
SiVaC*: An Efficient Graph Compression Algorithm

Introduction
• Many critical applications today run on web-like graphs
(web itself, social networks, citation graphs, etc.).
• These graphs are huge, sparse, and exhibit the
locality of reference property (i.e., edges often connect
nodes with lexicographically close labels).
• Can we compress them in a way that allows efficient
mining of their elements?

Compression
Many edges of the citation graphs tested belong in a
stripe around the diagonal of the adjacency matrix,
exhibiting locality of reference. For stripe width=7:

Panagiotis Liakos

National and Kapodistrian
University of Athens, Greece

p.liakos@di.uoa.gr

Katia Papakonstantinopoulou

National and Kapodistrian
University of Athens, Greece

katia@di.uoa.gr

Michael Sioutis

Pierre and Marie Curie
University, France

michael.sioutis@lip6.fr

and β-type (if needed) to represent large distances
without edges in the matrix, in a cheap and compact
way:

Indicative Compression and Access times:

In the file we use α-type bytes to represent edges (along
with their offset from previous edge in the matrix and a
mark of whether the opposite direction edge exists as
well) and take advantage of edges close to each other:

Navigation in the Compressed Graph
To tell whether some edge exists in the graph, we first
check whether it should belong in the diagonal stripe.
• If so, we access directly the bit representing the edge
• otherwise we calculate the offset of its intended
position in file, approach it using a memory index and
move forward reading α and β bytes according to the
automaton:

until we find it (success!) or surpass it (edge does not
exist).

How Fast?

Experimental Results
• Implemented in Python. Source code is available at
http://pypi.python.org/pypi/SiVaC/
• Tested on Intel processor 2.9 GHz, 4MB cache, 4GB
RAM, 80 GB SSD, for light and middle weight graphs.

Indicative Compression rates:

A node's incoming and outgoing edges are retrieved
in a similar way: we first get those in the diagonal and
then access the rest, starting from the offset the first
such edge outside the diagonal should have.

In Brief
We exploited the graph structure to design a simple yet
efficient compression algorithm for graphs exhibiting the
locality of reference property, e.g., those modelling
networks created by human activity.
We achieved compression rates up to 65.4%. The
check for edge existence takes time logarithmic in the
number of nodes and the retrieval of a node's in/out-
going edges slightly more.

Consider a graph G=(V, E).
• Employing a proper index, we check whether a specific
edge exists in O(log|V|) time.
• A node's incoming and outgoing edges are retrieved
within the above time plus a term linear in the number of
its neighbours.

so this diagonal stripe is denser than the rest of the
matrix.

The Compression is performed in 2 stages:
• adjacency matrix-like storage of the diagonal stripe,
• adjacency list-like storage of the remaining edges.

Adjacency matrix example and the corresponding
compressed file format:

Graph: #edges
LW1: 3,422
LW2: 55,506
LW3: 120,963
MW1: 249,755
MW2: 564,110

*SiVaC is an acronym for Stairs in a Vacuum Chamber.

mailto:name@microsoft.com
mailto:katia@di.uoa.gr
mailto:Michael.sioutis@lip6.fr
http://pypi.python.org/pypi/SiVaC/

