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Executive Summary

In this deliverable we present the second phase of the implementation of our temporal and spatial
extensions of RDF and SPARQL, called stRDF, RDFi and stSPARQL, in the system Strabon.
This follows deliverable D4.1., in which we documented the first implementation phase of the sys-
tem Strabon.

First, we present the valid time dimension of the data model stRDF and the query language
stSPARQL and their implementation in Strabon. The valid time functionality, together with the
geospatial features of Strabon, make Strabon the first spatio-temporal RDF store with many fea-
tures and excellent performance as shown by our experimental evaluation.

Second, we investigate the problem of extending existing relational database systems with reason-
ing capabilities for incomplete spatial information. In this context, we implement a well-known
algorithm for checking the consistency of RCC-8 constraint networks in PostgreSQL and MonetDB
and contrast it with the state of the art qualitative spatial reasoners. We have chosen these two
systems since these are currently the backends supported by Strabon. Our ultimate goal here is to
prepare the technological ground for developing scalable query processing algorithms for the RDFi

framework on top of our geospatial RDF store Strabon. The same tehcnologies can be used to
enable query processing for the topology vocabulary extension of GeoSPARQL in Strabon.
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1. Introduction

In this deliverable we present the second phase of the implementation of our temporal and spatial
extensions of RDF and SPARQL, called stRDF, RDFi and stSPARQL, in the system Strabon.
This follows deliverable D4.1., in which we documented the first implementation phase of the
system Strabon and the additional features that were implemented to satisfy the requirements and
demands of two TELEIOS use cases: the Fire monitoring application [KPMm10,KPM+12] and
the virtual observatory for TerraSAR-X [SDMD10,DDK+12].

The deliverable is structured in two main parts. In the first part we present the valid time dimension
of the data model stRDF and the query language stSPARQL and their implementation in Strabon
[KKK12b]. Following the recent interest of the semantic web researchers to incorporate temporal
features in RDF and SPARQL, we present Strabon as the first spatio-temporal RDF store with with
many features and excellent performance as shown by our experimental evaluation. In the second
part of the deliverable we investigate the problem of extending existing relational database systems
with reasoning capabilities for incomplete spatial information. In this context, we implement a
well-known algorithm for checking the consistency of RCC-8 constraint networks in PostgreSQL
and MonetDB and contrast it with the state of the art qualitative spatial reasoners. Our ultimate
goal here is to prepare the technological ground for developing scalable query processing algorithms
for the RDFi framework on top of our geospatial RDF store Strabon. The same tehcnologies can be
used to enable query processing for the topology vocabulary extension of GeoSPARQL in Strabon.

The contributions of this deliverable are the following:

• We present the valid time dimension of the data model stRDF and the query language
stSPARQL. In this way, stSPARQL becomes the most expressive query language proposed
for linked spatiotemporal data, going beyond the recent OGC standard GeoSPARQL which
has no support for valid time of triples.

• We present our implementation of this valid time component in Strabon and a preliminary
experimental evaluation comparing it with other systems offering similar functionalities.

• We motivate the need for the development of query processing techniques for incomplete
spatial information in RDF using real-world example datasets and queries. We show that
some of the answers to the queries cannot be computed by current geospatial RDF stores
and point out the need for using constraint propagation algorithms developed in the area of
qualitative spatial reasoning.

• We concentrate on the RCC-8 calculus for reasoning about topological relations among re-
gions and implement the path consistency algorithm of [RN01] in two relational database
systems, PostgreSQL and MonetDB. We consider different implementations (one using an
SQL program, one using the MonetDB column-based abstractions, and one that exposes the
implementation of [RN01] as a user-defined function) and evaluate them experimentally com-
paring them with the reference implementation of the path consistency algorithm for RCC-8
as presented in [RN01].

• We make the case for a new generation of RCC-8 reasoners implemented in Python, a general-
purpose, interpreted high-level programming language which enables rapid application de-
velopment, and making use of advanced Python environments, such as PyPy1, utilizing
trace-based just-in-time (JIT) compilation techniques [BCFR09,BCF+11]. We present such
a reasoner, called PyRCC8, and compare it to other well-known reasoners from the litera-
ture [RN01,GWW08,SS09a].

1http://pypy.org/
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• We go beyond PyRCC8 to develop a second reasoner called PyRCC85. Given a network
with only tractable RCC-8 relations, PyRCC85 can solve it very efficiently by making its un-
derlying constraint graph chordal and running path consistency on this sparse graph instead
of the completion of the given network. In the same way, it uses partial path consistency as
a consistency checking step in backtracking algorithms for networks with arbitrary RCC-8
relations resulting in very improved pruning for sparse networks while incurring a penalty
for dense networks.

Moreover, we provide detailed installation instructions for each one of the implementations that
have been developed in the context of WP4 and are described in this deliverable.

The structure of this deliverable is the following. Chapter 2 presents the valid time component of
the data model stRDF, the query language stSPARQL, their implementation in Strabon and the
first evaluation results. Next, Chapter 3 motivates the need for new query processing techniques for
RDF with incomplete spatial information using algorithms from the area of constraint satisfaction.
It presents the state of the art reasoners of this area targeted to the RCC-8 calculus and then,
inspired by these reasoners, discusses and contrasts the implementations of a path consistency
algorithm inside a database system with the state of the art reasoners. Then, Chapter 4 concludes
this deliverable and outlines our plan for future work. Last, Appendix A contains instructions for
installing and using the temporal component of Strabon, while Appendix B contains instructions
for downloading, installing, and running the implementations of Chapter 3. Appendix C and
D contain two research papers related to the work presented in Chapter 3 of the deliverable. In
particular, Appendix C considers efficient algorithms for checking the consistency of chordal RCC-8
networks. Appendix D considers the problem of representing and querying incomplete information
in RDF in a general way.

D4.2 An implementation of a temporal and spatial extension of RDF and SPARQL on top of
MonetDB - Phase II
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2. Representing and querying the valid time of
triples in Strabon

In this chapter, stRDF and stSPARQL are revisited in order to study alternative representations for
the valid time of a triple. All relevant approaches concerning the conceptual level, the logical level,
and the implementation level have been investigated, leading to our final design and implementation
decisions which are described in the following sections.

The introduction of time in data models and query languages has been the subject of extensive
research in the field of relational databases [Sno95, DDL02]. Three distinct kinds of time were
introduced and studied: user-defined time which has no special semantics (e.g., January 1st, 1963
when John has his birthday), valid time which is the time a fact is true in the application domain
(e.g., the time 2000-2012 when John is a professor) and transaction time which is the time when
a fact is current in the database (e.g., the system time that gives the exact period when the tuple
representing that John is a professor from 2000 to 2012 is current in the database). In these
research efforts, many temporal extensions to SQL92 were proposed, leading to the query language
TSQL2, the most influential query language for temporal relational databases proposed at that
time. However, although the research output of the area of temporal relational databases has been
impressive, TSQL2 did not make it into the SQL standard and the commercial adoption of temporal
database research had been very slow. It is only recently that commercial relational database
systems started offering SQL extensions for temporal data, such as IBM DB2, Oracle Workspace
manager, and Terradata. Also, in December 2011, the latest standard of SQL (SQL:2011) was
published. Its most important new feature is the support for temporal tables, i.e., tables with
rows associated with one or two temporal periods (representing valid time and transaction time
respectively but without following the approach of TSQL2).

Compared to the relational database case, little research has been done to extend the RDF data
model and the query language SPARQL with temporal features. Gutierrez et al. [GHV05] were the
first to propose a formal extension of the RDF data model with valid time support. Perry [Per08]
proposed an extension of SPARQL, called SPARQL-ST, that allows one to query spatial and
temporal data.

In the same direction, Lopes et al. integrated valid time support in the general framework that
they have proposed in [LPSZ10] for adding annotations to RDF triples. Finally, Tappolet and
Bernstein [TB09] have proposed the language τ -SPARQL for querying the valid time of triples,
showed how to transform τ -SPARQL into standard SPARQL (using named graphs), and briefly
discussed an index that can be used for query evaluation.

Following the ideas of Perry [Per08], our group proposed a formal extension of RDF, called stRDF,
and the corresponding query language stSPARQL for the representation and querying of temporal
and spatial data using linear constraints [KK10a]. stRDF and stSPARQL were later redefined
in [KKK12b] so that geometries are represented using the Open Geospatial consortium standards
Well-Known-Text (WKT) and Geography Markup Language (GML). Both papers [KK10a] and
[KKK12b] mention briefly the temporal dimension of stRDF, but none of the papers goes into
details. Similarly, the version of the system Strabon presented in [KKK12b], which implements
stRDF and stSPARQL, has not so far implemented the temporal dimension of this data model
and query language. In this paper we remedy this situation by introducing all the details of the
temporal dimension of stRDF and stSPARQL and implementing it in Strabon.

The contributions of this work are the following:

• We fully present the valid time dimension of the data model stRDF and the query language
stSPARQL.

D4.2 An implementation of a temporal and spatial extension of RDF and SPARQL on top of
MonetDB - Phase II
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• We discuss our implementation of this valid time component in Strabon, which in this way
becomes a spatiotemporal RDF store.

• We evaluate the performance of our implementation on two large real-world datasets and
compare it to that of a Prolog implementation of the query language AnQL1 and a naive
implementation based on the native store of Sesame which we extended with valid time
support. Our results show that Strabon outperforms the other implementations.

This chapter is structured as follows. In Section 2.1 we introduce the temporal dimension of
the data model stRDF and in Section 2.2 we present the temporal features of the query language
stSPARQL. In Section 2.3 we describe how we extended the current implementation of stSPARQL,
i.e., the system Strabon, with valid time support. In Section 2.4 we evaluate our implementation
experimentally and compare it with other related implementations. In Section 2.5 we present
related work in this field.

2.1 Valid time representation in the data model stRDF

In this section we describe the valid time dimension of the data model stRDF presented in
[KKK12b]. The time line assumed is the value space of the datatype xsd:dateTime of XML-
Schema. Two kinds of time primitives are supported: time instants and time periods. A time
instant is an element of the time line. A time period (or simply period) is an expression of the
form [B,E), (B,E], (B,E), or [B,E] where B and E are time instants called the beginning and the
ending of the period respectively. Syntactically, time periods are represented by literals of the new
datatype strdf:period that we introduce in stRDF. The value space of strdf:period is the set
of all time periods covered by the above definition. The lexical space of strdf:period is trivially
defined from the lexical space of xsd:dateTime and the closed/open period notation introduced
above.

Figure 2.1 shows all the new datatypes defined by the model stRDF in [KKK12b] and this pa-
per. The prefix strdf stands for http://strdf.di.uoa.gr/ontology where one can find all the
relevant datatype definitions underlying the model stRDF.

We also assume the existence of temporal constants NOW and UC inspired from the literature of
temporal databases [CDI+97]. NOW represents the current time and can be used in stSPARQL
queries to be introduced in Section 2.2. NOW can appear in the beginning or the ending point of a
period. The temporal constant UC means "Until Changed" and denotes that the validity time of a
period has not ended yet and we do not know when it ends.

Values of the datatype strdf:period can be used as objects of a triple to represent user-defined
time. In addition, they can be used to represent valid times of temporal triples which are defined
as follows. A temporal triple is an expression of the form s p o t. where s p o. is an RDF
triple and t is a time instant or a time period called the valid time of a triple. An stRDF graph is
a set of triples or temporal triples. In other words, some triples in an stRDF graph might not be
associated with a valid time.

Example 1. The following stRDF graph consists of temporal triples that represent the land cover
use of an area in Spain for the time periods [2000, 2006) and [2006, UC) and triples which encode
other information about this area, such as its code and the WKT serialization of its geometry
extent. In this and following examples, namespaces are omitted for brevity.

corine:Area_4 rdf:type corine:Area .
corine:Area_4 corine:hasID "EU-101324" .
corine:Area_4 corine:hasLandUse corine:naturalGrassland

1http://anql.deri.org/
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Figure 2.1: The datatypes of stRDF

"[2006-01-01T00:00:00, UC)"^^strdf:period.
corine:Area_4 corine:hasLandUse corine:coniferousForest .

"[2000-01-01T00:00:00, 2006-01-01T00:00:00)"^^strdf:period.
corine:Area_4 corine:hasGeometry
"POLYGON ((-0.662 42.345, -0.661 42.344, ...,-0.663 42.332))"^^strdf:WKT.

The stRDF graph provided above in N-QUADS format2 has been extracted from a publicly avail-
able dataset provided by the European Environmental Agency (EEA) that contains the changes
in the Corine Land Cover dataset for the time period [2000, 2006] for various European areas. So,
according to this dataset the area corine:Area_4 has been a coniferous forest area before 2006,
when the newer version of Corine showed it to be natural grassland. Since the Corine Land cover
dataset has not been updated since 2006, UC is used to denote the persistence of land use values into
the future. The last triple of the stRDF graph provides a simplified representation of the WKT
serialization of the area. This dataset will be used in our examples but also in the experimental
evaluation of Section 2.4.

2.2 Querying valid times using the query language stSPARQL

The spatial features of the query language stSPARQL have been presented in [KKK12b] and
[KKK+12a]. In this section we will introduce for the first time all the details of the valid time
dimension of stSPARQL. In order to provide valid time support, the query language stSPARQL
extends SPARQL 1.1 as follows:

• Temporal triple patterns are introduced for querying temporal triples.

• Temporal extension functions are defined in order to express temporal relations between
temporal data values (i.e., periods and instants).

• The temporal constants NOW and UC can be used in queries.

We now explain these temporal features of stSPARQL in more detail giving examples that illus-
trate the usefulness of the language.

Temporal triple patterns. A temporal triple pattern is an expression of the form s p o t,
where s p o is a triple pattern and t is a time period or a variable.

Temporal extension functions. stSPARQL extends SPARQL 1.1 with 10 functions that ex-
press temporal relations between periods like in Allen’s Interval Algebra. These functions are

2http://sw.deri.org/2008/07/n-quads/
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the following: strdf:before, strdf:after, strdf:during, strdf:starts, strdf:finishes,
strdf:contains, strdf:meets, strdf:overlaps, strdf:isMetBy and strdf:cotemporal.

Apart from the functions that express temporal relations between periods,
stSPARQL offers a set of functions that construct new periods from existing ones. These functions
are the following:

• strdf:period strdf:period_intersect(period p1, period p2):
This function returns the temporal intersection of period p1 with period p2.

• strdf:period strdf:period_union(period p1, period p2):
This function returns the temporal union of period p1 with period p2.

• strdf:period strdf:minus(period p1, period p2): This function
returns the temporal difference of period p1 temporally minus period p2.

Also, we define the following operations that return the starting and ending points of a period:

• xsd:dateTime strdf:period_start(period p): This function returns
the starting point of the period p.

• xsd:dateTime strdf:period_end(period p): This function returns the
ending point of a period p.

Finally, stSPARQL defines the following functions that compute temporal aggregates:

• strdf:period strdf:intersectAll(set of period p): Returns a period that is the in-
tersection of the set of input periods.

• strdf:period strdf:maxDuration(set of period p): Returns the period with the max-
imum duration of the set of periods given as input.

