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Abstract
The Interval Algebra (IA) and a subset of the Re-
gion Connection Calculus (RCC), namely RCC-8,
are the dominant Artificial Intelligence approaches
for representing and reasoning about qualitative
temporal and topological relations respectively.
Such qualitative information can be formulated as
a Qualitative Constraint Network (QCN). In this
paper, we focus on the minimal labeling prob-
lem (MLP) and we propose an algorithm to effi-
ciently derive all the feasible base relations of a
QCN. Our algorithm considers chordal QCNs and
a new form of partial consistency which we define
as ◆G-consistency. Further, the proposed algorithm
uses tractable subclasses of relations having a spe-
cific patchwork property for which �-consistency
implies the consistency of the input QCN. Experi-
mentations with QCNs of IA and RCC-8 show the
importance and efficiency of this new approach.

1 Introduction
Spatial and temporal reasoning is a major field of study in
Artificial Intelligence; particularly in Knowledge Represen-
tation. This field has gained a lot of attention during the last
few years as it extends to a plethora of areas and domains that
include, but are not limited to, ambient intelligence, dynamic
GIS, cognitive robotics, and spatiotemporal design [Bhatt et
al., 2011; Hazarika, 2012]. In this context, an emphasis
has been made on qualitative spatial and temporal reasoning
which relies on qualitative abstractions of spatial and tempo-
ral aspects of the common-sense background knowledge, on
which our human perspective on the physical reality is based.
The concise expressiveness of the qualitative approach pro-
vides a promising framework that further boosts research and
applications in the aforementioned areas and domains.

The Interval Algebra (IA) [Allen, 1981] and a subset of the
Region Connection Calculus (RCC) [Randell et al., 1992],
namely RCC-8, are the dominant Artificial Intelligence ap-
proaches for representing and reasoning about qualitative
temporal and topological relations respectively. These quali-
tative calculi use constraints to encode knowledge about the
spatial or temporal relationships between entities. Thus, qual-
itative information can be modelled as a domain-specific vari-

ant of a Constraint Satisfaction Problem (CSP) [Montanari,
1974; Mackworth, 1991]. Infinite domains is the main dif-
ference of spatial or temporal CSPs to normal CSPs. For in-
stance, there are infinitely many time points or temporal in-
tervals on the time line and infinitely many regions in a two or
three dimensional space. One way of dealing with infinite do-
mains is using constraints over a finite set of binary relations,
by employing a relation algebra [Ladkin and Maddux, 1994].
We will use the term QCN to refer to this particular type of
infinite-domain CSP that makes use of a relation algebra to
handle qualitative constraints.

Given a QCN, we are particularly interested in the con-
sistency problem and the minimal labeling problem (MLP).
The consistency problem is deciding whether a set of con-
straints can be satisfied simultaneously, i.e., whether there
exists an interpretation of all variables such that all con-
straints are satisfied by this interpretation. The MLP (also
known as the deductive closure problem) is determining all
the feasible base relations (i.e., the base relations partici-
pating in at least one solution) for each of the constraints.
These two problems in IA and RCC-8 are NP-hard in gen-
eral [Vilain and Kautz, 1986; Liu and Li, 2012]. However,
there exist large maximal tractable subsets of IA and RCC-
8 which can be used to make reasoning much more efficient
even in the general NP-hard case [Nebel and Bürckert, 1995;
Renz, 1999]. In this paper, we concentrate on the MLP only.

Practical approaches to deal with the MLP in the context
of qualitative spatial and temporal reasoning have mainly
focused on identifying tractable subsets for which path-
consistency is sufficient to ensure minimality of a given QCN.
This paradigm is well described in the works of van Beek
[van Beek, 1992], Bessière et. al [Bessière et al., 1996], and
Amaneddine et. al [Amaneddine and Condotta, 2012] for IA,
and in one original work of Chandra et. al [Chandra and Pu-
jari, 2005] for RCC-8. Here, we provide the following con-
tributions: (i) we formally introduce and study a new form
of partial consistency for QCNs, called ◆G-consistency, where
G is a graph on the set of variables of a given QCN, (ii) we
propose a new algorithm to solve the MLP, called Minimize,
that considers QCNs with chordal constraint graphs and em-
ploys tractable subsets of relations of IA and RCC-8 that
have a particular patchwork property [Lutz and Milicic, 2007;
Huang, 2012], and (iii) we show the practical interest of our
approach through an experimental evaluation.
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Figure 1: The base relations of IA

The remaining parts of this paper are organized as follows:
Section 2 introduces the main notions and terminology of
QCNs, focusing on IA and RCC-8. In Section 3 we define
◆

G-consistency and outline its connection with the MLP. Sec-
tion 4 presents our new algorithm, viz., Minimize, for solving
the MLP. In Section 5 we evaluate this algorithm experimen-
tally. Finally, in Section 6 we conclude and give directions
for future research.

