traingulations of the constraint
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Fig. 3: (left) Optimal number of unsattisfied constraints; (right) average time for the instances of
A(20, d, 6.5) with d ∈ {8, . . . , 14.75}.

graphs, the using of restarts and the using of an heuristics based on weights on the con-
straints. Future work consists of conducting experiments with other calculi than IA and with
large QCNs. Concerning QLS, another perspective consists in the using of other neigbours
that this one used currently. Particularly, we envisage to consider the neigbors computed
from the moving of two or several variables, rather that from the moving of one variable.
We also envisage to define hybrid method mixing the proposed local search method and
complete method as the branch and bound algorithm proposed in [5].
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