• strdf:period strdf:maximalPeriod(set of period p): Constructs a period that begins
with the minimum beginning timestamp and the maximum ending timestamp of the set of
periods given as input.

The query language stSPARQL, being an extension of SPARQL 1.1, supports the temporal exten-
sion functions defined above in the SELECT, FILTER and HAVING clause of a query. A complete
reference of the temporal extension functions of stSPARQL is available on the web3.

In the rest of this section, we give some representative examples that demonstrate the expressive
power of stSPARQL.

Example 2. Temporal selection and temporal constants. Return how the landscape of each area
mentioned in the dataset has evolved until now.

SELECT ?clc1990 ?clc2000 ?clc2006
WHERE {?clcArea rdf:type corine:Area;

corine:hasID ?id;
corine:hasLandUse ?clc1990

"[1990-01-01T00:00:00,2000-01-01T00:00:00)"^^strdf:period;
corine:hasLandUse ?clc2000

"[2000-01-01T00:00:00,2006-01-01T00:00:00)"^^strdf:period;
corine:hasLandUse ?clc2006

"[2006-01-01T00:00:00,NOW)"^^strdf:period.}

3http://www.strabon.di.uoa.gr/stSPARQL#temporals
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This query is a temporal selection query that uses an extended Turtle syntax that we have devised
in order to support temporal patterns. In this extended syntax, the fourth element is optional and
it represents the valid time of the triple pattern. Constants of the strdf:period datatype are
used as the fourth element in the temporal triple patterns in order to retrieve the land cover of
a Corine area for the requested periods. The temporal constant NOW is also used to retrieve the
current land cover of the area.

Example 3. Temporal join and spatial metric function. Compute the area occupied by coniferous
forests that were burnt.

SELECT ?clc (SUM(strdf:area(?geo)) AS ?totalArea)
WHERE {?clc rdf:type corine:Area;

corine:hasLandUse corine:coniferousForest ?t1;
corine:hasLandUse corine:burntArea ?t2;
clc:hasGeometry ?geo .

FILTER(strdf:before(?t1,?t2))} GROUP BY ?clc

In this query, a temporal join is performed by using the temporal extension function strdf:before
to ensure that areas included in the result set were covered by coniferous forests before they were
burnt. The query also uses the spatial metric function strdf:area in the SELECT clause of the
query that computes the area of a geometry. The aggregate function SUM of SPARQL 1.1 is used
to compute the total area occupied by burnt coniferous forests.

Example 4. Temporal join and spatial selection. Return the evolution of the landscape of the area
overlapping with the following polygon:

"POLYGON ((-0.66 42.34,...,-0.662 42.33))"^^strdf:WKT .

SELECT ?clc1 ?t1 ?clc2 ?t2
WHERE {?clc rdf:type corine:Area;

corine:hasLandUse ?clc1 ?t1;
corine:hasLandUse ?clc2 ?t2;
clc:hasGeometry ?geo .

FILTER(strdf:contains(?geo,
"POLYGON(-0.66 42.34, ...,-0.662 42.33)"^^strdf:WKT))

FILTER(strdf:before(?t1,?t2))}

The query described above performs a temporal join and a spatial selection. The spatial selection
checks whether the geometry representation of the area is contained by a corine land cover area,
so that they share the same landscape. The temporal join is performed to express the temporal
evolution of this landscape.

Example 5. Update statement with temporal joins and period constructor. Coalescing of temporal
triples.

UPDATE {?area corine:hasLandUse ?clc ?coalesced}
WHERE {SELECT (?clcArea AS ?area) ?clc

(strdf:period_union(?t1,?t2) AS ?coalesced)
WHERE {?clcArea rdf:type corine:Area;

corine:hasLandUse ?clc ?t1;
corine:hasLandUse ?clc ?t2 .

FILTER(strdf:meets(?t1,?t2) || strdf:overlaps(?t1,?t2))}}

In this update, we perform an operation called coalescing in the literature of temporal relational
databases: two temporal triples with exactly the same subject, predicate and object, and periods
that overlap or meet each other can be “joined" into a single triple with valid time the union of
the periods of the original triples [BSS96].

D4.2 An implementation of a temporal and spatial extension of RDF and SPARQL on top of
MonetDB - Phase II

7



TELEIOS FP7-257662

Figure 2.2: Architecture of the system Strabon enhanced with valid time support

2.3 Implementation of valid time support in Strabon

Figure 2.2 shows the architecture of the system Strabon presented in [KKK12b], as it has been
extended for valid time support. We have added new components and extended existing ones as
we explain below.

As described in [KKK12b], Strabon has been implemented by extending Sesame4 2.6.3 and using
an RDBMS as a backend. Currently, PostgreSQL and MonetDB can be used as backends. To
offer support for the valid time dimension of stSPARQL discussed in this document, a temporally
enabled is used as back-end and the following new components have been added to Strabon:

• Named Graph Translator: This component is added to the storage manager and translates
the temporal triples of stRDF to standard RDF triples following the named graphs approach
of [TB09] as we discuss below.

• stSPARQL to SPARQL 1.1 Translator: This component is added to the query engine so that
temporal triple patterns are translated to triple patterns as we discuss below.

• PostgreSQL Temporal: This is a temporal extension of PostgreSQL which defines a PERIOD
datatype and implements a set of temporal functions. This datatype and its associated
functions come very handy for the implementation of the valid time suport in Strabon as we
will see below. PostgreSQL Temporal also allows the use of a GiST index on PERIOD columns.
Using this add-on, PostgreSQL becomes "temporally enabled" as it adds support for storing
and querying PERIOD objects and for evaluating temporal functions. For functions that
were not directly supported by PostgreSQL Temporal, we extended the temporally enabled
database with the implementation of these functions as extension functions of PostgreSQL
Temporal.

Storing temporal triples. When a user wants to store stRDF data in Strabon, she makes them
available in the form of a N-QUADS document. This document is decomposed into temporal
triples and each temporal triple is processed separately by the storage manager as follows:

• The temporal triple is translated into the named graph representation as follows: a URI is
created and is assigned to a named graph that corrresponds to the validity period of the
triple. To ensure that every distinct valid time of a temporal triple corresponds to exactly
one named graph, the URI of the graph is constructed using the literal representation of
the valid time annotation. The triple is stored in the named graph identified by this URI.
Then, the URI of the named graph is associated to its corresponding valid time by storing
the following triple in the default graph: (g, strdf:hasValidTime, t)) where g is the URI
of the graph and t is the corresponding valid time.
For example, temporal triple

4http://www.openrdf.org/
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corine:Area_4 corine:hasLandUse corine:naturalGrassland
"[2000-01-01, 2006-01-01)"^^strdf:period

will be translated into the following standard RDF triples:

– the triple corine:Area_4 corine:hasLandUse corine:naturalGrassland will be stored
in the named graph corine:2000-01-01_2006-01-01

– the triple

corine:2000-01-01_2006-01-01 strdf:hasValidTime
"[2000-01-01, 2006-01-01)"^^strdf:period

will be stored in the default graph.

• For the temporal literals found during data loading, we deviate from the default behaviour
of Sesame by storing the instances of the strdf:period datatype in a table with schema
period_values(id int, value period). The attribute id is used to assign a unique identifier to
each period and associate it to its RDF representation as a typed literal. The attribute value
is a temporal column of the PERIOD datatype defined in PostgreSQL Temporal. In addition,
we construct an R-tree-over-GiST index on the value column.

Querying temporal triples. Let us now explain how the query engine of Strabon presented
in [KKK12b] has been extended to evaluate temporal triple patterns. When a temporal triple
pattern is encountered, the query engine of Strabon executes the following steps:

• The stSPARQL to SPARQL 1.1 Translator converts the temporal triple patterns to a set of
triple patterns as follows. A temporal triple pattern s p o t is translated into the following
graph pattern:

GRAPH ?g { s p o } .
?g strdf:hasValidTime t .

where s, p, o are RDF terms or variables and t is either a variable or an instance of the
datatypes strdf:period or xsd:dateTime.

• If a temporal extension function is present, the evaluator incorporates the table period_-
values to the query tree and it is declared that the arguments of the temporal function will
be retrieved from the period_values table. In this way, all temporal extension functions are
evaluated using PostgresSQL Temporal.

• Finally, the RDBMS evaluation module has been extended so that the execution plan directed
by the logical level of Strabon is translated into suitable SQL statements. The temporal
extension functions are respectively mapped into SQL statements using the functions and
operators provided by PostgreSQL Temporal.

2.4 Evaluation

For the experimental evaluation of our system, we used two different datasets:

• the GovTrack dataset5, which consists of RDF data about US Congress. This dataset was
created by Civic Impulse, LLC6 and contains information about politicians, bills and voting
records.

5http://www.govtrack.us/data/rdf/
6http://www.civicimpulse.com/
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• the Corine Land Cover changes dataset that represents changes for the period (2000, 2006),
which we have already introduced in Section 2.1.

Both datasets had to be transformed into N-QUADS before they could be used in our evaluation.

The GovTrack dataset contain temporal information in the form of instants and periods, but in
standard RDF format using reification. So, in the pre-processing step we transformed the dataset
into N-QUADS format. For example the 5 triples

congress_people:A000069 politico:hasRole _:node17d3oolkdx1 .
_:node17d3oolkdx1 time:from _:node17d3oolkdx2 .
_:node17d3oolkdx1 time:to _:node17d3oolkdx3 .
_:node17d3oolkdx2 time:at "2001-01-03"^^xs:date .
_:node17d3oolkdx3 time:at "2006-12-08"^^xs:date .

were transformed into a single quad:

congress_people:A000069 politico:hasRole _:node17d3oolkdx1
"[2001-01-03, 2006-12-08]"^^strdf:period.

The transformed dataset has a total number of 7,900,905 triples, 42,049 of which have periods as
valid time and 294,636 have instants.

The Corine Land Cover changes dataset for the time period [2000, 2006) is publicly available in the
form of shapefiles and it contains the areas that have changed their landscape between the years
2000 and 2006. Using this dataset, we created a new dataset in N-QUADS form which has infor-
mation about geographic regions such as: unique identifiers, geometries and periods when regions
have a landcover. The dataset contains 717,934 temporal triples whose valid time is represented
using the strdf:period datatype. It also contains 1,076,901 triples without valid times. Using
this dataset, we were able to perform temporal and spatial stSPARQL queries, similar to the ones
that we provided in 2.2 as examples.

Our experiments were conducted on an Intel Xeon E5620 with 12MB L3 caches running at 2.4
GHz. The system has 24GB of RAM and 4 disks of striped RAID (level 5) and the operating
system installed is Ubuntu 12.04. We ran our queries three times on cold and warm caches, for
which we ran each query once before measuring the response time.

We evaluate the performance of our system in terms of query response time. We compute the
response time for each query posed by measuring the elapsed time from query submission till a
complete iteration over the results had been completed. We also investigate the scalability of
our system with respect to database size and complexity of queries. Finally, we compare our
results with a Prolog implementation of AnQL7 and a naive implementation based on the Sesame
native store which we extended by adding valid time support and temporal extension functions
implemented in Java. A similar implementation has been used as a baseline in [KKK12b] where
we evaluated the geospatial features of Strabon.

We have conducted 3 different experiments and we compared the performance of Strabon to the
naive implementation in all three experiments. The Prolog implementation of the temporal domain
of AnQL only implements the temporal functions beforeAll and beforeAny and does not provide
geospatial support, it took part only in the first two experiments. Twenty queries were executed
in total. Only one query is shown here; the rest are omitted due to space considerations. However,
all datasets and the queries that we used in our experimental evaluation are publicly available8.

7http://anql.deri.org/
8http://www.strabon.di.uoa.gr/temporal-evaluation/experiments.html

D4.2 An implementation of a temporal and spatial extension of RDF and SPARQL on top of
MonetDB - Phase II

10

http://anql.deri.org/
http://www.strabon.di.uoa.gr/temporal-evaluation/experiments.html


TELEIOS FP7-257662

Table 2.1: Composition of the GovTrack datasets in valid time representations

Total triples and quads periods instants
1, 000 300 300
10, 000 3000 3000
100, 000 30000 30000
1, 000, 000 42, 049 294, 636
8, 000, 000 42, 049 294, 636
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Figure 2.3: Query response time with respect dataset size

Experiment 1. In this experiment we ran the same query against a number of subsets of the
GovTrack dataset of various size, as we wanted to test the scalability of our implementation with
respect to the dataset size. To achieve this, we created 5 instances of the GovTrack dataset, each
one with exponential increasing number of triples and quads. The query that is evaluated against
these datasets is the following:

#Q1: Return the ids and optionally the names of members
of Congress after the period 2000-2004.

SELECT distinct ?x ?name
WHERE {

?x gov:hasRole> ?term ?t .
OPTIONAL { ?x foaf:name ?name . }
FILTER(strdf:after(?t,"[2000-01-01T00:00:00, 2004-12-31T23:59:59]"^^strdf:period))
}

Figure 2.3 shows the results of this experiment. As the dataset size increases, more periods need
to be processed and as expected, the query response time grows. The respective results when the
caches are warm are far better, as the intermediate results are available in main memory, so we
have less I/O requests. One can observe that Strabon achieves better scalability than the other
two systems, although the Prolog implementation of AnQL performs better for small datasets of
up to 100.000 triples. The poor performance of the naive implementation compared to Strabon is
reasonable, as Strabon evaluates the temporal extension functions in the RDBMS level using the
respective functions of PostgreSQL Temporal and a GiST index on period values, while in the case
of the naive implementation a full scan over all literals is required.

Experiment 2. We carried out this experiment to measure the scalability of our implementation
with respect to queries of varying complexity. The complexity of a query depends on the number
and the type of the graph patterns it contains and their selectivity. We posed a set of queries
against our biggest dataset (GovTrack), that contains approximately 8 millions of temporal and
non-temporal triples and we increased the number of triple patters in each query.
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Table 2.2: System performance in experiment 2

System Q1 Q2 Q3 Q4 Q5 Q6 Q7
Strabon 448 242 710 1156 1537 480 432(cold caches)
Strabon 196 47 334 720 1113 30 29(warm caches)
AnQL 2028 1715 4275 4379 5802 6913 7472
Naive 945 2104 2197 2241 2271 400 397

Table 2.3: System performance in experiment 3

System Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20
Strabon 485 381 377 370 250 248 248 285 376 268 368 532 792(cold caches)
Strabon 217 212 209 207 82 84 81 208 200 3 13 12 208(warm caches)
Naive 6206 6148 6162 6196 6097 6248 6388 6332 6258 404 2868 2388 200705

Table 2.2 shows the results of this experiment. Strabon scales better than the naive and the AnQL
implementation for the same reasons as in Figure 2.3. First, in Q2, we have a temporal triple
pattern and a temporal selection on its valid time. Then, Q3 is formed by adding a temporal join
to Q2. Then Q4 and Q5 are formed by adding some more graph patterns to Q3. The extra graph
patterns we add are characterized by low selectivity. This means that they match large graphs
of the dataset, so the reponse time increases because in most cases the intermediate results do
not fit in the main memory blocks that are available, requiring more I/O requests, and because
of the fact that the additional graph patterns do not decrease the number of the intermediate
results. In the queries Q6 and Q7 we added graph patterns with high selectivity and the response
time descreased. This happened because highly selective graph patterns eliminate many results
from the result set and produce less intermediate results to be processed in the query processing
workflow. The respective response times in warm caches are far better, as expected. What is
interesting in this case, is that while in cold caches the reponse time slightly increases from the
query Q6 to the query Q7, in warm caches it decreases. This happens because with warm caches,
the computational effort is widely reduced and the response time is more dependent of the number
of the intermediate results which are produced. The query Q7 does produce less intermediate
results, because the graph pattern inserted is more selective.

