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Abstract

In this paper, we focus on a recently introduced problem
in the context of spatial and temporal qualitative reasoning,
called the MAX-QCN problem. This problem involves ob-
taining a spatial or temporal configuration that maximizes the
number of satisfied constraints in a qualitative constraint net-
work (QCN). To efficiently solve the MAX-QCN problem,
we introduce and study two families of encodings of the par-
tial maximum satisfiability problem (PMAX-SAT). Each of
these encodings is based on, what we call, a forbidden cov-
ering with regard to the composition table of the considered
qualitative calculus. Intuitively, a forbidden covering allows
us to express, in a more or less compact manner, the non-
feasible configurations for three spatial or temporal entities.
The experimentation that we have conducted with qualitative
constraint networks from the Interval Algebra shows the in-
terest of our approach.

1 Introduction
Qualitative spatial and temporal reasoning (QSTR) is a ma-
jor field of study in Knowledge Representation that abstracts
from numerical quantities of space and time by using qual-
itative descriptions instead (e.g., precedes, contains, is left
of). The representational languages used in the qualitative
approach have increasingly gained a lot of attention during
the last decades, as they have the advantage of being concep-
tually concise and usually sufficiently expressive for a vari-
ety of applications in many areas, such as dynamic GIS, cog-
nitive robotics, and spatiotemporal design (Hazarika 2012;
Bhatt et al. 2011; Renz and Nebel 2007).

The Interval Algebra (IA) (Allen 1983) and a subset of the
Region Connection Calculus (RCC) (Randell, Cui, and Cohn
1992), namely RCC8, are the dominant calculi in QSTR for
representing qualitative temporal and spatial information re-
spectively. In particular, IA encodes knowledge about the
temporal relations between intervals in the timeline (see Fig-
ure 1a), and RCC8 encodes knowledge about the spatial re-
lations between regions in some topological space. In ad-
dition to IA and RCC8, numerous other qualitative calculi
have been proposed in the literature for representing spatial
and temporal information (Ligozat and Renz 2004).
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The problem of reasoning about qualitative spatial or tem-
poral information can be modelled as a qualitative constraint
network (QCN), i.e., a network comprising constraints cor-
responding to qualitative spatial or temporal relations be-
tween spatial or temporal variables respectively. Given a
QCN N , we are particularly interested in its consistency
problem, which is the problem of deciding if there exists a
spatial or temporal interpretation of the variables of N that
satisfies its constraints, such an interpretation being called
a solution of N . The consistency problem is NP-hard in
general. Further, it is closely related to other fundamental
reasoning problems in the context of QSTR, such as the
minimality problem studied in (Amaneddine, Condotta, and
Sioutis 2013; Liu and Li 2012) and the redundancy problem
studied in (Li et al. 2015; Sioutis, Li, and Condotta 2015),
in the sense that such related problems exhibit functions that
build on the core algorithms used for checking the consis-
tency of a QCN.

In this paper, we focus on a recently introduced prob-
lem in the context of QSTR, called the MAX-QCN prob-
lem (Condotta et al. 2015). Given a QCNN , the MAX-QCN
problem is the problem of obtaining a spatial or tem-
poral configuration that maximizes the number of satis-
fied constraints in N . The motivation behind studying the
MAX-QCN problem lies in the fact that representing spatial
or temporal information may inevitably lead to inconsisten-
cies. As illustration, due to the ever-increasing enrichment
of the Semantic Web with geospatial data (Egenhofer 2002;
Koubarakis et al. 2012), it is often the case that the ge-
ometries of geographical objects are not captured correctly
due to contradictory data of different sources. Thus, we can
obtain inconsistent topological information when extracting
topological relations from such geometries (e.g., two over-
lapping regions may be stated to be identical to a third re-
gion, which is impossible as they would also have to be iden-
tical to each other if that was the case). With respect to tem-
poral information, timetabling is an example of a schedul-
ing problem where inconsistencies can naturally arise due to
the lack of resources for certain tasks (Petrovic and Burke
2004). In particular, timetabling deals with finding suitable
temporal intervals for a number of tasks that require limited
resources. In the context of a university, an inconsistency can
appear when two professors choose to teach the same class
of students at overlapping temporal intervals. The incosis-



tency must then be repaired by taking into account the avail-
able temporal intervals and the preferences of the professors,
and minimizing changes in the timetable so as to distort its
structure as little as possible. Solving the MAX-QCN prob-
lem is clearly at least as difficult as solving the consistency
problem. To solve this optimization problem, the authors in
(Condotta et al. 2015) propose a branch and bound algorithm
based on state of the art techniques for checking the consis-
tency of a QCN, viz., the use of a triangulation of the con-
straint graph of the considered QCN to reduce the number
of constraints to be treated, the use of a tractable subclass of
relations to reduce the width of the search tree, and the use
of partial �-consistency to efficiently propagate constraints
and prune non-feasible base relations during search.

We follow another approach for solving the MAX-QCN
problem, by viewing it as a partial maximum satisfiability
problem (PMAX-SAT) and proposing two related families
of encodings. As such, our approach can be seen as similar to
that concerning the consistency problem for which SAT en-
codings have been proposed to solve it (Pham, Thornton, and
Sattar 2008). Each PMAX-SAT encoding that we propose is
based on, what we call, a forbidden covering with regard to
the composition table of the considered qualitative calculus.
Intuitively, a forbidden covering is a compact set of triples
that express all the non-feasible configurations for three spa-
tial or temporal entities. Interestingly, in a way, the support
SAT encoding and the forbidden SAT encoding proposed in
(Pham, Thornton, and Sattar 2008) correspond to two par-
ticular coverings of our proposed forbidden coverings re-
spectively. Using compact sets of tuples is not new in fields
other than QSTR. In particular, in (Katsirelos and Walsh
2007) the authors express constraints of finite-domain con-
straint satisfaction problems (CSPs) through compact sets
of tuples and propose a generalized arc consistency method
adapted to this compact representation. The two families of
PMAX-SAT encodings that we propose differ from one an-
other in the use of auxiliary propositional variables that al-
low factorizing the number of obtained clauses. It should be
noted that all of our encodings also use a proven technique
with respect to the consistency problem of a given QCN, that
considers a triangulation of the constraint graph of the QCN
to reduce the number of constraints to be translated (Huang,
Li, and Renz 2013). The experimentation conducted with
QCNs from the Interval Algebra shows that a forbidden cov-
ering of ours can lead to a very compact representation of a
MAX-QCN instance by a PMAX-SAT instance, and that a
MAX-QCN instance can be efficiently solved by solving the
corresponding PMAX-SAT instance.

The paper is organized as follows. After some preliminar-
ies on QSTR and the MAX-QCN problem, we introduce the
notion of forbidden coverings in Section 3. In Section 4, we
define and study the two proposed families of PMAX-SAT
encodings for solving the MAX-QCN problem. In Section 5,
we present an algorithm for computing the forbidden cov-
erings with regard to the composition table of a qualitative
calculus, and characterize some forbidden coverings for IA.
In Section 6, we report some experimental results about our
encodings. Finally, we conclude and give some perspectives
for future work in Section 7.