2 Preliminaries
A (binary) temporal or spatial qualitative calculus [Renz and
Ligozat, 2005] is based on a finite set B of jointly exhaus-
tive and pairwise disjoint (JEPD) relations defined on a do-
main D, called base relations. The set of base relations B
of a particular qualitative calculus can be used to represent
definite knowledge between any two entities with respect to
the given level of granularity. B contains the identity re-
lation Id, and is closed under the converse operation (−1).
Indefinite knowledge can be specified by unions of possi-
ble base relations, and is represented by the set containing
them. Hence, 2B will represent the set of relations. 2B is
equipped with the usual set-theoretic operations (union and
intersection), the converse operation, and the weak compo-
sition operation. The converse of a relation is the union of
the converses of its base relations. The weak composition �
of two relations s and t for a set of base relations B is de-
fined as the strongest relation r ∈ 2B which contains s ◦ t,
or formally, s � t = {b ∈ B | b ∩(s ◦ t) 6= ∅}, where
s ◦ t = {(x, y) | ∃z : (x, z) ∈ s ∧ (z, y) ∈ t} is the rela-
tional composition.

As illustration, consider the temporal qualitative calculus
IA [Allen, 1981] and the spatial qualitative calculus RCC-8
[Randell et al., 1992]. The set of base relations of IA, denoted
by BIA, is the set {eq, p, pi,m,mi, o, oi, s, si, d, di, f, fi}.
These thirteen relations represent the possible relations be-
tween time intervals as depicted in Figure 1. The set of
base relations of RCC-8, denoted by BRCC8, is the set
{dc, ec, po, tpp, ntpp, tppi, ntppi, eq}. These eight relations
represent the binary topological relations between regions
that are non-empty regular subsets of some topological space
as depicted in Figure 2 (for the 2D case).

A Qualitative Constraint Network (QCN) consists of a set
of variables and a set of constraints. Each variable represents
an entity and each constraint represents the set of possible
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Figure 2: The base relations of RCC-8

qualitative configurations between two entities. Formally, a
QCN is defined as follows:

Definition 1 A QCN is a pairN = (V,C) where: V is a non
empty finite set of variables; C is a mapping that associates
a relation C(v, v′) ∈ 2B to each pair (v, v′) of V × V . C is
such that C(v, v) ⊆ {Id} and C(v, v′) = (C(v′, v))−1.

In what follows, given a QCN N = (V,C) and v, v′ ∈ V ,
N [v, v′] will denote the relation C(v, v′). N[v,v′]/r with
r ∈ 2B is the QCN N ′ defined by N ′[v, v′] = r, N ′[v′, v] =
r−1, and N ′[v, v′] = N [v, v′] ∀(v, v′) ∈ (V × V ) \
{(v, v′), (v′, v)}. Given a set of variables V , ⊥V will de-
note the particular QCN where each constraint is defined by
the empty relation ∅. Given a QCN N = (V,C) we have
the following definitions: N is said to be trivially inconsis-
tent iff ∃v, v′ ∈ V with N [v, v′] = ∅. A solution of N is
a mapping σ defined from V to the domain D such that for
every pair (v, v′) of variables in V , (σ(v), σ(v′)) satisfies
N [v, v′], i.e., there exists a base relation b ∈ N [v, v′] such
that (σ(v), σ(v′)) ∈ b. N is consistent iff it admits a solution.
Two QCNs are equivalent iff they admit the same solutions.

A sub-QCN N ′ of N , denoted by N ′ ⊆ N , is a QCN
(V,C ′) such thatN ′[v, v′] ⊆ N [v, v′] ∀v, v′ ∈ V . An atomic
QCN is a QCN where each constraint is defined by a base re-
lation. A scenario S of N is an atomic consistent sub-QCN
of N . A base relation b ∈ N [v, v′] with v, v′ ∈ V is feasible
(resp. unfeasible) iff there exists (resp. there does not exist)
a scenario S of N such that S[v, v′] = {b}. N is minimal
iff ∀v, v′ ∈ V and ∀b ∈ N [v, v′], b is a feasible base rela-
tion of N . The unique equivalent minimal sub-QCN of N
is denoted by Nmin. It is called the minimal QCN of N . N
is �-consistent or closed under weak composition iff ∀v, v′,
v′′ ∈ V , N [v, v′] ⊆ N [v, v′′] � N [v′′, v′]. The closure un-
der weak composition ofN , denoted by �(N ), is the greatest
�-consistent sub-QCN of N .