Experiment 3. This experiment was carried out in two parts and its results are shown in Table
2.3:

• testing the temporal operators: We posed temporal queries against the 8 million instance
of the GovTrack dataset in order to test some temporal operators in the FILTER clause of
the query. The queries posed (Q8-Q16) are identical and they differ only on the temporal
function used in the FILTER statement of the query.

• Using the Corine Land Cover changes 2000-2006 dataset: Four queries (Q17-Q20) were posed
against this dataset. It contains more temporal triples, but there are only two different period
values as the valid time representations of triples. Query response time is increased in the
query Q20, as it performs a temporal join and a temporal selection.

It is clear from Table 2.3 that Strabon with warm caches is again the winner in both parts of this
experiment.
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2.5 Related Work

The strdf:period datatype of stRDF is similar to the period datatypes used in the few commercial
relational database systems that have good support for time e.g., the Teradata database9, DB210
and Oracle Workspace Manager11. These systems implement many of the features that have been
introduced in SQL:2011.

To the best of our knowledge, the only commercial RDF store that has comprehensive support
for time is AllegroGraph12. AllegroGraph defines temporal datatypes, such as time instants and
intervals and supports a set of temporal functions, including those that are based on Allen’s interval
calculus. The temporal component of AllegroGraph captures only user-defined time, but since the
temporal datatypes and stSPARQL extension functions that we introduced in Sections 2.1 and 2.2
can be used to represent and query user-defined time, AllegroGraph and Strabon offer comparable
functionalities on this dimension.

Gutierrez et al. [GHV07,GHV05] were the first to propose a formal extension of the RDF data
model with valid time support. [GHV07] also introduces the concept of anonymous timestamps
in general temporal RDF graphs, i.e., graphs containing quads of the form (s, p, o)[t] where t is a
timestamp or an anonymous timestamp x stating that the triple (s, p, o) is valid in some unknown
time point x. [HV06] subsequently extends the concept of general temporal RDF graphs of [GHV07]
so that one is allowed to express temporal constraints involving anonymous timestamps.

Perry [Per08] proposed an extension of SPARQL, called SPARQL-ST, for representing and querying
spatiotemporal data. The main idea of [Per08] is to incorporate geospatial information to the
temporal RDF graph model of [GHV07]. The query language SPARQL-ST adds two new types
of variables, namely spatial and temporal ones, to the standard SPARQL variables. Temporal
variables (denoted by a # prefix) are mapped to time intervals and can appear in the fourth
position of a quad as described in [GHV07]. Furthermore, in SPARQL-ST two special filters are
introduced: SPATIAL FILTER and TEMPORAL FILTER. These filters are used to filter the results with
spatial and temporal constraints (OGC Simple Feature Access topological relations and distance
for the spatial part, and Allen’s interval calculus [All83] for the temporal part).

The temporal dimension of stRDF and stSPARQL presented in this paper is in the same spirit
as [Per08], but it takes place in a language with a much more mature geospatial component based on
OGC standards than the language in [Per08]. In addition, stSPARQL offers a richer set of functions
for querying valid times as we have discussed in Section 3. Unfortunately, the implementation of
the ideas in [Per08] could not be made available to us to compare with our own implementation.

With the temporal dimension presented in this paper, stSPARQL also becomes more expressive
than the recent OGC standard GeoSPARQL [ogc12]. While now stSPARQL can represent and
query geospatial data that change over time, GeoSPARQL only supports static geospatial data.
An interesting contribution of GeoSPARQL is the definition of small upper level ontologies that
give the users vocabulary for modeling geospatial data through well-known GIS concepts such as
feature, geometry etc. It would be nice to revisit the definition of these ontologies in the light
of valid time of triples as modeled in stSPARQL i.e., to define small upper level ontologies for
modeling spatiotemporal data. Another contribution of GeoSPARQL which is relevant to the
work presented in this paper is its Topology vocabulary extension. This extension allows one to
assert topological relations between two regions as RDF triples (e.g., region A is inside region
B) and query/reason with them using well-known calculi for topological reasoning such as RCC-
8 [RCC92b]. In a similar spirit, one can extend stSPARQL with a similar component so that in
addition to the topology vocabulary, one can offer vocabulary for binary temporal relations (e.g.,
relations from Allen’s Interval Algebra etc.) that can be asserted and queried/reasoned with.

9http://www.teradata.com/
10http://www-01.ibm.com/software/data/db2/
11http://www.oracle.com/technetwork/database/enterprise-edition/index-087067.html
12http://www.franz.com/agraph/allegrograph/
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Tappolet and Bernstein in [TB09] introduce a storage format for temporal RDF graphs using
named graphs. According to this approach, queries expressed in the temporally enhanced query
language τ -SPARQL are translated into standard SPARQL and are executed on the stored named
graphs. [TB09] also suggests the use of an indexing structure for speeding access to temporal data.
However, temporal functions like the ones we are using in stSPARQL are not supported. As we
have explained in Section 2.3, we are using the same approach as [TB09] and rely on a translation
to named graphs for our implementation. Unfortunately, the implementation of [TB09]could not
be made available to us to compare it with our own. An efficient index structure, named tGRIN,
is also proposed by [PUS08].

[Gra10] presents another approach for extending RDF with temporal features, using a temporal
element that captures more than one time dimensions. [Gra10] also proposes a temporal extension
of SPARQL, named T -SPARQL, which is based on TSQL2. Furthermore, [Mot12] presents a logic-
based approach for extending RDF and OWL with valid time and the query language SPARQL
for querying and reasoning with RDF, RDFS and OWL2 temporal graphs. To the best of our
knowledge, no public implementation of [Gra10] and [Mot12] exists that we could use to test our
work against.

[BP10] introduces SOWL, an extension of OWL, for representing spatial and spatio-temporal
information and evolution in time. SOWL incorporates spatio-temporal reasoning in SOWL for
inferring spatio-temporal information from representations in the underlying ontology model.
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3. Database Techniques for Incomplete Spatial
Information

In this chapter, we investigate the possibilities of using existing relational database systems to
implement reasoning capabilities for incomplete spatial information. Our ultimate goal is to prepare
the technological ground for developing scalable query processing algorithms for the framework
RDFi originally defined in deliverable D2.3 [KNF11]. The most recent version of RDFi is presented
in Appendix D. As we will show, our investigation is also useful for solving the problem of query
answering for the topology vocabulary extension of GeoSPARQL.

The organization of the chapter is as follows. Section 3.1 motivates the need for our query process-
ing techniques using several real world datasets and queries, some of the answers of which cannot
be computed by current geospatial RDF stores. It turns out that appropriate query processing
techniques should employ such algorithms as the ones that have been developed in the area of
constraint satisfaction and in particular in qualitative spatial reasoning. Therefore, Sections 3.2
and 3.3 contain background information and terminology useful in these areas. Then, Section 3.4
presents the state of the art qualitative spatial reasoners focusing on the RCC-8 calculus. Next, in
Section 3.5 we present our implementation of the path consistency algorithm for the RCC-8 cal-
culus as presented in [RN01] both in PostgreSQL and MonetDB database systems. Last, Section
3.6 performs an experimental evaluation of our implementation and compares them with the state
of the art RCC-8 reasoners.

3.1 Querying Incomplete Spatial Information

In this section we motivate the need for the development of appropriate algorithms for querying
incomplete spatial information. We start from a simple RDF database and a SPARQL query that
deal with definite geospatial information and then embellish them by adding qualitative spatial
information. Using real examples and queries that are similar to the ones that our partner, the
National Observatory of Athens, employs in its use case, we shed light on the challenges that an
implementation of RDFi or the topology vocabulary extension of GeoSPARQL has to address and
point to technological solutions that have to be followed.

Let us start with an example containing definite quantitative geospatial information. We will follow
the syntax of GeoSPARQL in all examples of this section.

Example 6. Triples representing the town of Olympia and a burnt area product produced by the
processing chain of the National Observatory of Athens.

noa:Town rdfs:subClassOf geo:Feature.

geonames:264637 a noa:Town;
geonames:name "Olympia";
owl:sameAs dbpedia:Olympia_Greece;
geo:hasGeometry ex:OlympiaPolygon.

ex:OlympiaPolygon a sf:Polygon;
geo:asWKT "POLYGON((21.5 18.5, 23.5 18.5,
23.5 21, 21.5 21, 21.5 18.5))"^^geo:wktLiteral.

noa:BurntArea rdfs:subClassOf geo:Feature.
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noa:ba1 a noa:BurntArea;
geo:hasGeometry ex:ba1Polygon.

ex:ba1Polygon a sf:Polygon;
geo:asWKT "POLYGON((20 20, 20 22, 22 22, 22 20,
20 20))"^^geo:wktLiteral.

The above triples represent some information about the Greek town Olympia and a burnt area close
to Olympia. This information is typical in the TELEIOS use case led by the National Observatory
of Athens. The triples include an approximation of their geometries modified for the purposes of
our example.

We now give an example of a GeoSPARQL query over the triples of Example 6 that can be used
to answer questions concerning the geometries of some objects.

Example 7. Return the names of towns that have been affected by fires.

SELECT ?name
WHERE { ?town a noa:Town;

geonames:name ?name;
geo:hasGeometry ?townpoly.

?townpoly geo:asWKT ?townGeo.
?ba a noa:BurntArea;

geo:hasGeometry ?bapoly.
?bapoly geo:asWKT ?baGeo.
FILTER(geof:sfIntersects(?townGeo,?baGeo))

}

The above query is expressed in GeoSPARQL using the geometry topology extension. This query
checks whether the Boolean function geof:sfIntersects holds between the geometry literals
related to towns and burnt areas.

Let us now see how we can augment the kind of geospatial information of Example 6 so that
we have qualitative spatial information. This is illustrated below using the modeling possibilities
offered by the topology vocabulary extension of GeoSPARQL.

Example 8. Triples representing administrative geography information about the community of
Olympia, the municipality of Olympia, and the region of West Greece.

gag:Olympia rdf:type gag:Community;
rdfs:label "Ancient Olympia".

gag:OlympiaMunicipality rdf:type gag:Municipality;
rdfs:label "Municipality of Ancient Olympia".

gag:WestGreece rdf:type gag:Region;
rdfs:label "Region of West Greece".

gag:OlympiaMunicipality geo:sfContains gag:Olympia.

gag:WestGreece geo:sfContains gag:OlympiaMunicipality.
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According to the Greek Administrative Geography1 (namespace gag in the example), Greece is
divided into 7 decentralized administrations, 13 regions and 325 municipalities. Communities, such
as Ancient Olympia, are parts of municipalities (in this case the municipality with the same name).
The municipality of Ancient Olympia is part of the region of West Greece. The administrative
geography of Greece has been published as linked data by our group at the Greek Linked Open
Data portal2.

The last two of the above triples are used to assert the topological relations that hold between
these three administrative divisions of Greece using vocabulary from the topology extension of
GeoSPARQL.

Considering the triples of Example 8 above, one can then formulate various queries involving
qualitative spatial information. This is illustrated in the following example.

Example 9. Find the administrative region that contains the community of Ancient Olympia.

SELECT ?d
WHERE {

?d rdf:type gag:Region.
?d geo:sfContains gag:Olympia.

}

The answer to the previous query is displayed below:

?d
gag:WestGreece

GeoSPARQL does not tell us how to compute this answer which needs reasoning about the transi-
tivity of relation geo:sfContains. One option would be to have rules that express the transitivity
of RCC-8 relations [BP10] while another would be to consult an RCC-8 reasoner based on con-
straint networks as in description logic reasoners PelletSpatial [WM09] and RacerPro [SS09b].

Let us now modify the information represented in Example 6 to reflect the process that NOA
follows during the summer season for real-time fire monitoring.

Example 10. Triples representing the town of Olympia and a hotspot product produced by the
processing chain of the National Observatory of Athens.

noa:Town rdfs:subClassOf geo:Feature.

geonames:264637 a noa:Town;
geonames:name "Olympia";
owl:sameAs dbpedia:Olympia_Greece;
geo:hasGeometry ex:OlympiaPolygon.

ex:OlympiaPolygon a sf:Polygon;
geo:asWKT "POLYGON((21.5 18.5, 23.5 18.5,
23.5 21, 21.5 21, 21.5 18.5))"^^geo:wktLiteral.

noa:f1 a noa:Fire.

1http://en.wikipedia.org/wiki/Kallikratis_reform
2http://linkedopendata.gr/
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noa:Hotspot rdfs:subClassOf geo:Feature.

noa:hotspot1 a noa:Hospot;
geo:hasGeometry ex:h1Polygon;
geo:sfContains noa:f1.

ex:h1Polygon a sf:Polygon;
geo:asWKT "POLYGON((<3x3-rectangle>))"^^geo:wktLiteral.

The above triples represent some information about the Greek town Olympia like it has been done
in Example 6. The difference is that now the exact geometry of the burnt area that is close to
Olympia is not known. The only information we have is the existence of a fire the extent of which is
limited by a certain geometry, that is, it is known that the geometry of the fire, although unknown,
is inside the 3km by 3km rectangle of the geometry of a hotspot. This is in fact a real example
given the low spatial resolution of the MSG/SEVIRI sensor utilized by NOA.

Let us now take Example 8 and add to it information about the geometry of the administrative
region of West Greece. The geometries of such regions are provided by the geodata portal of the
Government of Greece3 and have been transformed into linked data by us. The triples are shown
in the following example.

Example 11. Triples representing the geometry of the administrative region of West Greece.

gag:Region rdfs:subClassOf geo:Feature.

gag:WestGreece rdf:type gag:Region;
geo:hasGeometry ex:wgpoly.

ex:wgpoly a sf:Polygon;
geo:asWKT "MULTIPOLYGON (((25.9 41, 25 41,...

22.2 43, 22.4 43)))"^^geo:wktLiteral.

The triples above give the actual geometry of the administrative region of West Greece using the
modeling of GeoSPARQL.

Let us know see how easy it is to answer queries over the combined information from Examples
10, 8, and 11. This is illustrated in the following example.

Example 12. Return the fires inside the administrative region of West Greece.

SELECT ?f
WHERE {

?f a noa:Fire.
?h a noa:Hotspot;

geo:sfContains ?f;
geo:hasGeometry ex:h1Polygon.

ex:h1Polygon geo:asWKT ?hGeo.
gag:WestGreece geo:hasGeometry ?wgpoly.
?wgpoly geo:asWKT ?WGgeo.
FILTER(geo:sfWithin(?WGgeo,?hGeo))

}
3http://geodata.gov.gr/
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The above query uses both the geometry and the topology vocabulary extensions of GeoSPARQL.
The geometry extension is used in the FILTER statement (boolean function geo:sfWithin), while
the topology vocabulary extension is used in the triple pattern containing the geo:sfContains
property. The query searches for hotspots contained in the administrative region of West Greece
(FILTER expression) and then selects the fires that are contained in these hotspots (triple pattern
matching using the geo:sfContains property).

