
SiVaC∗ : An Efficient Graph Compression Algorithm

Panagiotis Liakos
University of Athens

Athens, Greece
p.liakos@di.uoa.gr

Katia
Papakonstantinopoulou

University of Athens
Athens, Greece

katia@di.uoa.gr

Michael Sioutis
Pierre & Marie Curie

University
Paris, France

michael.sioutis@lip6.fr

ABSTRACT
This paper introduces a new efficient graph compression
algorithm for large-scale graphs that exploits the graph’s
structure to achieve better compression rate. In particular,
we make use of the locality of reference in the graph and the
power law distribution of its nodes’ degrees, two properties
usually observed in large sparse graphs that model networks
created by human activity. Furthermore, our approach fo-
cuses on navigating through both the incoming and outgoing
edges of each node in linear time. First experimental evalua-
tions of the proposed algorithm indicate promising results.

Categories and Subject Descriptors
E.1 [Data Structures]: Graphs and networks; E.4 [Coding
and Information Theory]: Data compaction and com-
pression; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval

General Terms
Algorithms, Experimentation, Performance

Keywords
Citation graph, web graph, graph compression

1. INTRODUCTION
Real-world systems and phenomena that involve interactions
among various entities are being modeled using graphs for
decades now. The recent explosive growth of large-scale
systems that are traditionally modeled as graphs, with the
worldwide web, social networks, and citation networks be-
ing typical examples, has intensified the need for compact,
yet efficient representations of graphs. In particular, we
need compressed graph representations that allow for min-
ing without decompressing the graph. In this way, classical
algorithms can run in main memory over much larger graphs
by compressing their plain representations.

∗SiVaC is an acronym for Stairs In a Vacuum Chamber.

The graphs we are interested in are huge, but the degrees
of their nodes (indegrees and outdegrees) are power law dis-
tributed, thus, the graphs are rather sparse. These graphs
exhibit the locality of reference: nodes tend to have succes-
sors that are close to them. Furthermore, they exhibit the
copy property (or similarity) since nodes that occur close to
each other tend to have many common successors. In this
paper we concentrate on the locality of reference property.

Related work. In the last dozen of years graph compres-
sion has turned into a very active research area and many
algorithms have been proposed. Most algorithms in this di-
rection try to offer a good space/time tradeoff. The highest
compression ratios are probably achieved by the algorithms
of Boldi et al.: In [1] the authors focus on the compression of
social networks and in its predecessor [2] they compress web
graphs, exploiting their aforementioned statistical proper-
ties. However, the high compression has a negative impact
on the access times on some of the graph’s elements: the
retrieval of the incoming edges of a specific node becomes
involved. In another line of work, Claude and Ladra [3] focus
on the efficient storage of the adjacency matrix that repre-
sents the graph. They partition the matrix in boxes and
store each box in a way that allows quick access of it. The
compression they achieve is still high, but the data structure
(index) required for the quick access is quite large and has
to be present in the main memory.

Short description of results. We develop a graph compres-
sion algorithm for directed graphs that exploits the struc-
tural properties of the graph to avoid redundancy, and fo-
cuses on surfacing both the incoming and outgoing edges
of each node in linear time. Our algorithm considers the
adjacency matrix that represents the graph and stores its
‘dense’ part in a way that can be accessed in constant time,
while from the rest of the matrix only the useful (i.e., non
zero) parts are stored. Our experiments, demonstrated in
Section 3, indicate promising results which encourage us to
further pursue this approach.

The organization of this paper is as follows. In Section 2
our algorithm is presented and its complexity is discussed.
In Section 3 we evaluate our approach experimentally. Fi-
nally, in Section 4 we conclude and give directions for future
research.

(a) (b)

Figure 1: Compressed file format (a) and the diagonal of the
adjacency matrix (b)

2. ALGORITHMS AND COMPLEXITY
This section presents SiVaC, our algorithm for compressing
directed graphs, and analyzes its asymptotic complexity.