Given two QCNs N = (V,C) and N ′ = (V,C ′), N ∪
N ′ denotes the QCN N ′′ = (V,C ′′) where N ′′[v, v′] =
N [v, v′] ∪N ′[v, v′] for all v, v′ ∈ V . Given two QCNs N =
(V,C) and N ′ = (V ′, C ′) such that N [v, v′] = N ′[v, v′] for
all v, v′ ∈ V ∩ V ′, N ′ dN denotes the QCN N ′′ = (V,C ′′)
where N ′′[v, v′] = N [v, v′] for all v, v′ ∈ V , N ′′[v, v′] =
N ′[v, v′] for all v, v′ ∈ V ′, and N ′′[v, v′] = N ′′[v′, v] = B
for all v ∈ V ′ \ V , v′ ∈ V \ V ′.

In what follows, all considered graphs are undirected.
Given two graphsG = (V,E) andG′ = (V ′, E′),G is a sub-
graph of G′, denoted by G ⊆ G′, iff V ⊆ V ′ and E ⊆ E′.
A graph G = (V,E) is a chordal graph (some times also
called triangulated graph) [Golumbic, 2004] iff each of its
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cycles of length strictly greater than 3 has a chord, i.e., an
edge joining two vertices that are not adjacent in the cycle.
KV with V a set of variables denotes the complete graph
G = (V,E) where E = {(v, v′) : v, v′ ∈ V }. The con-
straint graph of a QCN N = (V,C) is the graph (V,E),
denoted by G(N ), for which we have that (v, v′) ∈ E iff
N [v, v′] 6= B. Given a QCN N = (V,C) and a graph G =
(V,E), N is �G-consistent [Chmeiss and Condotta, 2011] iff
for ∀(v, v′), (v, v′′), (v, v′′) ∈ E we have that N [v, v′] ⊆
N [v, v′′] � N [v′′, v′]. Given a QCNN ′ = (V,C),N ⊆G N ′
iff for each (v, v′) ∈ E we have that N [v, v′] ⊆ N ′[v, v′].

A subclass of relations is a set A ⊆ 2B closed under con-
verse, intersection, and weak composition. Given a relation
r of 2B and a subclass A ⊆ 2B containing the universal rela-
tion (i.e., the relation B), A(r) denotes the smallest relation
of A including r. Moreover, given a QCN N = (V,C),
A(N ) is the QCN N ′ = (V,C ′) defined by N ′[v, v′] =
A(N [v, v′]) ∀v, v′ ∈ V . In what follows, all the considered
subclasses will contain the singleton relations of 2B.

Definition 2 Let A ⊆ 2B. We define properties
(�⇒consistency) and (Patchwork�) as follows:
• A satisfies (�⇒consistency) iff for any not trivially incon-
sistent and �-consistent QCN N , N is consistent.
• A satisfies (Patchwork�) iff for any not trivially inconsis-
tent and �-consistent QCNs N = (V,C) and N ′ = (V ′, C ′)
with identical labeling of constraints on V ∩V ′, QCNN dN ′
is a consistent QCN.

We can notice that property (Patchwork�) is stronger
than property (�⇒consistency). Moreover, property
(Patchwork�) can be seen like a patchwork (or amalgama-
tion) property restricted to �-consistent QCNs. From [Huang,
2012], we can assert that subclasses HIA of IA and Ĥ8, C8,
and Q8 of RCC-8 satisfy (Patchwork�). From [Sioutis and
Koubarakis, 2012], we have the following result:

Property 1 Let A ⊆ 2B be a subclass having property
(Patchwork�), N = (V,C) a not trivially inconsistent QCN
defined on A, and G = (V,E) a graph such that G(N ) ⊆ G.
If G is chordal and N is �G-consistent then N is consistent.

3 Partial consistencies for QCNs
In this section we introduce and study a new form of partial
consistency for QCNs, called ◆G-consistency, where G is a
graph on the set of variables V of the considered QCN. In-
tuitively, a QCN N on V is ◆G-consistent iff for every pair of
variables (v, v′) and every base relation b ∈ N [v, v′], after in-
stantiatingN [v, v′] with {b} and computing the closure under
�
G-consistency, N [v, v′] is always defined by {b}. Formally,
◆

G-consistency of a QCN is defined as follows:

Definition 3 Let N = (V,C) be a QCN and G = (V,E)
a graph. N is said to be ◆G-consistent iff ∀v, v′ ∈ V and
∀b ∈ N [v, v′], {b} = �G(N[v,v′]/{b})[v, v

′].