Even though the GeoSPARQL query given in Example 12 is a legitimate one, it takes into account
the modeling followed in the input triples making it hard to write for larger and more complex
datasets. In contrast, one would be tempted to write down a simpler version of that query as given
in the example below.

Example 13. Return the fires inside the administrative region of West Greece.

SELECT ?f
WHERE {

?f a noa:Fire.
gag:WestGreece geo:sfContains ?f.

}

The GeoSPARQL query above conveys in a direct way the meaning of the query we gave in natural
language and it uses only the topology extension. However, the specification of GeoSPARQL does
not propose any algorithm for computing the answer to such a query, although the answer is
entailed by the triples of Examples 10, 8, and 11. An algorithm for computing such an entailment
needs to deal with both qualitative and quantitative spatial information. The algorithm should
derive the relation geo:sfContains between gag:WestGreece and noa:hotspot1 and then include
it in the computation of the transitive closure for relation geo:sfContains, and thus deriving the
triple gag:WestGreece geo:sfContains noa:f1.

3.2 Preliminaries

In this section we define the concepts of constraint networks and their corresponding constraint
graphs, relation algebra, composition, weak composition, algebraic closure (a-closure), and various
notions of local consistency. More details can be found in [RN07].

3.2.1 Constraint Networks and Relation Algebra

Knowledge about entities or about the relationships between entities is often given in the form
of constraints. Given a set of m variables V = {x1, . . . , xm} over a domain D, an n-ary con-
straint consists of an n-ary relation Ri ⊆ Dn and an n-tuple of variables 〈xi1 , . . . , xin〉 , written
Ri(xi1 , . . . , xin). For binary constraints, we will also use the infix notation x1Rix2 . A (partial)
instantiation f of variables to values is a (partial) function from the set of variables V to the set
of values D. We say that an instantiation f satisfies the constraint Ri(xi1 , . . . , xin) if and only if
f(xi1), . . . , f(xin) ∈ Ri.

A constraint satisfaction problem (CSP) consists of a set of variables V over a domain D and a
set of constraints Θ. The intention is to find a solution which is an instantiation such that all
constraints in Θ are satisfied. In this paper we restrict ourselves to binary CSPs, i.e., CSPs where
only binary constraints are used. A binary CSP can be represented by a constraint network which
is a labelled digraph where each node is labelled by a variable xi or by the variable index i and each
directed edge is labelled by a binary relation. We will use the notation Rij to denote the relation
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constraining the variable pair 〈xi, xj〉. A constraint graph for such a problem is an undirected
graph where the nodes represent variables and two nodes are linked to represent the existence of
a constraint which involves these variables. At most a single edge will join two nodes, even if they
are related by more than one constraint. By overloading notation, we also use Rij to denote the
constraint Rij(xi, xj) itself. A CSP is consistent if it has a solution. If the domain of the variables
is finite, CSPs can be solved by backtracking over the ordered domains of the single variables. If
the domain of the variables is infinite, as is the case with RCC-8, backtracking over the domain
is not possible and other methods have to be applied. Infinite domains is the main difference of
spatial or temporal CSPs to normal CSPs. For instance, there are infinitely many time points or
temporal intervals on the time line and infinitely many regions in a two or three dimensional space.

One way of dealing with infinite domains is using constraints over a finite set of binary relations,
by employing a relation algebra [LM94]. A relation algebra consists of a set of binary relations R
which is closed under several operations on relations and contains some particular relations. The
operations are union (∪), intersection (∩), composition (◦), complement (·), and conversion (̆·),
where conversion is defined as R̆ def

= {〈x, y〉|〈y, x〉 ∈ R} and composition is defined as R ◦ S def
=

{〈x, y〉|∃z : 〈x, z〉 ∈ R∧〈z, y〉 ∈ S}. The particular binary relations mentioned above are the empty
relation ∅ which does not contain any pair, the universal relation ∗ which contains all possible pairs,
and the identity relation Id which contains all pairs of identical elements in a set of constraints.
We assume that a set of constraints Θ contains one constraint for each pair of variables involved
in Θ, i.e., if no information is given about the relation holding between two variables xi and xj ,
then the universal relation ∗ constrains the pair, i.e., Rij = ∗. Another assumption that we make
is that whenever a constraint Rij between xi and xj is in Θ, the converse relation constrains xj
and xi , i.e., R̆ij = Rji.

Of particular interest are relation algebras that are based on finite sets of jointly exhaustive and
pairwise disjoint (JEPD) relations. JEPD relations are sometimes called atomic, basic, or base
relations. We refer to them as base relations. Since any two entities are related by exactly one of
the base relations, they can be used to represent definite knowledge with respect to the given level
of granularity. Indefinite knowledge can be specified by unions of possible base relations. For these
relation algebras, the universal relation is the union over all base relations. Converse, complement,
intersection and union of relations can easily be obtained by performing the corresponding set
theoretic operations. Composition of base relations has to be computed using the semantics of the
relations. Composition of unions of base relations can be obtained by computing only the union of
the composition of the base relations. Usually, compositions of the base relations are pre-computed
and stored in a composition table.

3.2.2 Composition and Weak Composition

According to the definition of composition, we have to look at an infinite number of tuples in order
to compute composition of base relations, which is clearly not feasible. Fortunately, many domains
such as points or intervals on a time line are ordered or otherwise well-structured domains and
composition can be computed using the semantics of the relations. However, for domains such as
arbitrary spatial regions that are not well structured and where there is no common representation
for the entities we consider, computing the true composition is not feasible and composition has
to be approximated by using weak composition [RL05]. Weak composition (�) of two relations S
and T for a set of base relations B is defined as the strongest relation R ∈ 2B which contains S ◦T
, or formally, S � T def

= {Ri ∈ B|Ri∩(S ◦ T ) 6= ∅}. The advantage of weak composition is that we
stay within the given set of relations R = 2B while applying the algebraic operators, as R is by
definition closed under weak composition, union, intersection, and converse.
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3.2.3 Path Consistency and Algebraic Closure

Because of the high complexity of deciding consistency, different forms of local consistency and
algorithms for achieving local consistency were introduced. Local consistency is used to prune the
search space by eliminating local inconsistencies. In some cases local consistency is even enough
for deciding consistency. The path consistency algorithm is one of the central methods to solve
constraint networks in qualitative spatial and temporal calculi. Path consistency is implemented by
introducing rules defining compositions and intersections of supported relations. Path consistency
approximates consistency and realises forward checking in a backtracking algorithm, by checking
the consistency of all triples of relations and eliminating relations that are impossible, through
iteravely performing the following operation:

∀i, j, k Rij ← Rij ∩ (Rik ◦Rkj)

until a fixed point R is reached. If Rij = ∅ for a pair (i, j) then R is inconsistent, otherwise R is
path consistent.

When weak composition differs from composition, we cannot apply the path consistency algorithm
as it requires composition and not just weak composition. We can, however, replace the composition
operator in the path consistency algorithm with the weak composition operator. The resulting
algorithm is called the algebraic closure algorithm [LR04] which makes a network algebraically
closed or a-closed. Algebraic closure is essentially path consistency with weak composition.

3.2.4 Varieties of k-consistency

Freuder [Fre78] generalised path consistency and the weaker notion of arc consistency to k-
consistency: A CSP is k-consistent, if for every subset Vk ⊂ V of k variables the following holds:
for every instantiation of k − 1 variables of Vk that satisfies all constraints of C that involve only
these k − 1 variables, there is an instantiation of the remaining variable of Vk such that all con-
straints involving only variables of Vk are satisfied. So if a CSP is k-consistent, we know that
each consistent instantiation of k − 1 variables can be extended to any k-th variable. A CSP is
strongly k-consistent, if it is i-consistent for every i ≤ k. If a CSP with n variables is strongly
n-consistent (also called globally consistent) then a solution can be constructed incrementally with-
out backtracking. 3-consistency is equivalent to path consistency, 2-consistency is equivalent to
arc consistency.

3.3 Qualitative Spatial Reasoning

Qualitative Spatial Reasoning is based on qualitative abstractions of spatial aspects of the common-
sense background knowledge, on which our human perspective on the physical reality is based.
Space has become a significant research area within the field of Qualitative Reasoning, and, more
generally, in the Knowledge Representation and Reasoning community.

The main reasons why non-precise, qualitative spatial information may be useful are the following:

• Only partial information may be available (e.g. we may know that one region is disconnected
from another without knowing the precise geometry of the regions)

• General constraints holding among geographical objects are often most naturally stated in
qualitative terms (e.g. we may wish to state that one region is part of another region)
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Table 3.1: Definition of the various relations of RCC. Relations in bold are included in RCC-8
Relation Description Definition

C(x, y) connects with primitive relation
DC(x, y) disconnected ¬C(x, y)
P (x, y) part ∀z[C(z, x)→ C(z, y)]

PP (x, y) proper part P (x, y) ∧ ¬P (y, x)
EQ(x, y) equals P (x, y) ∧ P (y, x)
O(x, y) overlaps ∃z[P (z, x) ∧ P (z, y)]

PO(x, y) partially overlaps O(x, y) ∧ ¬P (x, y) ∧ ¬P (y, x)
DR(x, y) discrete ¬O(x, y)

TPP(x, y) tangential proper part PP (x, y) ∧ ∃z[EC(z, x) ∧ EC(z, y)]
EC(x, y) externally connected C(x, y) ∧ ¬O(x, y)

NTPP(x, y) non-tangential proper
part

PP (x, y) ∧ ¬∃z[EC(z, x) ∧ EC(z, y)]

Pi(x, y) part inverse P (y, x)
PPi(x, y) proper part inverse PP (y, x)

TPPi(x, y) tangential proper part
inverse

TPP (y, x)

NTPPi(x, y) non-tangential proper
part inverse

NTPP (y, x)

The challenge, then, arises to provide calculi which allow the represenation and reasoning of spatial
knowledge, without resorting to the traditional quantitative techniques prevalent in, for example,
the computer graphics or computer vision communities.

Qualitative Spatial Reasoning is an important subproblem in many application areas, such as geo-
graphical information systems (GIS), robotic navigation, high level vision, the semantics of spatial
prepositions in natural languages, engineering design, commonsense reasoning about physical sit-
uations, and specifying visual language syntax and semantics [Coh97]. Recently, the Semantic
Web community4 has been making efforts to enhance models and query languages involved with
qualitative reasoning capabilities [KK10b,Ope12].

3.3.1 The Region Connection Calculus

The Region Connection Calculus (RCC) [RCC92a] is the dominant topological approach to rep-
resenting and reasoning about topological relations. RCC abstractly describes regions that are
non-empty regular subsets of some topological space, by their possible relations to each other.
RCC is based on a single primitive relation between spatial regions, relation C [Cla81]. The in-
tended topological interpretation of C(a, b), where a and b are spatial regions, is that a and b
are connected if and only if their topological closures share a common point. This primitive can
be used to define many predicates and functions which capture interesting and useful topological
distinctions [Got94,Got96]. Table 3.1 shows the definitions of the RCC relations in terms of the
basic relation C. Of particular importance are those relations that form a set of jointly exhaustive
and pairwise disjoint relations, which are also denoted base relations. Base relations have the
property that exactly one of them holds between any two spatial regions. These relations form
the RCC-8 calculus and are depicted in Figure 3.1. The relations of RCC-8 are the following:
disconnected (DC), externally connected (EC), equal (EQ), partially overlapping (PO), tangential
proper part (TPP), tangential proper part inverse (TPPi), non-tangential proper part (NTPP),
and non-tangential proper part inverse (NTPPi).

4http://www.w3.org/standards/semanticweb/
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Figure 3.1: The relations of RCC-8

3.3.2 Path Consistency Algorithm

Reasoning about topological spatial relations is done using the well-known path consistency algo-
rithms for the respective calculi [RN99b,RN07]. Path consistency is implemented by introducing
rules defining compositions5 and intersections of supported relations until a fixed point is reached
or until an inconsistency is detected. Having defined the composition between any pair of spatial
relations, the path consistency algorithm is implemented by iteravely performing the following
operation6:

∀i, j, k Rij ← Rij ∩ (Rik �Rkj)

The above iterative operation is applied until a fixed point is R is reached (i.e., operation does not
yield new inferences) or until the empty set is reached, implying inconsistency. Computing R is
done in O(n3) time.

Algorithm 1 depicts the path consistency algorithm of [RN01]. This algorithm takes as input a set
Θ of binary constraints and outputs an equivalent set which is path consistent. If such a set does
not exist, the algorithm fails. For this purpose, a queue that contains all possible paths (i, j, k) is
created. In each iteration, a path is extracted and deleted from the queue, in order to be revised
by function REV ISE(i, j, k). Function REV ISE(i, j, k) performs the operation

Mij ←Mij ∩ (Mik ◦Mkj)

and returns true if Mij is revised and false otherwise. The whole procedure continues until a fixed
point M is reached. If an empty Mij occurs, then the algorithm fails.

In general, reasoning in the RCC-8 calculus is a NP-complete problem [RN99a]. This means that
for very large instances, it is unlikely to decide consistency of a set of spatial formulas in polynomial
time. However, there are subsets of RCC-8 which are tractable, and as a result, the consistency
problem for them can be decided in polynomial time. These subsets are Ĥ8, Q8 (160 relations)
and C8 (158 relations). For these subsets path consistency is sufficient for deciding consistency.

3.4 State of the Art Reasoners for the RCC-8 Calculus

In this section we briefly review the state of the art qualitative spatial reasoners. We strictly
focus on reasoners based on RCC-8, because it is the calculus of choice in extending Strabon with
qualitative spatial information.

5The composition of any two RCC-8 relations is shown in Table 3.2. The composition of RCC-8 is actually a
weak composition [RL05].