2 Preliminaries
Spatial and temporal qualitative calculi
A (binary) spatial or temporal qualitative calculus consid-
ers a domain D of spatial or temporal entities respectively
and a finite set B of jointly exhaustive and pairwise dis-
joint (JEPD) relations defined on that domain (Ladkin and
Maddux 1994). The elements of B are called base relations
and represent the set of possible configurations between two
spatial or temporal entities. The set B contains the iden-
tity relation Id, and is closed under the converse operation
(−1). Indefinite knowledge between two spatial or tempo-
ral entities can be described by a relation that corresponds
to a union of base relations and is represented by the set
containing them. Hence, 2B represents the total set of re-
lations. Given x, y ∈ D and r ∈ 2B, x r y will denote
that x and y satisfy a base relation b ∈ r. The set 2B is
equipped with the usual set-theoretic operations (union and
intersection), the converse operation, the complement oper-
ation and the weak composition operation. The converse of
a relation is the union of the converses of its base relations.
The complement of a relation r, denoted by r, is the rela-
tion {b ∈ B : b 6∈ r}. The weak composition � of two base
relations b, b′ ∈ B is the relation of 2B defined by b � b′ =
{b′′ : ∃x, y, z ∈ D such that x b y, y b′ z and x b′′ z}. For
two relations r, r′ ∈ 2B, r � r′ is the relation of 2B defined
by r � r′ =

⋃
b∈r,b′∈r′ b � b′.

As an illustration, consider the well known temporal
qualitative calculus of the Interval Algebra (IA) introduced
by Allen (Allen 1983). IA considers time intervals (as its
temporal entities) and the set of base relations BIA =
{eq, p, pi,m,mi, o, oi, s, si, d, di, f, fi}. Each base relation
of BIA represents a particular ordering of the four end-
points of two intervals in the timeline (see Figure 1a). Ex-
amples of spatial qualitative calculi include two subsets of
the Region Connection Calculus (Randell, Cui, and Cohn
1992), namely, the RCC8 and RCC5 calculi, which serve
for reasoning about mereotopological information, and con-
sider spatial regions that are regular closed subsets of some
topological space. RCC8 has eight base relations that al-
low us to specify how regions and their boundaries are re-
lated to each other. The RCC5 calculus is a fragment of
RCC8 where no significance is attached to boundaries of re-
gions. RCC5 comprises the set of base relations BRCC5 =
{EQ,DC,PO,PP,PPi}, as shown in Figure 1b. Given the
small number of base relations of RCC5, in the sequel, for
simplicity, we will use this calculus to illustrate the various
introduced concepts.

Qualitative constraint networks (QCNs)
Spatial or temporal information about the relative positions
of a set of entities can be represented by a qualitative con-
straint network (QCN), which is a pair of a set of variables
and a set of constraints. Each constraint is defined by a re-
lation of 2B and specifies the set of acceptable qualitative
configurations between two spatial or temporal variables.
Definition 1 A QCN is a pair N = (V,C) where V is a
non-empty finite set of variables, and C is a mapping that
associates a relation C(v, v′) ∈ 2B with each pair (v, v′) of
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Figure 1: The base relations of IA (a) and RCC5 (b).

V ×V . Further, mapping C is such that C(v, v) ⊆ {Id} and
C(v, v′) = (C(v′, v))−1.

Given a QCN N = (V,C) and v, v′ ∈ V , the relation
C(v, v′) will also be denoted by N [v, v′]. Concerning a
QCN N = (V,C), we have the following definitions: An
instantiation of V is a mapping σ defined from V to the do-
main D. A solution σ ofN is an instantiation of V such that
for every pair (v, v′) of variables in V , (σ(v), σ(v′)) satis-
fies C(v, v′), i.e., there exists a base relation b ∈ C(v, v′)
such that (σ(v), σ(v′)) ∈ b. N is consistent iff it admits a
solution. A sub-QCN N ′ of N , denoted by N ′ ⊆ N , is a
QCN (V,C ′) such that C ′(v, v′) ⊆ C(v, v′) ∀v, v′ ∈ V .
A scenario S is a QCN whose contraints are defined by a
singleton relation, i.e., |C(v, v′)| = 1 for all pairs of vari-
ables of the QCN. A scenario S of N is a scenario which
is a sub-QCN of N . N is �-consistent or closed under weak
composition iff ∀v, v′, v′′ ∈ V , we have that C(v, v′) ⊆
C(v, v′′) � C(v′′, v′).

Given two (undirected) graphs G = (V,E) and G′ =
(V ′, E′), G is a subgraph of G′, denoted by G ⊆ G′, iff
V ⊆ V ′ and E ⊆ E′. A graph G = (V,E) is a chordal (or
triangulated) graph iff each of its cycles of length > 3 has a
chord, i.e., an edge joining two vertices that are not adjacent
in the cycle. The constraint graph of a QCN N = (V,C) is
the graph (V,E), denoted by G(N ), for which we have that
(v, v′) ∈ E iff C(v, v′) 6= B. Given a QCN N = (V,C)
and a graph G = (V,E), N is partially �-consistent w.r.t.
graph G or �G-consistent (Chmeiss and Condotta 2011) iff
for ∀(v, v′), (v, v′′), (v′′, v′) ∈ E, we have that C(v, v′) ⊆
C(v, v′′) � C(v′′, v′).

Example 1 Consider the three QCNsN , S, and S ′ of RCC5
depicted in Figure 2. For these QCNs, a variable is repre-
sented by a node, and a constraint by an arc labeled with
the associated relation; B universal relations, converse re-
lations, and Id loops are omitted for simplicity. N is an in-
consistent QCN, whereas S and S ′ are consistent QCNs. S ′
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Figure 2: An inconsistent QCN N of RCC5 (a), a triangula-
tion G of G(N ) (b), an optimal G-scenario S of N (c), an
optimal scenario S ′ of N (d) and a solution σ of N (e).

is a consistent scenario of S. A solution σ of S and S ′ is
represented in Figure 2e. Now, consider the graph G in Fig-
ure 2b. It can be verified that G(N ) ⊆ G and that G is a
chordal graph. Hence, G is a triangulation of G(N ).

The MAX-QCN problem
The MAX-QCN problem has been introduced in the context
of QSTR in (Condotta et al. 2015). Given a QCN N over a
set of variables V , the MAX-QCN problem is the problem
of finding a consistent scenario over V that maximizes the
number of satisfied constraints in N , or, equivalently, the
problem of finding a consistent scenario over V that mini-
mizes the number of unsatisfied constraints inN . Such con-
sistent scenarios are called optimal scenarios of N . In the
sequel, we will not directly characterize scenarios that are
solutions of the MAX-QCN problem of a given QCN, but
particular QCNs that we call partial scenarios, formally de-
fined in the following manner:

Definition 2 Let G = (V,E) be a graph. A partial scenario
w.r.t. G is a QCN (V,C) such that C(v, v) = {Id} for all
v ∈ V , C(v, v′) = B for all (v, v′) 6∈ E, and |C(v, v′)| = 1
for all (v, v′) ∈ E.