If G is a complete graph, i.e., G = KV , we can easily ver-
ify that ◆G-consistency corresponds to �B-consistency of the
familly of �f -consistencies studied in [Condotta and Lecoutre,
2010]. Interestingly, ◆G-consistency can be also seen as a par-
tial singleton arc consistency (SAC) [Debruyne and Bessière,

1997] for QCNs. Given a QCNN = (V,C) and a graphG =
(V,E), for every b ∈ B and every v, v′ ∈ V , we will say that
b is ◆G-consistent for N [v, v′] iff {b} = �

G(N[v,v′]/{b})[v, v
′].

We have the following proposition:

Proposition 1 Let N = (V,C) and N ′ = (V,C ′) be two
QCNs such that N ⊆ N ′, and G = (V,E) a graph. For
every b ∈ B and every v, v′ ∈ V , if b is ◆G-consistent for
N [v, v′] then b is ◆G-consistent for N ′[v, v′].
Next, we prove the following properties to show that there
exists a closure under ◆G-consistency as with �G-consistency:

Proposition 2 Let V be a set of variables and G = (V,E) a
graph. We have: (1) for any QCNs N1 and N2 defined on V ,
ifN1 andN2 are ◆G-consistent, thenN1 ∪N2 is ◆G-consistent,
and (2) every scenario S defined on V is a ◆G-consistent QCN.

Proof. (1) Let v, v′ ∈ V and b ∈ (N1 ∪ N2)[v, v
′].

Suppose that N1 and N2 are ◆G-consistent. It is clear that
b ∈ N1[v, v

′] or b ∈ N2[v, v
′]. Suppose that b ∈ N1[v, v

′]
(the other case is similar). Since N1 is ◆G-consistent, we
have that b is ◆G-consistent for N1[v, v

′]. Therefore, since
N1 ⊆ N1 ∪ N2, from Prop. 1 we have that b is ◆G-consistent
for (N1 ∪ N2)[v, v

′]. (2) Every scenario S defined on V is
�-consistent and, hence, �G-consistent. Moreover, ∀v, v′ ∈ V
and ∀b ∈ S[v, v′], S[v, v′] = {b}. Thus, ∀v, v′ ∈ V and b ∈
S[v, v′] we have that �G(S[v,v′]/{b})[v, v′] = �

G(S)[v, v′] =
S[v, v′] = {b}. a
From this proposition we can assert that for a QCN N =
(V,C) and a graph G = (V,E) there exists a unique largest
◆

G-consistent sub-QCN of N , i.e., a closure of N under
◆

G-consistency. By denoting this closure by ◆G(N ), we have
that ◆G(N ) = {N ′ : N ′ ⊆ N and N ′ is ◆G-consistent}.
Further, we have that ◆G(N ) is equivalent to N since from
Property (2) of the previous proposition we know that every
scenario S of N is a ◆G(N ) sub-QCN of N .

Function Make◆G(N ,G)
in : A QCNN = (V,C) and a graph G = (V,E).
output : The closure ofN under ◆G-consistency.

1 begin
2 repeat
3 N ′ ← N ;
4 foreach (v, v′) ∈ E such that i ≤ j do
5 foreach b ∈ N [v, v′] do
6 if b 6∈ �G(N[v,v′]/{b})[v, v

′] then
7 N [v, v′]← N ′[v, v′] \ {b};
8 N [v′, v]← N ′[v′, v] \ {b−1};

9 untilN = N ′;
10 returnN

The naive algorithm corresponding to function Make◆G, al-
lows computing ◆G(N ) with a worst-case time complexity of
O(α.|B|2.|E|2) (where α is the worst-case time complexity
for enforcing �G-consistency). We can now obtain the follow-
ing result:

Proposition 3 LetN = (V,C) be a QCN and G = (V,E) a
graph. If N is ◆G-consistent then N is �G-consistent.
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Notice that in the general case a �G-consistent QCN is not nec-
essary ◆G-consistent. Now, we show that for QCNs defined
on a subclass A having property (Patchwork�), enforcing
◆

G-consistency using a chordal graph G(N ) ⊆ G ensures the
feasibility of the base relations belonging to the constraints of
N corresponding to the edges of G.