6Symbol � denotes the weak composition of two relations and Rxy denotes the spatial relation holding between
regions x and y
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Table 3.2: Composition of RCC-8 relations
� DC EC PO TPP NTPP TPPi NTPPi EQ

DC * DC, EC,
PO,
TPP,
NTPP

DC, EC,
PO,
TPP,
NTPP

DC, EC,
PO,
TPP,
NTPP

DC, EC,
PO,
TPP,
NTPP

DC DC DC

EC DC, EC,
PO,
TPPi,
NTPPi

DC, EC,
PO,
TPP,
TPPi,
EQ

DC, EC,
PO,
TPP,
NTPP

EC, PO,
TPP,
NTPP

PO,
TPP,
NTPP

DC, EC DC EC

PO DC, EC,
PO,
TPPi,
NTPPi

DC, EC,
PO,
TPPi,
NTPPi

* PO,
TPP,
NTPP

PO,
TPP,
NTPP

DC, EC,
PO,
TPPi,
NTPPi

DC, EC,
PO,
TPPi,
NTPPi

PO

TPP DC DC,EC DC, EC,
PO,
TPP,
NTPP

TPP,
NTPP

NTPP DC, EC,
PO,
TPP,
TPPi,
EQ

DC, EC,
PO,
TPPi,
NTPPi

TPP

NTPP DC DC DC, EC,
PO,
TPP,
NTPP

NTPP NTPP DC, EC,
PO,
TPP,
NTPP

* NTPP

TPPi DC, EC,
PO,
TPPi,
NTPPi

EC, PO,
TPPi,
NTPPi

PO,
TPPi,
NTPPi

PO,
TPP,
TPPi,
EQ

PO,
TPP,
NTPP

TPPi,
NTPPi

NTPPi TPPi

NTPPi DC, EC,
PO,
TPPi,
NTPPi

PO,
TPPi,
NTPPi

PO,
TPPi,
NTPPi

PO,
TPPi,
NTPPi

PO,
TPP,
NTPP,
TPPi,
NTPPi,
EQ

NTPPi NTPPi NTPPi

EQ DC EC PO TPP NTPP TPPi NTPPi EQ

3.4.1 Renz’s RCC-8 Solver

In [RN01], Renz et al. describe the path consistency implementation for RCC-8 consistency check-
ing. They employ a n×n matrix M that holds the spatial relations between all n different re-
gions, including the universal relations. A queue is also implemented as an array of triple pairs
(i, j, k),(k, i, j) for regions that represent a path that needs to be revised. The inverse of a spatial
relation is precomputed and is assigned directly to the corresponding matrix index when needed.
Renz’s solver is implemented in C.

3.4.2 PelletSpatial

PelletSpatial [SS09a], as opposed to Renz’s solver, ignores universal relations between spatial re-
gions, thus, processing a sparse matrix and iterating over fewer nodes. Further, the queue imple-
mentation in [SS09a] doesn’t keep track of triples (k, i, j) which correspond to a path with incoming
edge for i. Given an edge i, j, the authors look for nodes k and update i, k (which corresponds to
triple (i, j, k)). Incoming edges for i are processed by keeping both i, j and j, i in their queue. On
revising j, i, the authors look for nodes k and update j, k as well as k, j (which corresponds to triple
(k, i, j)). The inverse of a spatial relation is computed on the fly using recursion. PelletSpatial is
implemented in Java.
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Algorithm 1: PATH-CONSISTENCY
Input : A set Θ of binary constraints over the variables x1, x2, ..., xn of Θ represented by an

n× n matrix M
Output: path-consistent set equivalent to Θ; fail, if such a set does not exist

Q := {(i, j, k), (k, i, j) | 1 6 i, j, k 6 n, i < j, k 6= i, k 6= j};
(i indicates the i-th variable of Θ. Analogously for j and k)

while Q 6= ∅ do
select and delete a path (p, r, q) from Q;
if REVISE(p, r, q) then

if Mpq = ∅ then
return fail;

else
Q := Q ∪ {(p, q, s), (s, p, q) | 1 6 s 6 n, s 6= p, s 6= q};

Algorithm 2: REVISE(i, k, j)

Input : three labels i, k and j indicating the variables xi, xj , xk of Θ
Output : true, if Mij is revised; false otherwise
Side Effects: Mij and Mji revised using the operations ∩ and ◦ over

the constraints involving xi, xk and xj

oldM := Mij ;
Mij := Mij ∩ (Mik ◦Mkj);
if (oldM = Mij) then

return false;
Mji := M^

ij ;
return true;

3.4.3 Generic Qualitative Reasoner

Generic Qualitative Reasoner (GQR) [GWW08] is a solver for binary qualitative constraint net-
works, that supports arbitrary binary constraint calculi developed for spatial and temporal reason-
ing, such as the calculi from the RCC family, and Allen’s interval algebra. The main innovation
of GQR whith respect to the previously mentioned reasoners, is that it uses a hand-written queue
put together from generic components (parts of the C++ Standard Template Library STL), im-
plemented as a virtual class, allowing for easy and convenient extensions. GQR also employs hash
tables and different methods for creating and handling precomputations of composition and inverse
tables. GQR is implemented in C++ and makes extensive use of templates.

3.4.4 PyRCC8

PyRCC87 is an open source, efficient QSR for RCC-8 written in Python. PyRCC8 is imple-
mented using PyPy, a fast, compliant implementation of the Python 2 language. To the best
of our knowledge, PyRCC8 is the first implementation of a QSR on top of a trace-based JIT
compiler. Previous implementations have used either static compilers, e.g., Renz’s solver [RN01]
and GQR [GWW08], or method-based JIT compilers, e.g., the RCC-8 reasoning module of the
description logic reasoner PelletSpatial [SS09a]. The advantage of trace-based JIT compilers is
that they can discover optimization opportunities in common dynamic execution paths, that are
not apparent to a static compiler or a method-based JIT compiler [BCFR09,BCF+11]. PyRCC8
offers a path consistency algorithm for solving tractable RCC-8 networks and a backtracking-based

7http://pypi.python.org/pypi/PyRCC8/
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algorithm for general networks. Both algorithms draw on the original ideas of [RN01], but offer
some more interesting features that we discuss as follows. PyRCC8’s path consistency algorithm
processes only meaningful arcs, i.e., arcs that do not correspond to the universal relation8, thus,
doing also fewer consistency checks. Regarding concistency of general RCC-8 networks, PyRCC8
is the only reasoner we know that offers an iterative counterpart of the recursive backtracing algo-
rithm. Additionaly, PyRCC8 precomputes the converse of relations to avoid time consuming and
exhaustive repetition of converse computations for large datasets.

The design and implementation of PyRCC8 has been carried out in the context of the TELEIOS
project and a preliminary version and comparison with the reasoners discussed above has been
published in [SK12]. An extended version of this work has already been submitted to a journal,
a copy of which is given in Appendix C at the end of this deliverable. Therefore, the interested
reader may find additional information and more details about the technical work underlying the
development of PyRCC8 there.

3.5 Enabling RCC-8 Reasoning in a Database

In this section we report on a number of implementations of a path consistency algorithm for the
RCC-8 calculus in relational database systems. We consider both the PostgreSQL and MonetDB
databases in our implementations. As a first step towards enabling RCC-8 reasoning in a database
system, we transfer the implementation of the path consistency algorithm for the RCC-8 calculus
as presented in [RN01] inside the codebase of MonetDB (Section 3.5.1). Then, we investigate
whether such an algorithm could be expressed following the relational model and the procedural
extensions of SQL. For this purpose, we consider both PostgreSQL and MonetDB and develop a
SQL program that implements the path consistency algorithm (Section 3.5.2).Last, we go deeper
by implementing a path consistency algorithm using the application programming interface of
MonetDB. This implementation has been based on the SQL implementation mentioned previously,
but uses the primitives that the kernel of MonetDB provides, namely the Binary Associative Table
(BAT) data structure and operations on them (Section 3.5.3).

The ultimate goal of this section is to end-up with a database system extended with reasoning
facilities for the RCC-8 calculus. This goal is the stepping stone towards the development of
query processing techniques for the stSPARQL and GeoSPARQL query languages enabling them
to answer queries involving qualitative and quantitative spatial information, such as the ones
mentioned in the motivation section of this work (Section 3.1).

Notice that the implementations of this section are targeted towards checking constraint networks
for path consistency. Thus, these implementations cannot solve the full problem of consistency
in RCC-8 networks. This is intended since the problem of deciding whether such a constraint
network is consistent has been shown to be NP-complete [RN99a]. Thus, we only target the
tractable fragments of the RCC-8 calculus [RN99a] which have been show to be solvable by path
consistency algorithms.

3.5.1 Transferring Renz’s solver to MonetDB

This implementation of the path consistency algorithm uses exactly the same C code as the Renz
solver path consistency function does. The structures are also the same as the structures of the
original Renz algorithm. This means that there is a n × n matrix M for holding the spatial
relations between all n different regions, and another matrix of equal size for marking the pairs
of regions to be revised for consistency. However, the input of the algorithm, that is the RCC-8
constraint network, is represented as a relational table with three attributes u, v, r denoting the

8The result of the composition of any relation with the universal relation is the universal relation.
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spatial relation r through which nodes u and v are related. In the terminology of MonetDB, these
attributes correspond to three Binary Associative Tables (BAT), the internal datastructures of
MonetDB for representing a column of a relational table, and we will refer to them as BAT u, BAT
v, and BAT r. For a more detailed description of how an input constraint network is represented
using a relational table, see the following section.

Transferring Renz’s solver to MonetDB consists of three phases. In the first phase, the constraint
network represented in BATs u, v and r are imported to matrix M . The next step is the execution
of the Renz path consistency algorithm. If the network is consistent, matrixM contains new values
that represent the complete graph. In final step, MonetDB is updated with these values, but only
includes relations r which connect two regions i and j, where i < j. This happens because, if a
region i is connected with j through relation r, then j is connected with i through the inverse
relation ri. Also, pairs of regions that are connected through the relation DALL are not transferred
to MonetDB.

Detailed information to get the source code of this implementation and instructions on how to
invoke it are provided in Section B.1 of the Appendix.

3.5.2 The Path Consistency Algorithm as a SQL program

In this section we discuss the implementaion of the path consistency algorithm as presented in
Section 3.3.2 as a SQL program. Before getting into the details of the implementation, we introduce
the reader to the encoding we use for representing a set of RCC-8 relations and then how we model
an RCC-8 constraint network under the relational model.

Encoding of RCC-8 relations

Table 3.3 shows how the RCC-8 relations are encoded. Like the implementation of [RN01], we
have opted to encode RCC-8 relations using a binary encoding. In particular, a RCC-8 relation
corresponds to an integer number which is expressed in a power of 2. This encoding scheme has the
following advantages: a) the encoding of a set of RCC-8 relations corresponds to a single integer
number which can be computed by calculating the bitwise OR of the relations it contains and b)
computing the intersection of two or more sets of RCC-8 relations reduces to computing the bitwise
AND of the binary encodings of these sets. For example, the set of relations {DC,TPP,EQ} is
encoded to the binary number 10001001 which corresponds to the integer number 137. This
number is the result of computing the bitwise OR of the binary encodings 00000001, 00001000,
and 10000000 of relations DC,TPP and EQ respectively. Likewise, the set of all basic RCC-8
relations, denoted by DALL, is encoded to the binary number 11111111 which corresponds to the
integer number 255. Computing the bitwise AND between this encoding and the encoding of the
previous set results in the binary number 10001001 which is the encoding for set {DC,TPP,EQ}
we computed previously.

Modeling of a RCC-8 constraint network using the relational model

An RCC-8 constraint network N is modeled in the relational model as a ternary relation R(u int,
v int, r int). If N contains a labeled edge R(x, y) between nodes x and y, then the relational
table R contains a tuple <x, y, r> where x, y, r are appropriate integers encoding the nodes x,
y, and relation R.

The composition table for RCC-8 relations is precomputed in a ternary relational table rcc8_-
trans(r1 int, r2 int, comp int) as well. In this relational table, r1, r2, and comp are sets of
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Table 3.3: Encoding of RCC-8 relations
Relation Integer encoding Binary encoding
DC 1 00000001
EC 2 00000010
PO 4 00000100
TPP 8 00001000
NTPP 16 00010000
TPPi 32 00100000
NTPPi 64 01000000
EQ 128 10000000

RCC-8 relations with comp corresponding to the composition of the set of relations r1 with the set
of relations r2. The result of composition for two sets of relations is the set union of the result of
the composition of each pair of RCC-8 relations from each set (see Table 3.2).

Let us now see an example of an RCC-8 constraint network9 and the corresponding modeling as a
relational table.

Example 14. Two houses are connected via a road. Each house is located on an own property.
The first house possibly touches the boundary of the property; the second one surely does not.
What can we infer about the relation of the second property to the road?

Let us first write down the spatial relations that hold between the objects of the previous descrip-
tion. These are the following:

house1 DC house2
house1 {TPP, NTPP} property1
house1 {DC, EC} property2
house1 EC road
house2 {DC, EC} property1
house2 NTPP property2
house2 EC road
property1 {DC, EC} property2
road {DC, EC, TPP, TPPi, PO, EQ, NTPP, NTPPi} property1
road {DC, EC, TPP, TPPi, PO, EQ, NTPP, NTPPi} property2

The last two relations above relate the road to the two properties of the houses. The set of relations
that is used correspond to the DALL relation, i.e., the set of all basic RCC-8 relations. Notice that
if there is no information about how two regions are spatially related, then DALL is the proper set
of relations to assume.

The corresponding RCC-8 constraint network is given in the following figure. In this network, the
nodes represent the objects mentioned in the example. The encoding of the objects to integers is
given in Table 3.4.

9This example is taken from Wikipedia: http://en.wikipedia.org/wiki/Region_Connection_Calculus
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Table 3.4: Integer encoding of objects mentioned in Example 14
Object Integer encoding
house1 0
house2 1
property1 2
road 3
property2 4

In the following the relational table R corresponding to the above RCC-8 constraint network is
given.

u v r set of RCC-8 relations
0 1 1 {DC}
0 2 24 {TPP,NTPP}
0 3 2 {EC}
0 4 3 {DC,EC}
1 2 3 {DC,EC}
2 4 3 {DC,EC}
1 4 16 {NTPP}
1 3 2 {EC}
3 4 255 DALL
3 2 255 DALL

The implementations we consider in the following assume that if any two nodes of an input RCC-8
constraint network are connected, then they have to be connected in both directions. Notice that
if an RCC-8 network N contains an edge R(x, y), then also we know the label for the edge (y, x)
(the inverse). Table 3.5 shows the inverse relation for each one of the basic RCC-8 relations. If
region x is related through relation R to region y, i.e., relation R(x, y) holds, then Table 3.5 gives
us the relation through which region y is related to region x, i.e., relation RI(y, x).

Returning back to Example 14, the relational table produced by the addition of the inverses for
each edge is given in Table 3.6.

Implementation in MonetDB

Figure 3.2 depicts the SQL program that implements the path consistency algorithm in MonetDB.
The algorithm takes as input a constraint network R and iteratively performs the operation:

∀i, j, k Rij ← Rij ∩ (Rik ◦Rkj)
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Table 3.5: Inverse relations for RCC-8 basic relations
Initial relation R(x, y) Inverse relation RI(y, x)

DC DC
EC EC
PO PO

TPP TPPi
NTPP NTPPi
TPPi TPP

NTPPi NTPP
EQ EQ

Table 3.6: Relational table R corresponding to Example 14 populated with inverse relations
u v r set of RCC-8 relations
0 1 1 {DC}
0 2 24 {TPP,NTPP}
0 3 2 {EC}
0 4 3 {DC,EC}
1 2 3 {DC,EC}
2 4 3 {DC,EC}
1 4 16 {NTPP}
1 3 2 {EC}
3 4 255 DALL
3 2 255 DALL

1 0 1 {DC}
2 0 96 {TPPI,NTPPI}
3 0 2 {EC}
4 0 3 {DC,EC}
2 1 3 {DC,EC}
4 2 3 {DC,EC}
4 1 64 {NTPPI}
3 1 2 {EC}
4 3 255 DALL
2 3 255 DALL
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The composition between relations Rik and Rkj is computed using the table rcc8_trans, which is
the precomputed composition table for RCC-8 relations as described in Section 3.5.2. At the end
of every loop, the algorithm investigates whether a fixed point R is reached, in order to terminate
the loop. Below, a more detailed explanation of the code is given:

• Lines 27–31: Self join of table R, in order to create a relation which contains all possible
paths of length two that result from the input constraint network. This is implemented by
finding edges that share a common node.