SiVaC attempts to exploit the locality of reference property
along with the power law distribution of the nodes’ degrees
(indegrees and outdegrees) to provide a compression schema
with very efficient navigation. Web graph representations
assume that each URL corresponds to some identifier. More-
over it is assumed that URLs are alphabetically sorted, and
this naturally puts together the pages of the same domain.
As a result, the locality of reference translates into closeness
of page identifiers. Since the scientific paper authors have
similar incentives with the web page authors, and the cita-
tion graphs’ structure and properties resemble those of the
web graph, it is reasonable to assume that the labeling of the
nodes of the citation graphs is performed in a similar fashion
with the web pages described above (instead of pages of the
same domain we have papers of the same scientific area).

Due to the above properties and assumptions, an edge is
with high probability close to the main diagonal of the ad-
jacency matrix representing the graph. Hence, given that
these graphs are generally rather sparse, the area around
the main diagonal is denser than the rest of the graph. We
call this area the diagonal, and define it as follows: an edge
(i, j) is in the diagonal iff i− k ≤ j ≤ i + k. In the citation
graphs we examined experimentally, large number of edges
tend to be in the diagonal, meeting our expectations regard-
ing the locality of reference property. This trend for k = 3
is illustrated in Table 1. We choose this value for k since
the resulting thickness of the diagonal, shown in Figure 1b,
achieves the optimal tradeoff between number of edges in it
and space required for its storage. The value of k was fixed
by performing experiments for several values on different
graphs and carefully interpreting the results.

Figure 1a illustrates the way a SiVaC compressed file is or-
ganized. The first four bytes are used to hold the number of
the nodes of the graph. The following n + (n mod 2) bytes
represent the diagonal of the adjacency matrix and are thor-
oughly described in Section 2.1. The rest of the edges are
compressed using the Vacuum Chamber Step explained in
Section 2.2.

graph # edges # edges in percentage
diagonal

LW1 3, 422 1, 607 46.96%
LW2 55, 506 12, 558 22.62%
LW3 120, 963 25, 469 21.06%
MW1 249, 755 49, 347 19.76%
MW2 564, 110 129, 576 22.97%
MW3 1, 215, 119 158, 505 13.04%
MW4 4, 041, 859 370, 370 9.16%

Table 1: The percentage of edges in the diagonal indicates
locality of reference

2.1 Stairs Step
In order to exploit the high concentration of edges in the
diagonal, we store it separately from the rest of the graph,
in the format of an adjacency matrix. In particular, we par-
tition the diagonal into boxes, assign them an ordering, and
store them uncompressed in the beginning of the obtained
(compressed) file. Thus, for every edge in the diagonal of
the adjacency matrix we are aware of the position of the bit
that represents it and can access it in constant time.

For example, the boxes in Figure 1b would be ordered in
the following way: the top left light gray box would be box
0 and two bytes would be used to enclose it. The two dark
gray areas that share borders with it would be combined to
form box 1 and would be stored in the following two bytes.
This ordering would continue until the end of the diagonal
of the adjacency matrix, finally holding n+(n mod 2) bytes
of the compressed file.

We name this step Stairs since the diagonal resembles two
stairs as they appear when one is viewed in front of the
other.

2.2 Vacuum Chamber Step
The rest of the edges are represented using a structure that
we call the Vacuum Chamber. The adjacency matrix of the
given graphs tends to contain a small series of 1s, each one
indicating the existence of an edge, followed by a large num-
ber of 0s, indicating the absence of edges. We use two types
of bytes, called α and β, the first to take advantage of edges
close to each other and the second to represent large empty
distances in a cheap and compact way. Both types are il-
lustrated in Figure 2. An α byte is split in two and can
hold two edges along with their symmetric ones. The first
two bits represent the offset from the previous edge and the
other two bits the presence or absence of edges between two
nodes, say i and j. In particular, ‘01’, ‘10’, and ‘11’ denote
the presence of edges (j, i) (incoming to i), (i, j) (outgoing
from i), and both edges respectively, while ‘00’ denotes the
absence of an edge between these nodes. Information about
the symmetric edge is held in order to allow navigation in
both the incoming and outgoing edges of each node in linear
time. A β byte contains only information about the offset
that stands between two α bytes. In order to avoid the use
of many consecutive β bytes we dedicate the most signifi-
cant bit of one to indicate whether the next seven should be
multiplied by 29 or not.