Proposition 4 Let A ⊆ 2B be a subclass having property
(Patchwork�), N = (V,C) a not trivially inconsistent QCN
defined on A, and G = (V,E) a chordal graph such that
G(N ) ⊆ G. We have: (1) for every (v, v′) ∈ E and every
b ∈ N [v, v′], b is ◆G-consistent forN [v, v′] iff b ∈ Nmin[v, v

′],
and (2) for every (v, v′) ∈ E, Nmin[v, v

′] = ◆

G(N )[v, v′].

Proof. (1) Consider a base relation b which is ◆G-consistent
for N [v, v′] with (v, v′) ∈ E. Let N ′ be the QCN defined by
N ′ = �G(N[v,v′]/{b}). We can show thatN ′ is not trivially in-
consistent. Moreover, asN[v,v′]/{b} is defined on A, we know
that N ′ is also defined on A. Consequently, from Property 1
we can assert thatN ′ admits a scenario S. S is also a scenario
of N since N ′ ⊆ N . Since N ′[v, v′] = {b}, we can affirm
that S[v, v′] = {b}. We can conclude that b ∈ Nmin[v, v

′].
Now, consider b ∈ Nmin[v, v

′] with (v, v′) ∈ E. There exists
a scenario S ofN such that S[v, v′] = {b}. From Prop. 2 we
have that S is ◆G-consistent. Therefore, b is ◆G-consistent for
S[v, v′]. From Prop. 1 we can conclude that b is ◆G-consistent
for N [v, v′] because S ⊆ N . (2) can be established directly
from (1) and the fact that ◆G(N ) is an equivalent QCN of N
for which every base relation b ∈ N [v, v′] with (v, v′) ∈ E
is ◆G-consistent for (v, v′). a

From this proposition we can notice that for a not triv-
ially inconsistent QCN N on a subclass A having property
(Patchwork�) and for a chordal graph G such that G(N ) ⊆
G, we can compute ◆G(N ) by using function Make◆G whithout
its outer loop (with a time complexity of O(α.|B|.|E|)).
Before considering the next result, note that given two QCNs
N and N ′ defined on V and a graph G = (V,E), NG/N ′

denotes the QCN N ′′ = (V,C ′′) defined by N ′′[v, v′] =
N ′[v, v′] if (v, v′) ∈ E, and N ′′[v, v′] = N [v, v′] other-
wise. We have the following result which will be useful in
the sequel:

Proposition 5 Let N , N ′, N ′′ be three QCNs defined on
V , G a chordal graph, and A a subclass having property
(Patchwork�) such that: G(N ) ⊆ G, N ′ is an equivalent
sub-QCN of N , and N ′′ is a not trivially inconsistent and
�
G-consistent sub-QCN of N ′ with A(N ′′) ⊆G N ′. By de-
noting N ′G/A(N ′′) by N ∗, we have: (1) N ∗ is a consis-
tent QCN, (2) each ◆G-consistent base relation of N ∗[v, v′]
with (v, v′) ∈ E is a feasible relation of N , and (3) each
◆

KV
-consistent base relation ofN ∗ is a feasible relation ofN .

Proof. (1) NG/N∗ is clearly a not trivially inconsistent and
�
G-consistent QCN defined on A such that G(NG/N∗) ⊆ G.
From Property 1 we know that NG/N∗ is consistent and ad-
mits a scenario S, which is also a scenario of N ′G/N∗ . By
remarking thatN ′G/N∗ andN ∗ are equal, we can affirm that
S is scenario of N ∗. (2) Consider a ◆G-consistent base re-
lation b of N ∗[v, v′] with (v, v′) ∈ E. As N ∗ ⊆ NG/N∗ ,
from Prop. 1 we have that b is a ◆G-consistent base relation of

NG/N∗ [v, v
′]. From Prop. 4, we can assert that b is a feasi-

ble base relation of NG/N∗ . Hence, b is also a feasible base
relation of N since NG/N∗ ⊆ N . (3) Each ◆KV

-consistent
base relation b of N ∗ is also a ◆KV

-consistent base relation of
N since N ∗ ⊆ N . From Prop. 4 (by considering KV as a
chordal graph) we conclude that b is a feasible base relation
of N . a

4 Algorithm for the Minimal Labeling Problem
In order to solve the MLP, we present in this section algo-
rithm Minimize. The embedded function Minimize has two
parameters, the first one being a QCN N = (V,C) for which
we aim to derive the feasible base relations, and the sec-
ond one being a subclass A having property (Patchwork�).
Minimize proceeds in an iterative manner that we explain as
follows. In each iteration, a relation r is defined by a set of
non treated base relations of a constraint N [v, v′], followed
by the derivation of a consistent sub-QCN N ′′ of N defined
on A, for which N ′′[v, v′] contains some base relations of
r and in particular feasible relations of N . In the case where
such a sub-QCN does not exist, the base relations of r are non
feasible. This process continues until all base relations of N
are treated. The expected efficiency of function Minimize de-
pends, on one hand, on the fact that several feasible (or unfea-
sible) base relations are derived in each iteration, and, on the
other hand, on the fact that searching for the subQCNN ′′ and
deriving feasible base relations can be made efficiently by ap-
plying partial consistencies �G-consistency and ◆G-consistency
for a given subclass A having property (Patchwork�), where
G is a chordal graph such that G(N ) ⊆ G.