• Lines 25–33: Computation of the composition between every two relations Rik and Rkj by
joining with table rcc8_trans.

• Lines 23–37: Intersection of edges that come from different paths and additional intersection
with edge Rij . For this purpose, the bit_and aggregate function was implemented as an
extension to MonetDB, which is described in Section B.5 as well. Line 37 contains a full
outer join because some edges may have not been involved in a path and we want to keep
them.

• Lines 9–38: A new table itR is created, which contains the new edges. This table serves as
the result of the current iteration and the input to the next one.

• Lines 39–40: Keep the difference of tables itR and R to the variable that determines whether
the loop will be terminated or not.

Detailed information to get the source code of this implementation and instructions on how to
invoke it are provided in Section B.2 of the Appendix.

Implementation in PostgreSQL

Figure 3.3 depicts the SQL program that implements the path consistency algorithm in Post-
greSQL. The code is similar to that of MonetDB. The differences that exist are due to the dissim-
ilarities of the SQL that the two database systems support.

Detailed information to get the source code of this implementation and instructions on how to
invoke it are provided in Section B.3 of the Appendix.

3.5.3 Implementation of an RCC-8 module in MonetDB

We have also done a native implementation of the path consistency algorithm in MonetDB as
an RCC-8 module. This implementation is native to the MonetDB in the sense that the path
consistency algorithm is implemented using the application programming interface of MonetDB.
This implementation has been based on the SQL implementation mentioned previously, but uses
the primitives that the kernel of MonetDB provides, namely the Binary Associative Table (BAT)
data structure and the associated operations (e.g., select, join, semi-join, mirror) on them.

Detailed information to get the source code of this implementation and instructions on how to
invoke it are provided in Section B.4 of the Appendix.

3.6 Experimental Evaluation

In this section we evaluate experimentally and compare the performance of the implementations
of the path consistency algorithm as depicted in Table 3.7. Notice that the implementation cor-
resdonding to PyRCC85 uses the notion of partial path consistency instead of the notion of path
consistency that is employed in all the others.
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1 CREATE FUNCTION pc ()
2 RETURNS TABLE (edge_count INTEGER)
3 BEGIN
4 DECLARE TABLE itR (u INTEGER, v INTEGER, r INTEGER);
5 DECLARE delta int;
6 SET delta = (SELECT count(*) FROM R);
7 WHILE (delta <> 0)
8 DO
9 INSERT INTO itR (u, v, r) (
10 SELECT DISTINCT
11 CASE WHEN R.u IS NULL
12 THEN T.u ELSE R.u
13 END,
14 CASE WHEN R.v IS NULL
15 THEN T.v ELSE R.v
16 END,
17 CASE WHEN (R.r IS NOT NULL AND T.r is NOT NULL)
18 THEN R.r & T.r
19 WHEN R.r IS NULL
20 THEN T.r ELSE R.r
21 END
22 FROM
23 (SELECT TRANS.x as u, TRANS.z as v, bit_and(comp) as R
24 FROM
25 (SELECT TR.x, TR.z, comp

26 FROM
27 (SELECT TR1.u as x, TR1.v as y, TR2.v as z,

28 TR1.r as rxy, TR2.r as ryz
29 FROM
30 R as TR1 JOIN R as TR2
31 ON (TR1.v = TR2.u AND TR1.u <> TR2.v)

32 ) as TR JOIN "rcc8_trans"
33 ON (TR.rxy = s AND TR.ryz = t)

34 ) AS TRANS
35 GROUP BY TRANS.x, TRANS.z
36 ) AS T
37 FULL OUTER JOIN R ON (R.u = T.u AND R.v = T.v)
38 );
39 SET delta = (SELECT count(*) FROM
40 (SELECT * FROM itR EXCEPT (SELECT * FROM R)) AS DIFF);
41 IF delta <> 0
42 THEN
43 DELETE FROM R;
44 -- update according to new computation
45 INSERT INTO R (SELECT * FROM itR);
46 END IF;
47 -- initialize intermediate result
48 DELETE FROM itR;
49 END WHILE;
50 RETURN ((SELECT count(*) FROM R));
51 END;

Figure 3.2: Path consistency algorithm as SQL program in MonetDB
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1 CREATE FUNCTION pc ()
2 RETURNS integer as $$
3 DECLARE
4 delta int;
5 BEGIN
6 CREATE TABLE itR (f int, t int, rel int);
7 delta := count(*) FROM R;
8 WHILE delta <> 0
9 LOOP
10 -- compute transitive closure: refine R, keep unaffected edges, and add

new edges
11 INSERT INTO itR (
12 SELECT DISTINCT
13 CASE WHEN R.u is Null
14 THEN T.u
15 ELSE R.u
16 END,
17 CASE WHEN R.v is Null
18 WHEN T.v
19 ELSE R.v
20 END,
21 CASE WHEN (R.r is NOT Null AND T.r is NOT Null)
22 THEN R.r & T.r
23 WHEN R.r is Null
24 THEN T.r
25 ELSE R.r
26 END
27 FROM
28 (SELECT TRANS.x as u, TRANS.z as v, bit_and(comp) as r
29 FROM
30 (SELECT TR.x, TR.z, comp
31 FROM
32 (SELECT TR1.u as x, TR1.v as y, TR2.v as z, TR1.r as rxy, TR2.r

as ryz
33 FROM R as TR1 JOIN R as TR2
34 ON (TR1.v = TR2.u AND TR1.u <> TR2.v)
35 ) as TR JOIN "rcc8_trans"
36 ON (TR.rxy = s AND TR.ryz = t)
37 ) AS TRANS
38 GROUP BY TRANS.x, TRANS.z
39 ) AS T
40 FULL OUTER JOIN R ON (R.u = T.u AND R.v = T.v)
41 );
42 delta := count(*) FROM (SELECT * FROM itR EXCEPT (SELECT * FROM R)) AS

DIFF;
43 IF delta <> 0
44 THEN
45 TRUNCATE R;
46 INSERT INTO R (SELECT * FROM itR);
47 END IF;
48 TRUNCATE itR; -- initialize intermediate result
49 END LOOP;
50 DROP TABLE itR;
51 RETURN count(*) FROM R;
52 END;

Figure 3.3: Path consistency algorithm as SQL program in PostgreSQL
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Table 3.7: Codenames of different implementations of the path consistency algorithm
Codename Detailed description Short description

PostgreSQL Section 3.5.2 Implementation of PC algorithm for RCC-8 as a
SQL program in PostgreSQL

MonetDB-SQL Section 3.5.2 Implementation of PC algorithm for RCC-8 as a
SQL program in MonetDB

MonetDB-ext Section 3.5.3 Implementation of PC algorithm for RCC-8 using
the MonetDB API

MonetDB-Renz Section 3.5.1 Transfer of Renz’s implementation in MonetDB

Renz Section 3.4.1 Original implementation of the path consistency
algorithm of [RN01] by Jochen Renz

PyRCC8 Section 3.4.4 and [SK12] Implementation of an RCC-8 reasoner in python

PyRCC85 [SK12] Extension of the above to run PPC instead of PC

3.6.1 Hardware setup

Our experiments were conducted on an Intel Xeon E5620 with 12MB L3 cache running at 2.4 GHz.
The system has 48GB of RAM and 4 disks of striped RAID (level 5). The operating system is
Ubuntu 12.04 (Precise).

3.6.2 Datasets

In the following we describe the datasets we used to evaluate our implementations.

The Administrative Geography of Great Britain

The comparison of the different implementations was performed using the Administrative geogra-
phy (admingeo) of Great Britain dataset. The admingeo dataset describes the hierarchy of admin-
istrative units and the topological relations among them. Therefore, the corresponding ontology
includes classes that represent the administrative units of Great Britain, and properties that de-
scribe the qualitative topological relations. Two ontologies, the Geometry Ontology and the Spatial
Relations Ontology are used to provide geospatial vocabulary. These ontologies describe abstract
geometries and basic spatial (equivalent to RCC-8) relations respectively. Boundary-Line, a poly-
gon dataset of areas defined by electoral and administrative boundaries, was then used to generate
the topological relations in RDF based on the provided names and boundary information. The
resulting dataset was combined with addresses, roads, land use, height and other datasets available
in RDF. The constraint network that the dataset comprises is consistent and contains more than
10000 nodes and nearly 80000 relations. For the experiments, the initial dataset was divided into
smaller datasets of different size, according to the number of relations that they contain.

Greek Administrative Geography

The Greek Administrative Geography (GAG) dataset describes the administrative divisions of
Greece (prefecture, municipality, district, etc.). It has been populated with relevant data that are
available in the Greek open government data portal. For each administrative unit in the ontology
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Table 3.8: Dataset characteristics
Dataset #nodes #edges

ad
m
in
ge
o

100 53 100
500 186 500
1000 326 1000
2000 560 2000
5000 1175 5000
10000 2118 10 000
20000 3947 20 000
25000 4710 25 000
30000 5504 30 000
35000 6251 35 000
40000 7009 40 000
45000 7771 45 000
50000 8492 50 000
55000 9149 55 000
60000 9791 60 000
65000 10 521 65 000
70000 11 150 70 000
75000 11 727 75 000
77000 11 761 76 996
full 11 762 77 907

gag 1458 2176

nuts 2236 3176

gadm-geov. 276 728 590 443

gadm 42 750 159 600
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(e.g., a municipality) various pieces of information are available (e.g., population and geographical
boundaries).

In the context of this deliverable, following the methodology of [GDH08], we populated the GAG
dataset with topological information using the relations of the RCC-8 calculus. We followed the
following procedure. For each administrative level, we checked whether the geometries of two
administrative units touch, in order to infer the EC topological relation of RCC-8 for them. Then,
for each pair of consecutive administrative levels, we exploited the existing relation belongs_To
that holds between them to infer the NTPP or TPP topological relation of RCC-8. To decide
which one of these two relations hold, we checked whether the boundaries of the two regions
intersect. The population of the GAG dataset with topological information was done solely by
the evaluation of stSPARQL queries on Strabon. The part of the GAG dataset with topological
information contains 1139 relations and 420 regions.

Global Administrative Areas

The Global Administrative Areas dataset (GADM) contains the geometries of administrative ar-
eas of all countries. GADM consists of three subdivisions of administrative areas. The top level
contains countries and the two lower levels are subdivisions for each country. The dataset comes
in various formats, such as ESRI shape files, KML/KMZ files, or RData (for use in the statisti-
cal project R). We transformed ESRI shape files in RDF and populated the resulting data with
topological information using the methodology described in Section 3.6.2.

The GADM dataset is also available by the Geovocab10 project, which provides vocabularies for
geospatial modelling. Geovocab offers GADM in RDF format11 and has also populated it with
topological information providing links to existing spatial datasets, with the ultimate goal of en-
hancing the integration of spatial information in the semantic web. However, Geovocab has used
the topological relations of the RCC-5 calculus. Based on this dataset, we have transformed it into
one which contains relations of RCC-8 calculus. This was possible because the dataset contained
only the RCC-5 relations EQ, PPI, and PP, which can be represented in RCC-8 using the set of
relations {EQ}, {TPPI,NTPPI} and {TPP,NTPP} respectively. We refer to the resulting dataset
as GADM-Geovocab.

Nomenclature of Territorial Units for Statistics

The Nomenclature of Territorial Units for Statistics12 (NUTS) is a hierarchical system defined by
the Eurostat office of the European Union for dividing the economic territory of the EU for the
purpose of collecting, developing, and harmonising EU regional statistics, analysing EU regions
based on socio-economic factors, and framing of EU regional policies. NUTS is divided in four
levels NUTS-0, NUTS-1, NUTS-2, and NUTS-3. NUTS-0 comprises EU countries (e.g., Germany,
Greece). NUTS-1 comprises the major socio-economic regions (e.g., North Rhine-Westphalia,
Central Greece). NUTS-2 comprises the basic regions for the application of regional policies (e.g.,
Berlin, Attica), while NUTS-3 comprises small regions for specific diagnoses (e.g., Hamburg, Evros).

Geovocab has published this data in RDF as linked data13 using the NeoGeo RDF Vocabulary for
GeoData14. Again, the topological relations of this dataset contains RCC-5 relations. We used the
same procedure as above to transform them in RCC-8 relations.

Table 3.8 summarizes the characteristics of the aforementioned datasets.
10http://geovocab.org/
11http://gadm.geovocab.org/
12http://epp.eurostat.ec.europa.eu/portal/page/portal/nuts_nomenclature/introduction
13http://nuts.geovocab.org/
14http://geovocab.org/doc/neogeo/
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Figure 3.4: Performance of consistency checking for the admingeo RDF dataset

3.6.3 Evaluation

Figure 3.4 shows the performance of consistency checking on the admingeo RDF dataset. We ob-
serve that all implementations that are based on the relational model, i.e., PostgreSQL, MonetDB-
SQL, and MonetDB-ext, have the worst performance with the exception of MonetDB-Renz. This
is reasonable since the MonetDB-Renz implementation models a constraint network as a two di-
mensional array for running the path consistency algorithm, while it uses the relational model
to store the constraint network. Among these implementations, PostgreSQL outperforms both
the relational-based implementations in MonetDB, that is, MonetDB-SQL and MonetDB-ext. For
these implementations, after the limit of 10000 relations, no results can be obtained due to the
fact that the memory requirements for MonetDB exceed the available main memory, forcing the
algorithm to make use of the swap space. Regarding MonetDB-ext and MonetDB-SQL, MonetDB-
SQL performs better. This is justified since MonetDB always maps a SQL query to an equivalent
program in its internal assembly-like language (called MAL) and uses this program to optimize
query evaluation. Thus, the MonetDB-ext implementation, since it implements the path consis-
tency algorithm using the BAT data structure and the associated operations on BATs, could only
be as good as MonetDB-SQL.

Regarding the performance of the other implementations shown in Figure 3.4, the best performance
for checking consistency of RCC-8 networks can be obtained using the reasoners PyRCC8 and
PyRCC85. Another observation is that the Renz and MonetDB-Renz implementations behave
similarly regarding performance. This is to be expected since MonetDB-Renz implementation
runs internally the code of Renz behaving in this respect as a wrapper of Renz using the relational
model.

Regarding the performance of consistency checking for larger datasets than the dataset admingeo,
we observed that even PyRCC85, which exposes the best performance among the state of the art
qualitative spatial reasoners, cannot handle them. An example is the gadm-geovocab dataset which
is an RCC-8 network with around 600 thousands edges and 45 thousands nodes. The last four
implementations of Figure 3.4 allocate a two-dimensional array to represent the input constraint
network. This array is of size N2 where N is the number of nodes of the input constraint network.
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Figure 3.5: Degree distributions of various datasets

Thus, even for medium-sized graphs, these implementations fail to run, a drawback that is not
present in the implementations PostgreSQL, MonetDB-SQL, and MonetDB-ext, which not only
can load the input constraint graph, but can also complete some iterations of the algorithm.