In the sequel, a partial scenario w.r.t. a graph G will be de-
noted by G-scenario. Given a QCNN = (V,C) and a graph
G = (V,E), a G-scenario S will be said to be an optimal
G-scenario of N iff S is consistent and there exists no other
consistent G-scenario S ′ such that |{(v, v′) ∈ E : S[v, v′] 6⊆
N [v, v′]}| > |{(v, v′) ∈ E : S ′[v, v′] 6⊆ N [v, v′]}|. Intu-
itively, an optimal G-scenario of N minimizes the number
of unsatisfied constraints in N that correspond to the edges
of G.
Theorem 1 LetN be a QCN andG a graph such that G(N )
⊆ G. Any consistent scenario of any optimal G-scenario of
N is a solution of the MAX-QCN problem of N .

For a qualitative calculus Q defined on the set of base re-
lations B, we will say that partial �-consistency is complete



for the consistency problem of a partial scenario iff for any
�
G-consistent G-scenario S of a QCNN whereG is a chordal
graph such that G(N ) ⊆ G, we have that S is consistent.
Note that for a qualitative calculus that has the aforemen-
tioned property for partial �-consistency, a consistent sce-
nario can be extracted from a consistent G-scenario in poly-
nomial time. From (Huang 2012; Sioutis and Koubarakis
2012), we can assert that partial �-consistency is complete
for the consistency problem of a partial scenario for IA, PA,
RCC5, and RCC8.

The PMAX-SAT problem
A literal is a propositional variable or its negation, and a
clause is a disjunction of literals. The maximum satisfiabil-
ity problem (MAX-SAT) is the problem of finding an assign-
ment that satisfies as many clauses of a given set of clauses
as possible (Johnson 1974). Hence, the MAX-QCN problem
can be viewed as an exportation of the MAX-SAT problem
in the context of QSTR. The partial maximum satisfiabil-
ity problem (PMAX-SAT) is an extension of the MAX-SAT
problem. An instance Ω of PMAX-SAT (Miyazaki, Iwama,
and Kambayashi 1996; Cai et al. 2014) is a set of clauses
composed of hard and soft clauses. A solution ω of Ω is an
assignment that satisfies the hard clauses and maximizes the
number of satisfied soft clauses.

3 Forbidden Coverings
In general, the operation of weak composition is defined by
a dedicated table, called the (weak) composition table. This
table has an entry for each pair of base relations (b, b′) ∈
B×B, totaling |B| × |B| entries. For an entry corresponding
to a pair (b, b′) ∈ B × B, the composition table gives the
relation of 2B corresponding to b � b′. In other words, given
three entities x, y, z ∈ D, the entry corresponding to (b, b′)
gives the set of possible base relations satisfied by x and z,
when x and y satisfy b and y and z satisfy b′.

Example 2 As an illustration, let us consider the composi-
tion table of RCC5 shown in Figure 3. By considering the en-
try corresponding to the pair of base relations (PO,DC), we
can see that PO �DC = {DC,PO,PPi}. Hence, given three
regions x, y, z such that x and y satisfy PO and y and z sat-
isfy DC, there are three possible qualitative configurations
concerning regions x, y, z that are derived by a base relation
b′′ ∈ {DC,PO,PPi}, i.e., b′′ is such that it can be satisfied
by x and z. Moreover, we can also deduce two non-possible
qualitative configurations concerning x, y, z that are de-
rived by a base relation b′′ ∈ {DC,PO,PPi} = {EQ,PP}.

In the sequel, a possible or a non-possible qualitative con-
figuration between three entities will be represented by a
triple of base relations (b, b′, b′′), with b, b′, b′′ correspond-
ing to the base relation satisfied by x and y, the base relation
satisfied by y and z, and the base relation satisfied by x and
z respectively. Such a triple of base relations will be called
a b-triple. An allowed (resp. forbidden) b-triple is a b-triple
representing a possible (resp. a non-possible) configuration.

Example 3 As an example, let us again consider the en-
try corresponding to the pair of base relations (PO,DC).

EQ DC PO PP PPi

EQ {EQ} {DC} {PO} {PP} {PPi}
DC {DC} BRCC5 {DC,PO,PP} {DC,PO,PP} {DC}
PO {PO}{DC,PO,PPi} BRCC5 {PO,PP} {DC,PO,PPi}
PP {PP} {DC} {DC,PO,PP} {PP} BRCC5

PPi {PPi}{DC,PO,PPi} {PO,PPi} {EQ,PO,PP,PPi} PPi

Figure 3: The composition table of RCC5.

From this entry, we can deduce the set of allowed b-triples
{(PO,DC,DC), (PO,DC,PO), (PO,DC,PPi)}, and the
set of forbidden b-triples {(PO,DC,EQ), (PO,DC,PP)}.

In the sequel, AB and FB will denote the whole set of
allowed b-triples and the whole set of forbidden b-triples de-
fined on B respectively. Formally, AB = {(b, b′, b′′) : b′′ ∈
b � b′} and FB = {(b, b′, b′′) : b′′ ∈ b � b′}. It is clear that
AB ∩ FB = ∅ and AB ∪ FB = B× B× B. As an example,
with regard to IA, ABIA

contains 409 b-triples whereas FBIA

contains 1788 b-triples of the 2197 possible b-triples.
Following the line of reasoning in (Katsirelos and Walsh

2007), we introduce a compact representation that allows
representing a set of b-triples in a compact manner. A com-
pact triple (c-triple) is a triple (r, r′, r′′) ∈ 2B×2B×2B. A c-
triple ct = (r, r′, r′′) represents the set of b-triples r×r′×r′′,
denoted by btriples(ct). Given a c-triple ct, ct will be said to
be a forbidden c-triple iff btriples(ct) ⊆ FB.

Example 4 As an illustration, let us consider the c-
triples ct = ({EQ},{PO,PP},{EQ,DC,PPi}) and ct′ =
({PP},{DC},{DC,PO}). We have that btriples(ct) = {
(EQ,PO,EQ),(EQ,PO,DC),(EQ,PO,PPi),(EQ,PP,EQ),
(EQ,PP,DC),(EQ,PP,PPi)}. As btriples(ct) contains only
forbidden b-triples, ct is a forbidden c-triple. Further, we
have that btriples(ct′) = {(PP,DC,DC), (PP,DC,PO)}.
As (PP,DC,DC) is an allowed b-triple and (PP,DC,PO)
is a forbidden b-triple in btriples(ct′), we have that ct′ is
neither an allowed nor a forbidden c-triple.

In what follows, a set of c-triples representing all the for-
bidden b-triples, will be called a forbidden covering of the
composition table on B, or, simply, a forbidden covering.
Formally, forbidden coverings are defined as follows:

Definition 3 A forbidden covering of the composition ta-
ble on B is a set C of forbidden c-triples such that FB =⋃
ct∈C btriples(ct).

Given a qualitative calculusQ based on a set of base rela-
tion B, the sets of c-triples CαQ and CβQ are defined as follows:
• CαQ = {({b}, {b′}, {b′′}) : (b, b′, b′′) ∈ FB};
• CβQ = {({b}, {b′}, b � b′) : b, b′ ∈ B and b � b′ 6= ∅}.

Clearly, CαQ and CβQ are examples of forbidden coverings.