Next, we consider the auxiliary function �G-SubQCN. This
function has three parameters: a QCN N = (V,C), a graph
G = (V,E), and a subclass A ⊆ 2B. Note that this function is
very similar to the ones proposed in [Chmeiss and Condotta,
2011; Sioutis and Koubarakis, 2012] for solving the consis-
tency problem of a QCN. Function �G-SubQCN aims to derive
and return a not trivially inconsistent and �G-consistent QCN
N ′, such that N ′ ⊆ N , A(N ′) ⊆G N , and ∀(v, v′) 6∈ E,
N ′[v, v′] = N [v, v′]. We remind the reader that A contains
the singleton relations. In the case where such a QCN N ′
does not exist, the function returns ⊥V. For this purpose, a
backtrack search is realized by performing the closure under
�
G-consistency for propagating constraints and ensuring that
the result is �G-consistent. In each step, a constraint corre-
sponding to an edge of G is selected and split into non-empty
relations of A. Then, this constraint is iteratively instantiated
with each of these relations. The search continues by recur-
sive calls of �G-SubQCN. We have the following result:

Proposition 6 Let N = (V,C) be a QCN, G = (V,E) a
graph, and A ⊆ 2B a subclass. If N is consistent, then
function �G-SubQCN with N , G, A as parameters returns a
not trivially inconsistent and �G-consistent QCNN ′, such that
A(N ′) ⊆G N and ∀(v, v′) 6∈ E, N ′[v, v′] = N [v, v′].

Proof. If N is consistent then N has a scenario S. Consider
the QCN NS = (V,CS) defined by NS [v, v′] = S[v, v′],
if (v, v′) ∈ E, and NS [v, v′] = N [v, v′], otherwise. NS is
�
G-consistent and, during a complete search, a QCN N ′ such
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Function Minimize(N ,A)
in :N = (V,C) a QCN on 2B, A a subclass of 2B.
output : A sub-QCN ofN .

1 begin
// Step 1: Initialization

2 NI ← N ;N ∗ ← ⊥V ;
3 G = (V,E)← Triangulation(G(N ));N ← �(N );
4 ifN = ⊥V then return ⊥V ;

// Step 2: Minimization w.r.t. G

5 while not (N ∗ =G N ) do
6 Select (v, v′)∈E such thatN ∗[v, v′] ⊂ N [v, v′];
7 r ← N [v, v′] \ N ∗[v, v′]; r′ ← N [v, v′];
8 N ′ ← �

G-SubQCN(N[v,v′]/r, G,A);
9 ifN ′ = ⊥V then

10 N [v, v′]← r′ \ r;N [v′, v]← (r′ \ r)−1;
11 else
12 N ′′ ← NG/A(N ′);
13 N ∗ ← extractFeasible(N ′′,N ∗,G);

// Step 3: End of the minimization

14 whileN ∗ ⊂ N do
15 Select (v, v′) such thatN ∗[v, v′] ⊂ N [v, v′];
16 r ← N [v, v′] \ N ∗[v, v′]; r′ ← N [v, v′];

17 N [v, v′]← r;N [v′, v]← r
−1

;
18 N ′ ← �

G-SubQCN(N ,KV ,A);
19 ifN ′ = ⊥V then
20 N [v, v′]← r′ \ r;N [v′, v]← (r′ \ r)−1;
21 else
22 N [v, v′]← r′;N [v′, v]← (r′)−1;
23 N ∗ ← extractFeasible(A(N ′),N ∗,KV );

24 returnN ∗// Step 4: Return of the result

Function �G-SubQCN(N ,G,A)
in : A QCNN=(V,C), a graph G=(V,E), a subclass A.
output : A �G-consistent sub-QCNN ′ with A(N ′) ⊆G N .