The most interesting and intriguing observation for such graphs is that they are very sparse, hence
representations of the input graph that are based on two-dimensional arrays are not appropriate
at all. This fact is well depicted in Figure 3.5 where the degree distribution among the nodes
of the various datasets of Table 3.8 is shown. Figure 3.5 shows that all these RCC-8 constraint
networks are sparse and follow a power-law distribution15 which has been shown to fit the Internet
web graph and the Twitter follower graph [FFF99,GLG+12]. The primary characteristic of such
graphs is that most of the nodes have very low degree, while only a small number of the nodes
have high degree number leading to star-shaped graphs. In particular, if the degree distribution
among the nodes of a graph follows a power-law distribution, then the number of nodes with degree
number x can be approximated by the following power-law function:

f(x) =
c

xα
with α > 0 (3.1)

In the above function, c and α are parameter values which are empirically chosen. When the values
for c and α are equal to 1, then this function becomes the well-known Zipf function. For natural
graphs, the value of α has been shown to be around 2 [FFF99,GLG+12]. Moreover, the value of
parameter α determines the skeweness of the degree distribution among the nodes of the graph.
Higher values for α imply that the graph has lower density, that is, the ratio of edges to nodes is
small. As the value for α decreases, the graph density increases, thus the number of nodes with
high degree number increases as well [GLG+12].

One more observation that calls for optimization is the kind of edges that these real constraint
graphs comprise. Figure 3.6 shows the number of edges grouped by type for the datasets of Table

15One could admittedly argue that the admingeo dataset does not fit this distribution.
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Figure 3.6: Number of edges grouped by type for various datasets

3.8. With the exception of the gadm dataset, in all others the most popular edges are those that
relate two regions with a containment relation, that is, TPP, NTPP, their inverses, or a disjunction
of these. In addition, the presence of EC relations is also high. In particular, the high frequency
of the containment edges calls for further optimization as has been done in the case of temporal
reasoning [GS95,DGA01].
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4. Conclusions

In this report we presented the second phase of the implementation of a temporal and spatial
extension of RDF and SPARQL on top of MonetDB. First, we described how we extended the data
model RDF and the query language SPARQL with the valid time dimension and how Strabon was
extended resspectively to support this functionality. In this context, we also provided the results of
our first experimental evaluation, where Strabon competed with implementations offering similar
functionalities and the results are very encouraging.

Second we investigated different kinds of implementations of the path consistency algorithm for
checking the consistency of tractable fragments of RCC-8 calculus in a database system, such as
PostgreSQL and MonetDB. We compared these implementations with the state of the art reasoners
for RCC-8 and concluded that the relational model is not an appropriate model in checking the
consistency of RCC-8 networks. In face of this discouraging result, we developed the reasoner
PyRCC8 which outperforms the state of the art RCC-8 reasoners and also incorporated Renz’s
solver into the codebase of MonetDB. This way, we have prepared the ground for the development
of query processing techniques for the stSPARQL and GeoSPARQL query languages targeting at
querying incomplete spatial information.

For the rest of the project, we plan to continue our evaluation and benchmarking efforts. We plan
to test the valid time features of Strabon with larger, real and synthetic, datasets. We also plan
to compete with Allegrograph to test the temporal capabilities of the two systems with respect to
the user-defined time, as Allegrograph is not valid time enabled. We also plan to..

In the forthcoming deliverable named: “The evaluation of the developed implementation” we will
report on the results of the experimental evaluation of our implementations.
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A. Instructions for installing and using the
temporal component of Strabon

A.1 Instructions for installing and using the temporal com-
ponent of Strabon

In this section we provide guidelines for installing and using the temporal component of Strabon.

Installation

In order to install the temporal component of Strabon the following steps should be performed:

• Create a spatially and temporally enabled database by performing the following steps:

– Download and install PostgreSQL. A PostgreSQL database will be used as back-end.

– Download and install the PostgreSQL Temporal extension of PostgreSQL as described
here: http://github.com/jeff-davis/PostgreSQL-Temporal.

– Download the spatiotemporal database template which is available here: http://www.
earthobservatory.eu/wiki/attach/WP4/spatiotemporal.sql.

– Create a new PostgreSQL database (without using any template), for example:
$> sudo -u postgres createdb spatiotemporal

– Import the spatiotemporal.sql that you downloaded into the newly created database.
This action will load all PostGIS and PostgreSQL Temporal functions making your
database spatially and temporally enabled.
$> sudo -u postgres psql -d spatiotemporal -f spatiotemporal.sql

• Clone the source code of Strabon from the Strabon mercurial repository (Also available as
a zip file here: http://www.earthobservatory.eu/wiki/attach/WP4/StrabonTemporal.
zip).
$> hg clone http://hg.strabon.di.uoa.gr/Strabon/

• Go to the directory where Strabon is located in
$> cd Strabon

• Change to the "temporals" branch
$> hg update temporals

• Build
$> mvn clean package

Store

Currently, the temporal component of Strabon supports the N-QUADS format for storing stRDF
graphs that contain triples annoated with their valid time. To store a file in N-QUADS format one
should execute the following command:

scripts/strabon -h <hostname> -p <port> -db <database> -u <username> -pass <password> store
-f nquads <filepath>
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The command provided above uses a strabon bash script that is located in Strabon/scripts and is
used as an interface for executing store, query and update commands in Strabon.

For example, let us store the file: runtime/src/test/resources/temporal-periods.nq

using the following command:

scripts/strabon -h localhost -p 5432 -db spatiotemporal -u postgres -pass postgres store -f
nquads runtime/src/test/resources/temporal-periods.nq

Query

The command for executing queries against Strabon using the strabon script is the following:

scripts/strabon -h <hostname> -p <port> -db <database> -u <username> -pass <password> query
<query>.

The argument <query> is a string representation of an stSPARQL query. For example, let us pose
the following query against the stRDF graph that we stored in the previous step:

SELECT distinct ?x1 ?x2
WHERE {

?x1 ?y1 ?z1 ?t1 .
?x2 ?y2 ?z2 ?t2 .
FILTER(<http://strdf.di.uoa.gr/ontology#before>(?t1, ?t2) && ?x2!=?x1). }

The query provided above retrieves subjects of triples in pairs such that the valid time of the first
is before the valid time of the second. We can pose this query against Strabon using the strabon
script as follows:

$>scripts/strabon -h localhost -p 5432 -db spatiotemporal -u postgres -pass postgres query QUERY

where QUERY is the string representation of the query provided above.
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B. Instructions for running the implementations of
Chapter 3

In the following, we provide instructions on getting the source code corresponding to the im-
plementations discussed in Section 3.5 and running a simple example to demonstrate its us-
age. In particular, those implementations that are based on MonetDB (i.e., those discussed in
Sections 3.5.1, 3.5.2, and 3.5.3) have been based on MonetDB and the release of the October,
2012. The corresponding code is available at http://earthobservatory.eu/wiki/attach/WP4/
MonetDB-Oct2012_rcc8-renz.tar.bz2. For the SQL implementation in PostgreSQL, the code is
available at http://www.earthobservatory.eu/wiki/attach/WP4/rcc8-postgres.zip.

We assume that the directories that contain the source code of PostgreSQL and MonetDB are
given by the environmental variables $POSTGRES_SRC and $MONETDB_SRC respectively. In order
to run any implementation of path consistency in MonetDB, the user should specify the option
-–enable-rcc8 in the configure phase.

$ mkdir -p /tmp/monet-build
$ cd /tmp/monet-build
$ ${MONETDB_SRC}/configure --prefix=path/to/<installation_directory> \

--enable-rcc8 --enable-optimize --disable-assert --disable-geom \
--disable-java --disable-jdbc --disable-odbc --disable-testing \
--disable-strict --disable-merocontrol

Then, to compile MonetDB:

$ make -j
$ make install

B.1 Instructions to run Renz’s code in MonetDB

The source code of the Renz’s implementation in MonetDB can be found under the directory
${MONETDB_SRC}/monetdb5/extras/rcc8/renz/.

You can execute Renz’s code using the MonetDB client, mclient, and specifying either the MAL or
SQL language. Then you can load RCC-8 relations either from a regular file or from a SQL table.

For using the MAL language, execute the following command:

$ <installation_directory>/bin/mclient -l mal -d <database_name>
Welcome to mclient, the MonetDB interactive terminal (unreleased)
Type \q to quit, \? for a list of available commands
mal>

Then the RCC-8 relations can be loaded from a regular file:

mal> renz.pcfile("<filename>",0);

or from a SQL table:
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4 #wiki.csp (http://en.wikipedia.org/wiki/Region_Connection_Calculus)
0 1 ( DC )
0 2 ( TPP NTPP )
0 3 ( EC )
0 4 ( DC EC )
1 2 ( DC EC )
2 4 ( DC EC )
1 4 ( NTPP )
1 3 ( EC )
.

Figure B.1: File wiki.csp

CREATE SCHEMA RCC8;
CREATE TABLE RCC8.R(u INTEGER,v INTEGER,r INTEGER);
INSERT INTO RCC8.R VALUES(0,17,32);
INSERT INTO RCC8.R VALUES(0,18,32);
INSERT INTO RCC8.R VALUES(0,19,32);
INSERT INTO RCC8.R VALUES(0,20,32);
INSERT INTO RCC8.R VALUES(0,21,32);
INSERT INTO RCC8.R VALUES(0,22,32);
INSERT INTO RCC8.R VALUES(0,23,32);
INSERT INTO RCC8.R VALUES(0,24,32);
...

Figure B.2: Creation of schema RCC8 and table R

mal> renz.pcsql("<schema_name>","<table_name>",0);

For example, using file ${MONETDB_SRC}/monetdb5/extras/rcc8/renz/input/wiki.csp:

mal> renz.pcfile("${MONETDB_SRC}/monetdb5/extras/rcc8/renz/input/wiki.csp",0);
Running path consistency with renz Logic and renz structures (bat rows 8)
Network is consistent. Execution time [16 msecs] , [2 loops, 72 compositions]

In Figure B.1 you can see the structure that the regular file should have. The number in the first
line corrensponds to the maximum identifier number of the nodes of the input constraint network.
Then, each line specifies the constraints (RCC-8 relations) holding between two nodes. Finally,
the file ends with a new line starting with a dot character, i.e., ’.’.

If you prefer to use a SQL table, you have to create a schema and a table, the names of which are
required in the command mentioned previously, and insert the relations (Figure B.2).

Finally, using the SQL language requires similar steps:

$ <installation_directory>/bin/mclient -l sql -d <database_name>
Welcome to mclient, the MonetDB/SQL interactive terminal (unreleased)
Database: MonetDB v11.13.6 (unreleased), ’mapi:monetdb://teleios4:50000/test’
Type \q to quit, \? for a list of available commands
auto commit mode: on
sql>
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-- Input constraint network (bit encoding)
-- Each integer corresponds to a set of RCC-8 relations
CREATE TABLE R (

u int NOT NULL,
v int NOT NULL,
r int NOT NULL

);

CREATE INDEX R_u_idx ON R (u);
CREATE INDEX R_v_idx ON R (v);
CREATE INDEX R_uv_idx ON R (u, v);

Figure B.3: Script 01_create_R.sql

Load the relations from a regular file:

sql> select sys.pcfile(’<filename>’,0);

or from a SQL table:

sql> select sys.pcsql(’<schema_name>’,’<table_name>’,0);

B.2 Instructions to run the SQL implementation in Mon-
etDB

The source code of the SQL implementation in MonetDB can be found under the directory
${MONETDB_SRC}/monetdb5/extras/rcc8/sql/.

For the initialization of an RCC-8 enabled database, it is required to execute the following scripts
upon creation of a database with name rcc8.

1. Create a relational table for keeping the constraint network as described in Section 3.5.2, by
executing the script 01_create_R.sql which is shown in Figure B.3.

$ mclient -d rcc8 < ${MONETDB_SRC}/monetdb5/extras/rcc8/sql/01_create_R.sql

2. Create two tables for keeping the composition and the inverse relations between two sets
of RCC-8 relations and a table for keeping some statistics. The above tables are cre-
ated and filled with the appropriate data by the scripts 02_create_rcc8-env.sql and
03_composition-table_copy-into.sql depicted in Figures B.4 and B.5 respectively.

$ mclient -d rcc8 <\
${MONETDB_SRC}/monetdb5/extras/rcc8/sql/02_create_rcc8-env.sql

$ mclient -d rcc8 <\
${MONETDB_SRC}/monetdb5/extras/rcc8/sql/03_composition-table_copy-into.sql

3. Load a sample constraint network by executing the script wiki.sql which is shown in Fig-
ure B.6.

$ mclient -d rcc8 < ${MONETDB_SRC}/monetdb5/extras/rcc8/sql/input/wiki.sql
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-- Composition table (bit/int version)
CREATE TABLE "rcc8_trans" (

s int NOT NULL,
t int NOT NULL,
comp int NOT NULL -- composition of (s, t): s o t

);

-- Table with inverse relations (bit/int version)
CREATE TABLE "rcc8_inv" (

r int NOT NULL,
ri int NOT NULL

);

-- Table with the names of a set of RCC-8 relations
CREATE TABLE "rcc8_names" (

r int NOT NULL, -- set of RCC-8 relations (bit encoding)
name varchar(37) NOT NULL -- corresponding string names

);

-- Table for keeping statistics when running the path consistency algorithm
CREATE TABLE "rcc8_stats" (

iterations INT NOT NULL,
delta INT NOT NULL,
inputsz INT NOT NULL

);

INSERT INTO "rcc8_inv" VALUES
(1,1),
(2,2),
(3,3),
(4,4),
(5,5),
(6,6),
(7,7),
(8,32),
(9,33),
...

Figure B.4: Script 02_create_rcc8-env.sql

COPY 65025 RECORDS INTO rcc8_trans FROM stdin USING DELIMITERS '\t';
1 1 255
1 2 31
1 3 255
1 4 31
1 5 255
1 6 31
1 7 255

...

Figure B.5: Script verb03_composition-table_copy-into.sql
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-- The following constraint network has been taken from
-- http://en.wikipedia.org/wiki/Region_Connection_Calculus
INSERT INTO R (u, v, r) VALUES
(0, 1, 1),
(0, 2, 24),
(0, 3, 2),
(0, 4, 3),
(1, 2, 3),
(2, 4, 3),
(1, 4, 16),
(1, 3, 2),
(3, 4, 255),
(3, 2, 255);

-- insert inverse edges
INSERT INTO R (u, v, r) (SELECT R.v, R.u, S.ri FROM R JOIN rcc8_inv as S ON R.r

= S.r);

Figure B.6: Script wiki.sql

4. Load the SQL script named pc_monet.sql, which implements the path consistency algorithm
as described in Section 3.5.2.

$ mclient -d rcc8 < ${MONETDB_SRC}/monetdb5/extras/rcc8/sql/pc_monet.sql

5. Run the path consistency algorithm on the relational table R as follows:

$ echo "SELECT * FROM pc();" | mclient -d rcc8

+------------+
| edge_count |
+============+
| 20 |
+------------+
1 tuple

B.3 Instructions to run the SQL implementation in Post-
greSQL

All the appropriate scripts that are needed for the SQL implementation in PostgreSQL, are under
${POSTGRES_SRC} directory. The instructions of the PostgreSQL implementation are relevant to
these of MonetDB described in the previous section.
For the initialization of an RCC-8 enabled database, it is required to execute the following scripts
upon creation of a database with name rcc8.