We name this step Vacuum Chamber because it resembles

0 1 1 0 1 1 1 1

offset value offset value

α1 α2

0 1 0 1 1 0 0 1

flip offset

β

1

Figure 2: α and β-type bytes

the process of air being pumped out of a room.

Given a set of edges E, SiV aC algorithm computes its rep-
resentation in the compressed format. Algorithm 1 describes
how an edge outside the diagonal is added to the result file.

Algorithm 1 Pseudocode for edge storing with SiVaC

procedure storeEdgeInFile(offset,value,boxType)
while not edgeInFile do

if boxType is α1 then
if offset< 4 then

write offset and value to the 4 leftmost bits
edgeInFile = True

else
write ‘0000’ to the 4 leftmost bits
boxType = α2

end if
else if boxType is α2 then

if offset< 4 then
write offset and value to the 4 rightmost bits
edgeInFile = True

else
depending on the offset,
write a special value (‘XX00’) to
indicate compactly a common transition

end if
else if boxType is β then

if offset< 29 then
write ‘0 XXXXXXX| {z }

offset-offset mod 4

’

offset = offset - offset mod 4
boxType = α1

else if offset>29 ∗ (27 − 1) then
write ‘1 1111111| {z }

27−1

’

offset = offset - 29 ∗ (27 − 1)
else

write ‘1 XXXXXXX| {z }
offset div 29

’

offset = offset mod 29

end if
end if

end while
end procedure

Figure 3: Automaton deciding the type of box to be created

The rules for creating α or β-type boxes when reading the
compressed file are summarized in Figure 3. The transitions
are conditional on the byte we just read. A byte is denoted
by a string of 8 bits, where the values of the bits that do not
matter in the current decision are set to ‘X’.

The format composed in this step introduces an impediment
in its navigation which we surpass by indexing into memory
the offset to which some specific bytes correspond. Indexing
is performed by employing a sorted dictionary in conjunction
with a bisection algorithm. Thus, the access times of the
edges in the obtained file can be bounded using an index of a
proper size. This structure is the only memory requirement
of the algorithm after the compression has occurred. We
examine the effect of the index size in Section 3.

2.3 Navigation
In order to examine whether a specific edge exists in the
graph, we first clarify whether it should be in the diagonal.
In the case where the edge belongs in the diagonal, we imme-
diately calculate the corresponding byte of the compressed
file, read it from the file, and return the value of the bit
representing the edge. In the case where the edge doesn’t
belong in the diagonal, we calculate the offset of the pair,
discover the closest access point using the memory index,
and start reading α and β bytes from the file to move for-
ward. If we find the offset of the pair we return the value,
and if we reach a bigger offset we infer that the edge does
not exist.

The incoming and outgoing edges of a node are discovered
as follows. We check for all possible edges that would end
up in the diagonal bytes, using the method described earlier,
and then search for the rest of the edges, starting from the
offset which the edge with the first node would have. Due to
the format of the compressed file, the incoming and outgoing
edges of each node are grouped together, thus, the cost of
their retrieval is close to the cost of checking for the existence
of a specific edge.

2.4 Complexity
We now bound the worst case time complexity of our algo-
rithm, denoting by V the set of nodes of the graph.

Theorem 1. The time complexity of SiVaC algorithm is
O(|V ||E|). In the compressed graph, the incoming and out-
going edges of a specific node are retrieved in time O(|V |)
and the existence of an edge is verified in O(log |V |).

Proof. SiVaC processes the edges of E sequentially and

graph # nodes # edges size compres-
sed size

LW1 3, 382 3, 422 31, 506 10, 905
MW1 124, 538 249, 755 2, 924, 640 1, 243, 613

Table 2: Compression results

for each edge, if it belongs into the diagonal it computes the
box it should be stored in and writes it to the (compressed)
file. In order to compress the rest of the edges we perform
a preprocessing step that brings into memory the incoming
and outgoing edges of each node in O(|V ||E|) time. Then,
we iterate through this structure and for each edge we com-
pute the offset from the previous one stored and place the
necessary (β and) α-byte(s) in the file. It follows that the
time complexity of SiVaC is O(|V ||E|).