1 begin
2 N ′ ← �

G(N );
3 ifN ′[v, v′] = ∅ for some (v, v′) ∈ E then return ⊥V ;
4 Select (v, v′) ∈ V × V s.t. A(N ′[v, v′]) 6⊆ N [v, v′];
5 if such a pair does not exist then returnN ′ ;
6 SplitN ′[v, v′] into sub-relations r1, . . . , rk ∈ A (k < |B|);
7 N ′′ ← N ′ ;
8 foreach i ∈ 1, . . . , k do
9 N ′[v, v′]← ri;N ′[v′, v]← r−1

i ;
10 N ′ ← �

G-SubQCN(N ′,G,A);
11 ifN ′ 6= ⊥V then returnN ′; ;
12 N ′ ← N ′′ ;

13 return ⊥V

thatNS ⊆G N ′ will be considered. As �G(N ′) is not trivially
inconsistent and �G-consistent, it will be returned at the end. a

Function Minimize uses also an auxiliary function called
extractFeasible taking as parameters two QCNs N and N ′,

Function extractFeasible(N ,N ′,G)
in : Two QCNsN andN ′ on V and a graph G = (V,E).
output :N ′ in which are added ◆G-consistent base relations of

N [v, v′] with (v, v′) ∈ E and �KV
-consistent base

relations ofN [v, v′] with (v, v′) 6∈ E.
1 begin
2 foreach b ∈ N [v, v′] \ N ′[v, v′] do
3 if (v, v′) ∈ E and {b} = �G(N[v,v′]/{b})[v, v

′]) then
4 N ′[v, v′]← N ′[v, v′] ∪ {b};
5 N ′[v′, v]← N ′[v′, v] ∪ {b−1};
6 else if (v, v′) 6∈ E and {b} = �KV

(N[v,v′]/{b})[v, v
′]) then

7 N ′[v, v′]← N ′[v, v′] ∪ {b};
8 N ′[v′, v]← N ′[v′, v] ∪ {b−1};

9 returnN ′

defined on V and a graph G = (V,E). This function returns
N ′ augmented with ◆G-consistent base relations b belonging to
N [v, v′] with (v, v′) ∈ E, and ◆KV

-consistent base relations b
belonging to N [v, v′] with (v, v′) 6∈ E.

Now, we describe in detail function Minimize. Minimize
takes as parameters a QCN N = (V,C), for which we want
to calculate the feasible base relations, and a subclass A ⊆ 2B

having property (Patchwork�). To begin with, Minimize
comprises the following four successive steps: the initializa-
tion of different variables, the calculation of the feasible base
relations corresponding to the edges E of a chordal graph,
the minimization step by considering the constraints not cor-
responding to E, and finally, the return of the result.

The different variables initialized during the first step are:
NI , N ∗, and G. NI allows saving the initial state of QCN
N given as parameter. QCN N ∗ accumulates the base rela-
tions of N detected as feasible during the treatment and is
initialized to ⊥V . At the end of the treatment,N ∗ will be the
minimal QCN of NI . G is initialized by a chordal graph of
G(N ). An optional preliminary treatment is performed (line
3) by calculating the closure under �-consistency of N . Its
aim is to quickly eliminate some unfeasible base relations.
We note here that during this process, and until the end of the
treatment,N is an equivalent sub-QCN ofNI . Only unfeasi-
ble base relations will be removed from N .

In the second step (line 5), the constraints of NI corre-
sponding to the set of edges E are treated until all base re-
lations of these constraints are detected as feasible and accu-
mulated into N ∗, or as unfeasible and removed from N . For
this purpose, a pair (v, v′) ∈ E such that N [v, v′] contains
some non marked feasible base relations is selected in line
6. These base relations correspond to relation r (line 7). In
line 8, a QCNN ′ is computed from function �G-SubQCN with
N [v, v′]/r, G, and A as parameters. Two cases must be con-
sidered: N ′ = ⊥V , and N ′ 6= ⊥V . For N ′ = ⊥V , we can
affirm from Proposition 6 thatN [v, v′]/r is inconsistent, and,
therefore, the base relations of r are unfeasible forN and also
for NI , since they are equivalent. The base relations of r can
be removed from N (line 10). Now, suppose that N ′ 6= ⊥V .
In line 12, QCN NG/A(N ′) is saved into N ′′. From Propo-
sition 5 we know that each ◆