Example 5 With respect to RCC5, the forbidden coverings
CαRCC5 and CβRCC5 contain 71 and 22 c-triples respectively.
However, there exist much smaller forbidden coverings, like
the covering C containing the following 10 c-triples:
1.({EQ, PP}, {EQ, PP}, {DC, PO, PPi}) 2.({EQ, PPi}, {PO, PPi}, {EQ,DC, PP})
3.({DC, PP}, {EQ, PO, PP}, {EQ, PPi}) 4.({PO, PPi}, {EQ,DC, PPi}, {EQ, PP})
5.({EQ, PP}, {DC}, {EQ, PO, PP, PPi}) 6.({EQ,DC, PPi}, {EQ, PPi}, {PO, PP})
7.({PO}, {EQ, PP}, {EQ,DC, PPi}) 8.({DC}, {PPi}, {EQ, PO, PP, PPi})
9.({PPi}, {EQ, PO, PP, PPi}, {DC}) 10.({EQ}, {PO, PP}, {EQ,DC, PPi})



4 PMAX-SAT encodings for MAX-QCN
In this section we propose two families of encodings of the
PMAX-SAT problem for solving the MAX-QCN problem.
These encodings are parameterized by a forbidden covering
and a triangulation of the constraint graph of the considered
QCN. The proposed encodings are generic, like the ones
given in (Pham, Thornton, and Sattar 2006), in the sense that
they can be used in the context of any binary qualitative cal-
culus. Nevertheless, as we will see in the sequel, particular
properties of the considered qualitative calculus are neces-
sary for ensuring the completeness of the approach. In what
follows, for the proposed encodings, we consider a QCN
N defined on a set of n variables V = {v0, . . . , vn−1}, a
chordal graph G = (V,E), and a forbidden covering C.

The FCTE encoding
We present the first encoding, denoted by FCTE (Forbidden
Covering and Triangulation based Encoding). FCTE(N ) is
defined in the following way:
• For all vi, vj ∈ V such that i < j and (vi, vj) ∈ E,
a propositional variable xbij is introduced ∀b ∈ B (i.e., a
propositional variable is indexed by i, j and the relation b).
• For all vi, vj ∈ V such that i < j and (vi, vj) ∈ E, to en-
sure that exactly one base relation of B holds between vi and
vj , the at-least-one ALO-hard and at-most-one AMO-hard
hard clauses are defined:∨

b∈B
xbij (ALO-hard)

∀{b, b′} ⊆ B with b 6= b′,¬xbij ∨ ¬xb
′
ij (AMO-hard)

• To exclude forbidden b-triples for each triangle of G, the
FORB-hard hard clauses are introduced from the forbidden
covering C. To this end, for all vi, vj , vk ∈ V such that
{(vi, vj), (vj , vk), (vi, vk)} ⊆ E and i < j < k, one hard
clause is introduced for each c-triple (r, r′, r′) ∈ C:

comp(r, i, j)∨comp(r′, j, k)∨comp(r′′, i, k) (FORB-hard)

where comp(s, l,m), with s ∈ 2B and l,m ∈ {0, . . . , n−1},
corresponds to a subclause encoding the complement of the
relation s that holds between variables vl and vm. Formally,
comp(s, l,m) is ⊥ if s = B, ¬xblm if s = {b} with b ∈ B,
and

∨
b∈s x

b
lm in any other case. Note that when an obtained

clause contains the propositional constant ⊥, the clause is
simplified by removing ⊥.
• Next, we introduce the soft clauses representing the possi-
ble base relation instantations of the constraints of the given
QCN. For all vi, vj ∈ V such that i < j, (vi, vj) ∈ E and
Cij 6= B, the following clause is added:∨

b∈Cij
xbij (ALO-soft).

Example 6 Let us consider the QCN N = (V,C) of RCC5
and the triangulation G = (V,E) of G(N ) given in Figure
2, and the forbidden covering C of the composition table of
RCC5 given in Example 5. We examine some clauses com-
posing Ω = FCTE(N , G, C). First, we can note that the set
of clauses Ω is defined on |BRCC5| × |E| = 25 propositional

variables. Regarding the pair of variables (v0, v1) ∈ E, we
have the following ALO-hard clause:

xEQ01 ∨ xDC
01 ∨ xPO01 ∨ xPP01 ∨ xPPi01 .

For the same pair of variables (v0, v1) ∈ E, Ω contains the
following AMO-hard clauses:

¬xEQ01 ∨ ¬xDC
01 , ¬xEQ01 ∨ ¬xPO01 , ¬xEQ01 ∨ ¬xPP01 ,

¬xEQ01 ∨ ¬xPPi01 , ¬xDC
01 ∨ ¬xPO01 , ¬xDC

01 ∨ ¬xPP01 ,
¬xDC

01 ∨ ¬xPPi01 , ¬xPO01 ∨ ¬xPP01 , ¬xPO01 ∨ ¬xPPi01 ,
¬xPP01 ∨ ¬xPPi01 .

By examining graph G, it becomes apparent that the
FORB-hard clauses of Ω stem from the two triples of vari-
ables (v0, v1, v3) and (v0, v2, v3). Each of these triples
yields |C| = 10 FORB-hard clauses. With regard to
(v0, v1, v3) and the following particular c-triples of C:

1. ({EQ,PP}, {EQ,PP}, {DC,PO,PPi}),
5. ({EQ,PP}, {DC}, {EQ,PO,PP,PPi}),
8. ({DC}, {PPi}, {EQ,PO,PP,PPi}),
10. ({EQ}, {PO,PP}, {EQ,DC,PPi}),

we obtain the following four FORB-hard clauses of Ω:

1. xDC
01 ∨ xPO01 ∨ xPPi01 ∨ xDC

13 ∨ xPO13 ∨ xPPi13 ∨ xEQ03 ∨ xPP03 ,
5. xDC

01 ∨ xPO01 ∨ xPPi01 ∨ ¬xDC
13 ∨ xDC

03 ,
8. ¬xDC

01 ∨ ¬xPPi13 ∨ xDC
03 ,

10. ¬xEQ01 ∨ xEQ13 ∨ xDC
13 ∨ xPPi13 ∨ xPO03 ∨ xPP03 .

Further, Ω contains the following four ALO-soft clauses:

xEQ01 ∨ xPO01 , xEQ02 ∨ xPP02 , xDC
13 ∨ xPPi13 , xPP23 .