Given a compressed graph and a specific node, we retrieve
its incident edges that belong in the diagonal in O(1) time.
For the rest of the edges we have to perform a sequential
search in the file from the position of its first possible edge
to the position of the last one. This is achieved in O(|V |)
time in the worst case.

In order to check whether a specific edge exists, we navigate
to the closest position that is indexed in memory and search
forward until we discover (success) or go past its place in the
file (does not exist). Employing a proper index, this check
is done in O(log |V |) time.

3. IMPLEMENTATION AND
EXPERIMENTAL RESULTS

We implemented SiVaC algorithm in Python (version 2.7.3);
our code is available for download in the following Python
repository: http://pypi.python.org/pypi/SiVaC/.

The experiments were carried out on a computer with an
Intel Core i7-3520M processor with a CPU frequency of
2.90GHz and a 4MB L2 cache, a total of 4GB DDR3 1600MHz
RAM, a SATA3 Intel SSD hard disc of 80GB, and the Pre-
cise Pangolin (Ubuntu Linux 12.04 LTS) x86 64 OS. Only
one of the CPU cores was used for the experiments.

We first applied our compression technique on the directed
lightweight and middleweight graphs of the given dataset. In
all the obtained results, the file and index sizes are in Bytes,
the compression times in seconds, and the access times in
milliseconds.

Table 2 shows the sizes of the compressed graphs achieved by
SiVaC in comparison to their initial sizes, for one lightweight
and one middleweight graph. We observe that the obtained
files are compressed to 34.61% and 42.52% of the original
files respectively. The higher compression for the lightweight
graph is due to the fact that a higher percentage of its edges
was in the diagonal. In Table 3 we can see that the time
needed for creating the compressed files is negligible for both
graphs.

Then, we searched for all outgoing or all incoming edges of
a given node, as well as for both incoming and outgoing
edges. We experimented on the same two graphs and em-

graph LW1 MW1
Compression (s) 0.1286 10.7489
Index size (B) 3, 352 12, 568 49, 432 196, 888
Outgoing (ms) 1.2441 0.4145 4.5131 1.3140
Incoming (ms) 1.2427 0.4116 4.6040 1.2929

Both (ms) 1.3145 0.4635 4.4793 1.3417
Exists Edge (ms) 1.1698 0.3225 4.4374 1.0927

Table 3: Compression and access times

ployed indices of different size to evaluate their effect on the
performance of the above actions.

The size of the index is the only significant memory footprint
of our approach and it is clear that its role is crucial. We
observe that all access times are inversely proportional to the
index size for both graphs. We also notice that the average
times for mining the incoming, the outgoing, or both of the
edges of a node are almost identical. This is expected since
the first two actions perform exactly the same number of
operations, while the third is remotely larger since it spends
twice as much time searching in the diagonal in comparison
to the former two.

Finally, we tested for edge existence in the compressed graph.
The tests were performed for random edges and the results
indicate that this action is sufficiently faster than the other
three.

4. FUTURE WORK
Under minor modifications our algorithm works for undi-
rected graphs as well, with comparable compression ratio
and access times. We reckon that by utilizing the β-boxes
in a more sophisticated way to cover larger distances in the
adjacency matrix, we can apply our algorithm to heavy-
weight graphs, expecting similar compression ratio and ac-
cess times.

Further, we will research on dynamically specifying an op-
timal value for the thickness of the diagonal, which is done
statically as mentioned in Section 2. This could be achieved
by either a heuristic approach or an automated statical anal-
ysis per given graph prior to its compression.

Finally, we will perform major code refactoring and we will
explore alternative Python environments, such as PyPy1,
utilizing trace-based just-in-time (JIT) compilation techni-
ques.

5. REFERENCES
[1] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered

Label Propagation: A MultiResolution Coordinate-Free
Ordering for Compressing Social Networks. In WWW,
2011.

[2] P. Boldi and S. Vigna. The WebGraph Framework I:
Compression Techniques. In WWW, 2004.

[3] F. Claude and S. Ladra. Practical Representations for
Web and Social Graphs. In CIKM, 2011.

1http://pypy.org