G-consistent base relation of
N ′′[v′′, v′′′] with (v′′, v′′′) ∈ E and each ◆KV

-consistent base
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relation of N ′′[v′′, v′′′] with (v′′, v′′′) 6∈ E are feasible re-
lations of NI and can be added to N ∗ (line 13). Notice that
sinceN ′′ is consistent, at least one new detected feasible base
relation b ∈ r is added to N ∗[v, v′]. Following the second
step, all base relations of NI [v, v′] with (v, v′) ∈ E have
been treated. The third step of Minimize finishes the mini-
mization of NI by considering the constraints NI [v, v′] with
(v, v′) 6∈ E. Notice that some base relations of these con-
straints have been already detected as feasible at step 2. Due
to space constraints, and as Step 3 is very similar to Step 2,
we are not going to describe it in details. Following the third
step we can then affirm that N ∗, returned in line 24, corre-
sponds to the minimal QCN of NI . Thus, we can establish
the following main result:
Theorem 1 Given a QCN N = (V,C) and a subclass A ⊆
2B having property (Patchwork�), function Minimize, with
N and A as parameters, returns Nmin.

Corollary 1 Function Minimize with N a QCN of IA (resp.
of RCC-8) and A = HIA (resp. A ∈ Ĥ8, C8, andQ8) as
parameters returns Nmin.

5 Experiments
In order to study the behavior of algorithm Minimize, we
conducted experiments with QCNs of IA and RCC-8. These
QCNs were generated using model S [Nebel, 1996]. This
model can randomly generate consistent QCNs according to
three parameters, n, d, and s, where n is the number of vari-
ables of the generated QCNs, d is the average number of vari-
ables connected with non trivial constraints (constraints de-
fined by a relation other than B), and s is the average number
of base relations of a non trivial constraint. For this model, the
consistency of a generated QCN is guaranteed by augment-
ing it with a consistent scenario. A set of QCNs generated
according to model S using parameters n, d, and s will be
denoted by S(n, d, s). We present experiments with instances
issued from series S(n, d, |B|/2), with n varying between 30
and 60 with an incremental step of 10, and d varying between
4 and 22 with an incremental step of 0.5. For each series, we
generated 50 QCNs. The subclasses of relations used as pa-
rameters for function Minimize are the two maximal tractable
subclasses HIA for IA and Ĥ8 for RCC-8. A timeout of 5
hours was given for each series.

In short, a (linear) technique used to triangulate a graph
consists of adding extra edges produced by eliminating ver-
tices one by one. Many heuristics have been proposed to or-
der the vertices, here we use the GreedyFillIn (GFI) heuristic
[Bodlaender and Koster, 2010] to triangulate the constraint
graph of a QCN (line 3 of the function Minimize) and ob-
tain a chordal graph. In what follows, MinimizeGFI denotes
the function Minimize with use of GFI triangulation, whereas
MinimizeKV

denotes the function Minimize where the chordal
graph used is the complete graph KV .

Further, NaiveMin refers to a naive minimization algo-
rithm. NaiveMin, after calculating the closure under �-
consistency to quickly prune some unfeasible base relations,
continues with the following steps for each constraint and
each base relation it comprises: (1) it instantiates the con-
straint with the considered base relation, (2) then, it checks
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Figure 3: CPU time for series S(n, d, 6.5) of IA

the feasibility of this base relation by checking the consis-
tency of the obtained QCN using some maximal tractable
subset of relations (for our experiments subclassesHIA or Ĥ8

and the complete graph KV are used as parameters for func-
tion �G-SubQCN).

For every series, we note that the general approach used
by Minimize greatly performs the naive approach followed
by NaiveMin. As an example, consider Figure 3 which illus-
trates the CPU time required by the three functions to solve
the series S(40, d, 6.5) and S(50, d, 6.5) of IA. Note that for
n > 50, function NaiveMin cannot solve the series of IA in
the 5 hours given timeout. Further, by comparing the CPU
time required by MinimizeKV

and MinimizeGFI, the latter has
better performance. Using judicious triangulation with GFI
heuristics, increases the efficiency of detecting the feasibil-
ity or the unfeasibility of the base relations belonging to a
constraint associated with an edge of the graph issued by the
triangulation (in Step 2 of Minimize). Similar results were
obtained for RCC-8 that we omit to present here due to space
constraints.

6 Conclusions

In this paper we introduced a new algorithm called Minimize
to solve the minimal labeling problem of QCNs that considers
tractable subclasses, for which �-consistent QCNs have prop-
erty (Patchwork�), and chordal constraint graphs. Further,
this algorithm applies partial consistencies �G-consistency and
◆

G-consistency on the chordal graph G, to efficiently derive
feasible or unfeasible base relations. Future work consists of
using other methods of triangulation and comparing the be-
havior of our algorithm for these different methods. Another
research perspective consists of defining specific algorithms
for the MLP using subclasses having other properties than the
(Patchwork�) property considered here.
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