For each assignment that satisfies the hard clauses of a set
of clauses produced by the FCTE encoding, a partially �-
consistent partial scenario can be obtained, and vice versa,
as described in the following definition:
Definition 4 Let N = (V,C) be a QCN, G = (V,E)
a graph, and C a forbidden covering. Let Ω be the set of
clauses corresponding to FCTE(N , G, C).
• For each assignment ω satisfying the hard clauses of Ω,
the �G-consistent G-scenario QCN(ω) = (V,C ′) is defined
as follows: for all (vi, vj) ∈ E such that i < j, C ′(vi, vj) =
{b} and C ′(vj , vi) = {b−1}, where b is the unique base re-
lation b of B such that ω(xbij) = true. Moreover,C(vi, vi) =
{Id} for all vi ∈ V , and C ′(vi, vj) = C ′(vj , vi) = B for all
(vi, vj) ∈ (V × V ) \ E such that vi 6= vj .
• For each �G-consistent G-scenario S = (V,C ′), the as-
signment sat(S) that satisfies the hard clauses Ω is defined
as follows: for all (vi, vj) ∈ E such that i < j and b ∈ B,
sat(S)(xbij) = true iff C ′(vi, vj) = {b}.
Example 7 As in Example 6, let us consider the QCN
N = (V,C) of RCC5 and the triangulation G = (V,E)
of G(N ) given in Figure 2, and the forbidden covering C
of the composition table of RCC5 given in Example 5. Let
Ω = FCTE(N , G, C). Now, let us consider the model ω of
Ω defined by ω(xPO01 ) = ω(xPO02 ) = ω(xPO03 ) = ω(xDC

13 ) =
ω(xPP23 ) = true, and ω(x) = false for every other proposi-
tional variable x. We have that ω is an optimal model of Ω.
Moreover, we have that QCN(w) corresponds to the optimal
G-scenario S of N as shown in Figure 2.



Theorem 2 Let Q be a qualitative calculus for which par-
tial �-consistency is complete for the consistency problem of
a partial scenario, N a QCN of Q, G = (V,E) a chordal
graph such that G(N ) ⊆ G, and C a forbidden cover-
ing. Further, let Ω be the set of clauses corresponding to
FCTE(N , G, C). We have that for all optimal G-scenarios S
ofN , sat(S) is a solution of Ω, and for all solutions ω of Ω,
QCN(ω) is an optimal G-scenario of N .

Hence, given a qualitative calculus Q for which partial
�-consistency is complete for the consistency problem of a
partial scenario and a QCN N of Q, we showed that we
can use the proposed FCTE encoding to characterize a solu-
tion of the MAX-QCN problem of N . In particular, we first
compute a triangulation G of G(N ), then select a forbidden
covering C of the composition table on B, and finally obtain
a model w of the PMAX-SAT problem defined with respect
to FCTE(N , G, C); by Theorem 2, the G-scenario QCN(w)
will be an optimal G-scenario of N and, consequently, a so-
lution of the MAX-QCN problem of N .

The FCTEX encoding
We present the second encoding, denoted by FCTEX (FCTE
with Auxiliary Variables). The FCTEX encoding differs
from the FCTE encoding in the use of FORB-hard clauses.
In particular, for the new encoding we introduce auxiliary
variables that represent the relations of 2B implied by the set
of c-triples of the forbidden covering at hand. These aux-
iliary variables allow for factorizing subclauses implied by
forbidden clauses.

FCTEX(N ) is composed of the variables and the
sets of clauses ALO-hard, AMO-hard, and ALO-soft of
FCTE(N ), and the new sets of hard clauses AUX-hard and
FORBX-hard that are defined in the following manner:
• To exclude forbidden b-triples for each triangle of G, the
FORBX-hard hard clauses are introduced from the forbid-
den covering C. To this end, for all vi, vj , vk ∈ V such that
{(vi, vj), (vj , vk), (vi, vk)} ⊆ E and i < j < k, one hard
clause is introduced for each c-triple (r, r′, r′) ∈ C:

c′(r, i, j)∨c′(r′, j, k)∨c′(r′′, i, k) (FORBX-hard)

where c′(s, l,m), with s ∈ 2B and l,m ∈ {0, . . . , n − 1},
corresponds to a subclause encoding the complement of the
relation s that holds between variables vl and vm. Formally,
c′(s, l,m) is ⊥ if s = B, ¬xblm if s = {b} with b ∈ B, and
xslm in any other case; in this last case, if xslm is introduced
for the first time, the hard clauses AUX-hard corresponding
to xslm are introduced. In particular:
• For each newly introduced propositional variable xslm in
the set of FORBX-hard clauses, with (l,m) ∈ E and s ∈ 2B,
the following hard clause is added:

∀b ∈ s,¬xblm ∨ ¬xslm (AUX-hard)

Example 8 Let us consider the QCN N = (V,C) of
RCC5 and the triangulation G = (V,E) of G(N ) given
in Figure 2, and the forbidden covering C of the com-
position table of RCC5 given in Example 5. Further, let
Ω = FCTE(N , G, C), Ω′ = FCTEX(N , G, C), and ct =

({EQ,PP}, {EQ,PP}, {DC,PO,PPi}), where ct is a par-
ticular c-triple of C. With regard to the two triples of vari-
ables (v0, v1, v3) and (v0, v2, v3), ct leads to the addition of
the following FORB-hard clauses in Ω:

xDC
01 ∨ xPO01 ∨ xPPi01 ∨ xDC

13 ∨ xPO13 ∨ xPPi13 ∨ xEQ03 ∨ xPP03 ,
xDC
02 ∨ xPO02 ∨ xPPi02 ∨ xDC

23 ∨ xPO23 ∨ xPPi23 ∨ xEQ03 ∨ xPP03 .

Whereas, ct leads to the addition of the following
FORBX-hard and AUX-hard clauses in Ω′:

x
{DC,PO,PPi}
01 ∨ x{DC,PO,PPi}

13 ∨ x{EQ,PP}03 ,
x
{DC,PO,PPi}
02 ∨ x{DC,PO,PPi}

23 ∨ x{EQ,PP}03 ,
¬xEQ01 ∨ ¬x

{DC,PO,PPi}
01 , ¬xPP01 ∨ ¬x{DC,PO,PPi}

01 ,
¬xEQ02 ∨ ¬x

{DC,PO,PPi}
02 , ¬xPP02 ∨ ¬x{DC,PO,PPi}

02 ,
¬xEQ13 ∨ ¬x

{DC,PO,PPi}
13 , ¬xPP13 ∨ ¬x{DC,PO,PPi}

13 ,
¬xEQ23 ∨ ¬x

{DC,PO,PPi}
23 , ¬xPP23 ∨ ¬x{DC,PO,PPi}

23 ,
¬xDC

03 ∨ ¬x
{EQ,PP}
03 , ¬xPO03 ∨ ¬x

{EQ,PP}
03 , ¬xPPi03 ∨ ¬x

{EQ,PP}
03 .

We can show that each solution of FCTE(N , G, C) can be
extended to a solution of FCTEX(N , G, C), and that each
solution of FCTEX(N , G, C) can be restricted to a solution
of FCTE(N , G, C). Hence, by Theorem 2 we have the fol-
lowing result:

Theorem 3 Let Q be a qualitative calculus for which par-
tial �-consistency is complete for the consistency problem of
a partial scenario, N a QCN of Q, G = (V,E) a chordal
graph such that G(N ) ⊆ G, and C a forbidden cover-
ing. Further, let Ω be the set of clauses corresponding to
FCTEX(N , G, C). We have that for all solutions ω of Ω,
QCN(ω) is an optimal G-scenario of N .

5 Computing Forbidden Coverings
With regard to the considered qualitative calculus, the car-
dinality of the whole set of c-triples can be very high. As
such, whatever the criteria for the desired forbidden cover-
ing, it is not realistic to propose a generic algorithm that
will review all of the forbidden coverings for the calculus
at hand and select one of them. A more realistic approach
is to generate a forbidden covering by choosing, in an itera-
tive manner, some preferred c-triples among a restricted set
of c-triples. In each iteration, the newly selected c-triple is
chosen according to a heuristic that optimizes some general
criteria associated with the desired forbidden covering. Fol-
lowing the aforementioned approach, we propose a generic
algorithm, called computeFC, that intuitively allows for re-
stricting the set of candidate c-triples by taking into account
the size of the generated FORB-hard clauses through the use
of the FCTE encoding. In particular, computeFC takes two
integers as parameters, namely, maxRel and maxCl, such
that maxRel ≥ 1 and maxCl ≥ 3. The integer maxRel de-
fines the maximum allowed size for a subclause that cor-
responds to a relation belonging to a c-triple, whereas the
integer maxCl defines the maximum allowed size for the
whole clause that corresponds to all three relations belong-
ing to the c-triple. Calculating the size of a subclause that
corresponds to a non-empty relation r ∈ 2B is made pos-
sible through the use of a mapping sizeCl that associates
a size with each such subclause. Formally, sizeCl(r) is 0



C CαIA Cβ
IA

C1,∞
IA

C3,∞
IA

C5,∞
IA

C6,∞
IA

C7,∞
IA

C8,∞
IA

C9,∞
IA

C10,∞
IA

C11,∞
IA

C5,7
IA

C5,8
IA

C5,9
IA

C5,10
IA

C6,10
IA

C6,11
IA

C6,12
IA

|C| 1788 166 279 207 73 63 51 49 34 34 31 133 107 103 97 79 73 69∑
ct∈C sizeCl(ct) 5364 702 837 721 585 589 523 530 695 623 666 567 519 525 507 443 583 568

Minct∈CsizeCl(ct) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Maxct∈CsizeCl(ct) 3 11 3 5 11 13 19 22 27 27 27 7 8 9 10 10 11 12
Avgct∈CsizeCl(ct) 3.0 4.22 3.0 3.48 8.01 9.34 10.25 10.81 20.44 18.35 21.48 4.26 4.85 5.09 5.22 5.60 7.98 8.23

Table 1: Some statistics about some forbidden coverings of IA.

Function computeFC(maxRel,maxCl)
in : Two integers maxRel ≥ 1 and maxCl ≥ 3.
output : A forbidden covering of the composition table on B.

1 begin
2 Srels ← {r ∈ 2B : sizeCl(r) ≤ maxRel and r 6= {}};
3 Cforb ← ∅; F ← FB;
4 while F 6= ∅ do
5 ct← null; n← 0;
6 foreach (r, r′, r′′) ∈ Srels × Srels × Srels such that

((r � r′)∩ r′′) = ∅ and sizeCl((r, r′, r′′)) ≤ maxCl do
7 ct′ ← (r, r′, r′′);
8 n′ ← |btriples(ct′) ∩ F|;
9 if (n′ > n) or (n′ = n and sizeCl(ct′) < sizeCl(ct))

then
10 ct← ct′; n← n′;
11

12 Cforb ← Cforb ∪ {ct};
13 F ← F \ btriples(ct);
14 Cforb ← minimize(Cforb);
15 return Cforb;

if r = B, 1 if |r| = 1, and |r| in any other case. Map-
ping sizeCl can be used to calculate the size of the whole
clause that corresponds to all three relations belonging to a
c-triple as well. In particular, given a c-triple ct = (r, r′, r′′),
sizeCl(ct) = sizeCl(r) + sizeCl(r′) + sizeCl(r′′). Further,
for a non-empty set of c-triples C, we have that sizeCl(C) =∑
ct∈C sizeCl(ct).
Now we will describe function computeFC in detail. In

line 2, the set of relations Srels that will be used to define
the candidate c-triples is computed. In line 3, the set of c-
triples Cforb that will correspond to the resulting forbidden
covering in the end of the treatment and the set of forbid-
den b-triples F are initialized to ∅ and FB respectively. In
lines 4–13, a forbidden covering of the composition table
on B is computed in an iterative manner. In each iteration,
a new c-triple with the maximum number of forbidden b-
triples is selected, by considering the c-triples derived from
the set of allowed relations Srels and having a size smaller
or equal to maxCl. Note that in each iteration there will
always exist a c-triple that will engulf at least one not al-
ready considered forbidden b-triple, since the set of all c-
triples derived from the set of allowed relations Srels and
having a size smaller or equal to maxCl contains the for-
bidden covering CαQ (with Q being the qualitative calculus
corresponding to B). Hence, in each iteration, a new c-triple
is added to Cforb (line 12) and at least one b-triple is re-
moved from F (line 13). Upon completion of the iterative
procedure, Cforb will be a forbidden covering of the compo-
sition table defined on B. In line 14, a final operation takes
place to minimize the forbidden covering Cforb with the
help of function minimize. This function, makes the follow-

ing two treatments iteratively until a fixed-point is reached:
first, it removes the redundant c-triples from F ; secondly,
it checks if for every c-triple ct of Cforb there exists a c-
triple ct′ of Cforb with ct′ 6= ct, sizeCl(ct′) < sizeCl(ct),
and btriples((Cforb \ {{ct}}) ∪ {ct′}) = btriples(Cforb) by
considering all c-triples of Cforb. If such a c-triple ct′ exists,
ct is replaced by ct′ in F . Finally, in line 15, the minimized
forbidden covering is returned by function computeFC.

Table 1 reports some statistics about some forbidden cov-
erings of IA computed with computeFC and about the for-
bidden coverings CαIA and CβIA. Each forbidden covering is
denoted by CmaxRel,maxCl

IA , with maxRel and maxCl being the
two integers used as parameters. Note that when maxCl is
sufficiently large to allow c-triples of any size, the symbol
∞ is used instead of the integer maxCl. The number of c-
triples of the coverings ranges from 31 to 279. The average
size of the c-triples varies from 3 to 21.48.

6 Experiments
Regarding our experimentation, we considered QCNs from
IA and the forbidden coverings computed as described in
the previous section. We experimented with QCNs of IA be-
cause the MAX-QCN problem for IA seems to be in general
more challenging than for other cited calculi (Condotta et al.
2015). The QCNs were randomly generated using the model
A, which was first proposed by Nebel in (Nebel 1997) and
has been widely used in the experimental studies in the con-
text of QSTR ever since. This model generates QCNs ac-
cording to the three following parameters: the number of
variables n, the density of constraints defined by a non-
trivial relation of IA (i.e., a relation other than B) d, and
the average number of base relations in each constraint s.
The reported experimental results concern QCNs of model
A(n, d, s), with n = 20, d varying from 8 to 14.5 with a
step of 0.25, and s = 6.5. The relatively small number of
variables was decided to be able to present results that are
as complete as possible; this will become more clear in what
follows. For each considered value of d, 10 instances were
generated, giving a total of 280 randomly generated QCNs.
Regarding triangulations of the constraint graphs of QCNs,
a (linear) technique involves adding extra edges while elim-
inating vertices one by one in some order. Among the pro-
posed heuristics to order the vertices, we used the Greedy-
FillIn (GFI) heuristic (Bodlaender and Koster 2010).

The first part of our analysis concerns the size of the
PMAX-SAT instances obtained, more particularly, the av-
erage number of propositional variables, the average num-
ber of clauses, the average size of the clauses, and the av-
erage number of literals in the PMAX-SAT instances (i.e.,
the sum of the literals of the clauses). Let us examine the
table in Figure 4. It is clear that the use of the GFI heuris-
tic to triangulate the constraint graph of a given QCN al-



#Vars #Clauses(×10−3) #Literals(×10−3) |Clauses|
NONE GFI NONE GFI NONE GFI NONE GFI

C FCTE FCTEX FCTE FCTEX FCTE FCTEX FCTE FCTEX FCTE FCTEX FCTE FCTEX FCTE FCTEX FCTE FCTEX

CαIA 2471.0 2471.0 1931.0 1931.0 2053.4 2053.4 1146.3 1146.3 6147.8 6147.8 3429.2 3429.2 3.0 3.0 3.0 3.0

Cβ
IA

2471.0 4694.0 1931.0 3581.5 204.4 224.2 117.2 131.9 833.1 640.2 471.2 371.2 4.1 2.9 4.0 2.8

C1,∞
IA

2471.0 2471.0 1931.0 1931.0 333.2 333.2 188.9 188.9 987.0 987.0 556.9 556.9 3.0 3.0 2.9 2.9

C3,∞
IA

2471.0 3911.0 1931.0 3024.8 251.1 265.5 143.2 154.1 854.8 769.6 483.3 441.7 3.4 2.9 3.4 2.9

C5,∞
IA

2471.0 6907.0 1931.0 5343.7 98.3 137.2 58.2 88.1 699.7 360.2 397.0 224.6 7.1 2.6 6.8 2.6

C6,∞
IA

2471.0 10397.0 1931.0 7951.7 86.9 151.8 51.8 101.1 704.3 378.1 399.5 244.3 8.1 2.5 7.7 2.4

C7,∞
IA

2471.0 11918.0 1931.0 9065.7 73.3 143.0 44.2 97.0 629.1 346.8 357.7 228.5 8.6 2.4 8.1 2.4

C8,∞
IA

2471.0 9740.0 1931.0 7409.4 71.0 121.9 42.9 81.3 637.0 302.3 362.1 195.9 9.0 2.5 8.5 2.4

C9,∞
IA

2471.0 10249.0 1931.0 7851.1 53.9 99.0 33.4 67.7 825.1 239.3 466.8 159.0 15.3 2.4 14.0 2.4

C10,∞
IA

2471.0 10191.0 1931.0 7783.9 53.9 96.2 33.4 65.5 744.2 233.7 421.7 154.7 13.8 2.4 12.7 2.4

C11,∞
IA

2471.0 11256.0 1931.0 8589.3 50.5 97.1 31.5 66.9 792.1 232.1 448.4 155.7 15.7 2.4 14.3 2.3

C5,7
IA

2471.0 4707.0 1931.0 3657.5 166.7 187.6 96.2 112.3 679.2 529.4 385.6 311.1 4.1 2.8 4.0 2.8

C5,8
IA

2471.0 5017.0 1931.0 3880.4 137.1 161.4 79.7 98.3 624.5 447.4 355.1 266.7 4.6 2.8 4.5 2.7

C5,9
IA

2471.0 5849.0 1931.0 4552.2 132.5 164.4 77.2 101.9 631.3 448.9 358.9 271.3 4.8 2.7 4.7 2.7

C5,10
IA

2471.0 7289.0 1931.0 5645.6 125.7 169.8 73.4 107.4 610.8 452.8 347.5 278.5 4.9 2.7 4.7 2.6

C6,10
IA

2471.0 7245.0 1931.0 5591.0 105.2 147.4 62.0 94.3 537.9 387.4 306.9 240.8 5.1 2.6 5.0 2.6

C6,11
IA

2471.0 7933.0 1931.0 6102.8 98.3 145.4 58.2 94.1 697.5 376.6 395.7 236.7 7.1 2.6 6.8 2.5

C6,12
IA

2471.0 10378.0 1931.0 7927.1 93.8 160.8 55.6 106.5 680.4 402.9 386.2 258.9 7.3 2.5 7.0 2.4

Figure 4: Statistics about the PMAX-SAT instances of A(20, d, 6.5) with d ∈ {8, . . . , 14.75}
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Figure 5: Number of edges/triangles of the graphs obtained by the triangulation GFI and the number of literals for some encodings.

lows us to obtain PMAX-SAT instances of much smaller
size compared with completing the constraint graph of the
QCN (see Figure 5). Figure 4 shows that the denser a QCN
with respect to the number of its non-trivial constraints is,
the lesser the gain we have due to the use of the GFI heuris-
tic, which is expected. Further, we note that forbidden cov-
erings have a significant effect on the size of a PMAX-SAT
instance. In particular, and as expected, the forbidden cover-
ings C9,∞IA , C10,∞IA , C11,∞IA lead to a much smaller number of
clauses compared with CαIA or CβIA, which are the forbidden
coverings proposed in (Pham, Thornton, and Sattar 2008).
Concerning the FCTE encoding, the smaller numbers of lit-
erals are obtained through the use of forbidden coverings
C5,10IA and C6,10IA . However, the FCTEX encoding can lead to
PMAX-SAT instances with a much smaller number of lit-
erals in many cases, as in the case of the forbidden cover-
ings C9,∞IA , C10,∞IA , and C11,∞IA . The clause factorization used
in FCTEX allows us to reduce the impact of oversized c-
triples on the forbidden covering at hand. Concerning the

average size of the clauses, the FCTE encoding can lead to
PMAX-SAT instances of a big average size of the clauses,
e.g., 15.7 for C11,∞IA , whilst the FCTEX encoding leads to
PMAX-SAT instances of an average size of the clauses that
is always less than 3; this is compensated by a higher num-
ber of propositional variables used in the FCTEX encoding
compared with the FCTE encoding.

The second part of our analysis concerns the time needed
for solving the obtained PMAX-SAT instances. We used
the QMaxSAT solver (Koshimura et al. 2012) in our ex-
periments. We note that the obtained solving times do not
include the time required for encoding a given QCN, as it
was negligible w.r.t. the time required for solving that QCN
with the PMAX-SAT solver. We only report results con-
cerning GFI triangulation based encodings, as encodings not
involving a triangulation of the constraint graph of the in-
put QCN led to much worse results. For the first experi-
ment, we considered a timeout of 1 500 seconds for solv-
ing the PMAX-SAT instances of model A(20, d, 6.5) with
d ∈ {8, . . . , 14.75}. We first consider the results uniquely



C #TO #BT1 #BT2 #BT3

CαIA 30 3 7 11

Cβ
IA

25 61 99 136
C1,∞
IA

23 65 124 152
C3,∞
IA

23 55 102 137
C5,∞
IA

27 0 2 4

C6,∞
IA

36 0 1 3

C7,∞
IA

32 1 1 3

C8,∞
IA

35 0 0 0

C9,∞
IA

67 0 0 0

C10,∞
IA

65 0 0 0

C11,∞
IA

68 0 0 0

Cmax
IA 62 0 0 0

C5,7
IA

23 36 75 120

C5,8
IA

24 26 54 106

C5,9
IA

26 8 24 44

C5,10
IA

31 5 17 31

C6,10
IA

25 7 19 33

C6,11
IA

31 0 4 7

C6,12
IA

33 0 3 6

(a) FCTE, GFI

C #TO #BT1 #BT2 #BT3

CαIA 30 0 1 1

Cβ
IA

21 12 33 50

C1,∞
IA

23 25 42 64

C3,∞
IA

27 16 31 50

C5,∞
IA

13 31 66 86
C6,∞
IA

21 5 10 14

C7,∞
IA

21 9 15 20

C8,∞
IA

13 34 59 78

C9,∞
IA

18 3 4 8

C10,∞
IA

18 4 4 8

C11,∞
IA

22 1 2 7

Cmax
IA 19 2 5 7

C5,7
IA

20 23 55 83
C5,8
IA

16 44 78 112
C5,9
IA

18 15 38 58

C5,10
IA

19 9 24 39

C6,10
IA

22 15 28 46

C6,11
IA

17 18 32 55

C6,12
IA

22 3 11 19

(b) FCTEX, GFI

C Encoding #BT1 #BT2 #BT3

Cβ
IA

FCTE 5 11 16

C1,∞
IA

FCTE 7 14 19

C3,∞
IA

FCTE 6 11 17

C5,7
IA

FCTE 17 29 36
C5,8
IA

FCTE 6 14 18

Cβ
IA

FCTEX 5 14 21

C1,∞
IA

FCTEX 6 17 23

C5,∞
IA

FCTEX 7 20 28

C6,∞
IA

FCTEX 5 15 24

C7,∞
IA

FCTEX 16 20 25

C8,∞
IA

FCTEX 21 22 31
C9,∞
IA

FCTEX 14 20 27

C10,∞
IA

FCTEX 7 17 23

C11,∞
IA

FCTEX 5 13 24

C5,7
IA

FCTEX 14 25 37
C5,8
IA

FCTEX 14 22 27

C6,10
IA

FCTEX 7 14 24

C6,11
IA

FCTEX 5 14 21

(c) FCTE + FCTEX, GFI

Figure 6: 280 instances of A(20, d, 6.5) with d ∈ {8, . . . , 14.75}, timeout fixed to 1500 seconds, #TO corresponds to the number of timed-
out instances, #BTi with i ∈ {1, 2, 3} is the number of instances for which the encoding leads to a solving time belonging to the i first best
times (considering all encodings). (a) concerns only FCTE encodings, (b) concerns only FCTEX encoding, and (c) concerns both FCTE and
FCTEX encodings. For (c), only the results for the 18 best encodings are reported.
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Figure 7: (left) Solving times for the PMAX-SAT instances of A(20, d, 6.5) with d ∈ {8, . . . , 14.75}, timeout fixed to 24 hours;
(right) Optimal number of unsatisfiable constraints.

concerning FCTE encodings, reported in Figure 6 (a). We
note that the best-performing encodings correspond to en-
codings with clauses of a small size in average and with
a reasonable number of clauses. Among these encodings,
we have the ones corresponding to the forbidden cover-
ings CβIA,C1,∞IA ,C3,∞IA ,C5,7IA , and C5,8IA . By considering only the
FCTEX encodings, we note that the ones with the lowest
number of variables and a not too high number of literals are
performing better than the others. In particular, among these
FCTEX encodings, we have the encodings corresponding to
the forbidden coverings C5,∞IA ,C8,∞IA ,C5,7IA , and C5,8IA . We note
that in general the FCTEX encodings perform better than the
FCTE encodings. Finally, in order to compare our approach
with the one of (Condotta et al. 2015), we solved the QCN
instances with the Medusa solver. For all PMAX-SAT en-
codings and for almost all QCN instances, the QMaxSAT

Density of non trivial constraints #Solved for C11,∞
IA

,FCTE #Solved for Medusa

8.00 / 8.25 / 8.50 / 8.75 10 / 10 / 10 / 10 8 / 6 / 7 / 7
9.00 / 9.25 / 9.50 / 9.75 10 / 10 / 10 / 10 6 / 6 / 3 / 3

10.00 / 10.25 / 10.50 / 10.75 10 / 10 / 10 / 10 4 / 2 / 2 / 1
11.00 / 11.25 / 11.50 / 11.75 10 / 10 / 10 / 10 0 / 0 / 0 / 0
12.00 / 12.25 / 12.50 / 12.75 10 / 10 / 8 / 4 0 / 0 / 0 / 0
13.00 / 13.25 / 13.50 / 13.75 5 / 5 / 4 / 1 0 / 0 / 0 / 0
14.00 / 14.25 / 14.50 / 14.75 3 / 2 / 0 / 0 0 / 0 / 0 / 0

Table 2: Number of solved instances for the PMAX-SAT in-
stances of A(20, d, 6.5) for Medusa and for the FCTE encoding
C11,∞IA (with the triangulation GFI) with d ∈ {8, . . . , 14.75}, time-
out fixed to 1500 seconds.

solver outperforms Medusa. Moreover, Medusa solved only
55 out of the 280 instances (see Table 2).

For the last part of our analysis we selected some encod-
ings that were previously found to be better performing and
solved the corresponding PMAX-SAT instances with a time-
out of 24h in order to obtain results as complete as possible



(see Figure 7). First, we note that even with this high time-
out, some PMAX-SAT instances are not solved for some en-
codings. Among the 280 QCN instances, only two instances
are not solved in the given timeout for some encodings; the
solving times and the optimal number of unsatisfiable con-
straints for these two QCNs are not taken into account in
Figure 7 for any of the encodings. Clearly, the more the den-
sity of non-trivial constraints increases, the more the opti-
mal number of unsatisfiable constraints increases and, con-
sequently, the more difficult the instances can be to solve.
Further, we remind the reader that the denser a QCN with
respect to the number of its non-trivial constraints is, the
lesser the gain we have due to the use of the GFI heuris-
tic. The better performing encodings are the FCTEX encod-
ings. In particular, the FCTEX encodings corresponding to
the forbidden coverings C8,∞IA ,C5,7IA and C5,8IA have superior
performance for hard instances.

7 Conclusions
In this work, we introduced two families of encodings of
the partial maximum satisfiability problem (PMAX-SAT),
called FCTE and FCTEX, for solving the MAX-QCN prob-
lem. These encodings are based on forbidden coverings of
the composition table of the considered qualitative calculus
and a triangulation of the constraint graph of the QCNs at
hand. Depending on the chosen forbidden covering, we can
obtain PMAX-SAT instances that are very compact. More-
over, some encodings can lead to efficient solving. We have
experimentally shown that our approach outperforms the
one presented in (Condotta et al. 2015). Future work con-
sists of conducting experiments with several PMAX-SAT
solvers to compare their behavior against the instances ob-
tained through the FCTE and FCTEX encodings. Another
perspective consists of using forbidden coverings in the con-
text of SAT encodings for the consistency problem of QCNs.
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