1. Create a relational table for keeping the constraint network, by executing the script 01_create_R.sql.

$ psql -d rcc8 < ${POSTGRES_SRC}/01-create_R.sql

2. Create two tables for keeping the composition and the inverse relations between two sets of
RCC-8 relations. The above tables are created and filled with the appropriate data by the
script 02_create_rcc8-env.sql.
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$ psql -d rcc8 < ${POSTGRES_SRC}/02-create_rcc8-env.sql

3. Load a sample constraint network by executing the script wiki.sql.

$ psql -d rcc8 < ${POSTGRES_SRC}/input/wiki.sql

4. Load the SQL script named pc_postgres.sql, which implements the path consistency al-
gorithm as described in Section 3.5.2

$ psql -d rcc8 < ${POSTGRES_SRC}/pc_postgres.sql

5. Run the path consistency algorithm on the relational table R as follows:

$ echo "SELECT * FROM pc();" | psql -d rcc8

NOTICE: table "rcc8_stats" does not exist, skipping
CONTEXT: SQL statement "DROP TABLE IF EXISTS rcc8_stats"
PL/pgSQL function "pc" line 14 at SQL statement
NOTICE: CREATE TABLE will create implicit sequence "rcc8_stats_iteration_seq" for serial column "rcc8_stats.iteration"
CONTEXT: SQL statement "CREATE TABLE rcc8_stats (iteration SERIAL, d INT NOT NULL, inputsz INT NOT NULL)"
PL/pgSQL function "pc" line 15 at SQL statement
NOTICE: iteration 0: delta = 20 size = 20
NOTICE: iteration 1: delta = 6 size = 20
NOTICE: iteration 2: delta = 2 size = 20
pc
----
20
(1 row)

B.4 Instructions to run the implementation of the RCC-8
module in MonetDB

The source code of the implementation of the RCC-8 module can be found under the directory
${MONETDB_SRC}/monetdb5/extras/rcc8/.
In order to run the RCC-8 module which is implemented in the kernel of MonetDB, the user
should firstly create a database with name rcc8 and then follow the steps 1-3 from Section B.2.
Afterwards, the following command is required:

$ mclient -d rcc8 -lmal ${MONETDB_SRC}/monetdb5/extras/rcc8/Tests/run_rcc8pc.mal
RCC8pc: iteration 0 input-size=20 delta=20
Elapsed time 1 ms
#---------------------------------#
# h t t t # name
# void int int int # type
#---------------------------------#
[ 0@0, 0, 1, 1 ]
[ 1@0, 0, 2, 24 ]
[ 2@0, 0, 3, 2 ]
[ 3@0, 0, 4, 3 ]
[ 4@0, 1, 0, 1 ]
[ 5@0, 1, 2, 1 ]
[ 6@0, 1, 3, 2 ]
[ 7@0, 1, 4, 16 ]
[ 8@0, 2, 0, 96 ]

D4.2 An implementation of a temporal and spatial extension of RDF and SPARQL on top of
MonetDB - Phase II

48



TELEIOS FP7-257662

## load RCC-8 module
include rcc8;

## open sql
sql.init();
_mvc := sql.mvc();

## bind columns
u:bat[:oid,:int] := sql.bind(_mvc, "sys", "r", "u", 0);
v:bat[:oid,:int] := sql.bind(_mvc, "sys", "r", "v", 0);
r:bat[:oid,:int] := sql.bind(_mvc, "sys", "r", "r", 0);

# run path consistency
(ru:bat[:oid, :int], rv:bat[:oid, :int], rr:bat[:oid, :int]) := rcc8.pc(u, v, r);

Figure B.7: Script run_rcc8pc.mal

[ 9@0, 2, 1, 1 ]
[ 10@0, 2, 3, 38 ]
[ 11@0, 2, 4, 3 ]
[ 12@0, 3, 0, 2 ]
[ 13@0, 3, 1, 2 ]
[ 14@0, 3, 2, 14 ]
[ 15@0, 3, 4, 12 ]
[ 16@0, 4, 0, 3 ]
[ 17@0, 4, 1, 64 ]
[ 18@0, 4, 2, 3 ]
[ 19@0, 4, 3, 36 ]

The MAL program run_rcc8pc.mal, which is depicted in Figure B.7 loads module rcc8 and then
executes the path consistency algorithm.

B.5 Extensions to MonetDB

For the SQL implementation in MonetDB, which is described in Section 3.5.2, a new bitwise AND
aggregate function has been implemented for integer values. This was accomplished by extending
the existing aggr module of MonetDB in the spirit of sum/product aggregates. Except for integers,
the implementation takes care of other MonetDB primitive datatypes, such as byte, short, word,
and long, but it only handles input BATs of same type. The implementation of this aggregate
functions spans over the following files:

• ${MONETDB_SRC}/monetdb5/modules/kernel/aggr_be_bitand.mx

• ${MONETDB_SRC}/monetdb5/modules/kernel/aggr_bge_bitand.mx

• ${MONETDB_SRC}/sql/backends/monet5/bit_and/90_bitand.sql

The first two files implement an aggregate which computes the bitwise AND. The SQL file performs
the connection of the aggregate function in SQL level with its implementation in C. One can invoke
the bitwise AND aggregate function directly from SQL as bit_and(·).
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C. Efficient Algorithms for Checking the
Consistency of Chordal RCC-8 Networks

D4.2 An implementation of a temporal and spatial extension of RDF and SPARQL on top of
MonetDB - Phase II

50



Efficient Algorithms for Checking the
Consistency of Chordal RCC-8 Networks

Michael Sioutis1∗, Manolis Koubarakis1, and Jean-François Condotta2

1 National and Kapodistrian University of Athens, Greece
{sioutis,koubarak}@di.uoa.gr

2 Artois University, Arras, France
jfrancois.condotta@univ-artois.fr

We consider chordal RCC-8 networks and show that we can check their con-
sistency by enforcing partial path consistency with weak composition. We prove
this by using the fact that RCC-8 networks with relations from the maximal
tractable subsets Ĥ8, C8, and Q8 of RCC-8 have the patchwork property. The use
of partial path consistency has important practical consequences that we demon-
strate with the implementation of a reasoner which we call PyRCC85. This rea-
soner is developed by extending the state of the art reasoner PyRCC8, which we
also present and compare experimentally with other reasoners for RCC-8 (Renz’s
solver, GQR, and the reasoner utilized in PelletSpatial). Given an RCC-8 net-
work with only tractable RCC-8 relations, we show that it can be solved very
efficiently with PyRCC85 by making its underlying constraint graph chordal
and running path consistency on this sparse graph instead of the completion of
the given network. In the same way, partial path consistency can be used as the
consistency checking step in backtracking algorithms for networks with arbitrary
RCC-8 relations resulting in very improved pruning for sparse networks while
incurring a penalty for dense networks.

1 Introduction

Spatial reasoning is a major field of study in Artificial Intelligence; particularly
in Knowledge Representation. This field has gained a lot of attention during the
last few years as it extends to a plethora of areas and domains that include, but
are not limited to, ambient intelligence, dynamic GIS, cognitive robotics, and
spatiotemporal design [CR08,BGWH11,Haz12]. In this context, an emphasis has
been made on qualitative spatial reasoning which relies on qualitative abstrac-
tions of spatial aspects of the common-sense background knowledge, on which
our human perspective on the physical reality is based. The concise expressive-
ness of the qualitative approach provides a promising framework that further
boosts research and applications in the aforementioned areas and domains.

The Region Connection Calculus (RCC) is the dominant Artificial Intelli-
gence approach for representing and reasoning about topological relations [RCC92].
RCC can be used to describe spatial regions that are non-empty regular subsets
of some topological space by stating their topological relations to each other.

∗ Currently with Pierre and Marie Curie University, Paris, France.



Table 1: Definition of the various relations of RCC. Relations in bold are included
in RCC-8

Relation Description Definition

C(x, y) connects with primitive relation
DC(x, y) disconnected ¬C(x, y)
P (x, y) part ∀z[C(z, x)→ C(z, y)]

PP (x, y) proper part P (x, y) ∧ ¬P (y, x)
EQ(x, y) equals P (x, y) ∧ P (y, x)
O(x, y) overlaps ∃z[P (z, x) ∧ P (z, y)]

PO(x, y) partially overlaps O(x, y) ∧ ¬P (x, y) ∧ ¬P (y, x)
DR(x, y) discrete ¬O(x, y)

TPP(x, y) tangential proper part PP (x, y) ∧ ∃z[EC(z, x) ∧ EC(z, y)]
EC(x, y) externally connected C(x, y) ∧ ¬O(x, y)

NTPP(x, y) non-tangential proper part PP (x, y) ∧ ¬∃z[EC(z, x) ∧ EC(z, y)]
Pi(x, y) part inverse P (y, x)

PPi(x, y) proper part inverse PP (y, x)
TPPi(x, y) tangential proper part in-

verse
TPP (y, x)

NTPPi(x, y) non-tangential proper part
inverse

NTPP (y, x)

RCC is based on a single primitive dyadic relation between spatial regions: re-
lation “connects with”, usually denoted by C [Cla81]. The intended topological
interpretation of C(a, b), where a and b are regions, is that a connects with
b, if and only if their topological closures share a common point. This prim-
itive can be used to define many predicates and functions which capture in-
teresting and useful topological distinctions [Got94, Got96]. Table 1 shows the
definitions of the RCC relations in terms of the basic relation C. RCC-8 is
the constraint language formed by the following 8 binary topological relations
of RCC: disconnected (DC), externally connected (EC), equal (EQ), partially
overlapping (PO), tangential proper part (TPP), tangential proper part inverse
(TPPi), non-tangential proper part (NTPP), and non-tangential proper part
inverse (NTPPi). The RCC-8 relations are depicted in Figure 1.

The satisfiability problem in the RCC-8 framework is the reasoning problem
of deciding consistency of a set of disjunctive spatial formula Θ, i.e., whether
there is a spatial configuration where the relations between the regions is de-
scribed by Θ. The reasoning problem in RCC-8 is NP-hard in general [RN98].
However, there exist large maximal tractable subsets of RCC-8 which can be
used to make reasoning much more efficient even in the general NP-hard case.
These maximal tractable subsets of RCC-8 are the sets Ĥ8, C8, and Q8 [Ren99].

The state of the art qualitative spatial reasoners (QSRs) for RCC-8 [RN01,
GWW08, SS09] implement efficient algorithms to decide whether a given set
of RCC-8 relations between regions are consistent and infer new information
from them. For these two problems, all well-known reasoners consider complete
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Fig. 1: Two dimensional examples for the eight base relations of RCC-8

graphs, and use some form of path consistency with weak composition3 in the
case that we have tractable RCC-8 networks, and backtracking-based algorithms
for the general case. The task of inferring new information, in particular, can
be viewed as solving the all-pairs shortest paths problem; the solution is then
represented in a complete graph, which gives the inferred relations between all
pairs of spatial regions. In this paper, we do not deal with this inference problem
and concentrate only on the consistency checking problem of the input RCC-8
network by utilizing chordal graphs. We draw our motivation from the fact that
chordal graphs generally contain far fewer edges than their complete counter-
parts. In addition, many RCC-8 networks are not densely connected4 and, thus,
we would like to attain decomposability that preserves their sparseness as much
as possible instead of treating the network as a complete graph, which leads to
a cubic complexity in all cases. This is made possible by enforcing partial path
consistency which was originally introduced in [BSH99]. In summary, we make
the following contributions:

– We consider RCC-8 networks with chordal constraint graphs and show that
we can check their consistency by enforcing partial path consistency (PPC).
PPC was originally introduced for finite domain CSPs in [BSH99] and it was
most recently used in the case of Interval Algebra (IA) networks by [CC11].
PPC enforces path consistency on the constraint graph of a given constraint
satisfaction problem (CSP). These two previous applications of chordality
and partial path consistency consider convex finite-domain CSPs in [BSH99]
and pre-convex Interval Algebra networks in [CC11]. We show that the same
ideas can be applied to RCC-8 due to a recent result that shows that RCC-8
networks with relations from the maximal tractable subsets Ĥ8, C8, and Q8

of RCC-8 [Ren99] have the patchwork property [Hua12].

3 Some literature suggests the term algebraic closure, but this is equivalent to path
consistency with weak composition (denoted by the symbol �) [RL05], so we will use
this more traditional term throughout the paper.

4 The missing edges in an RCC-8 network implicitly represent universal relations.



– We demonstrate the practical applicability of our results with the imple-
mentation of a new reasoner, called PyRCC85. Given a network with only
tractable RCC-8 relations, PyRCC85 can solve it very efficiently by mak-
ing its underlying constraint graph chordal and running path consistency
on this sparse graph instead of the completion of the given network. In the
same way, it uses partial path consistency as a consistency checking step in
backtracking algorithms for networks with arbitrary RCC-8 relations result-
ing in very improved pruning for sparse networks while incurring a penalty
for dense networks.

– We make the case for a new generation of RCC-8 reasoners implemented
in Python, a general-purpose, interpreted high-level programming language
which enables rapid application development, and making use of advanced
Python environments, such as PyPy5, utilizing trace-based just-in-time (JIT)
compilation techniques [BCFR09, BCF+11]. We present such a reasoner,
called PyRCC8, and compare it to other well-known reasoners from the lit-
erature [RN01,GWW08,SS09]. PyRCC8 serves as the basis for PyRCC85,
and both reasoners are compared experimentally with each other.

The organization of this paper is as follows. Section 2 introduces the main no-
tions and terminology about constraint networks, various notions of consistency,
and discusses weak composition and algebraic closure. Section 3 introduces PPC
and applies it to chordal RCC-8 networks. Section 4 introduces PyRCC8, our
implementation of a state of the art reasoner for RCC-8. In Section 5 we evalu-
ate the reasoner PyRCC85 experimentally. Finally, in Section 6 we give a brief
overview of related work, and in Section 7 we conclude and give directions for
future research.

2 Preliminaries

In this section we define the concepts of constraint networks and their corre-
sponding constraint graphs, relation algebra, composition, weak composition,
algebraic closure (a-closure), and various notions of local consistency. More de-
tails can be found in [RN07].

2.1 Constraint Networks and Relation Algebra

Knowledge about entities or about the relationships between entities is often
given in the form of constraints. Given a set of m variables V = {x1, . . . , xm} over
a domain D, an n-ary constraint consists of an n-ary relation Ri ⊆ Dn and an n-
tuple of variables 〈xi1 , . . . , xin〉 , written Ri(xi1 , . . . , xin). For binary constraints,
we will also use the infix notation x1Rix2 . A (partial) instantiation f of variables
to values is a (partial) function from the set of variables V to the set of values
D. We say that an instantiation f satisfies the constraint Ri(xi1 , . . . , xin) if and
only if < f(xi1), . . . , f(xin) >∈ Ri.

5 http://pypy.org/



A CSP consists of a set of variables V over a domain D and a set of constraints
Θ. A solution of a CSP is an instantiation which satisfies all the constraints in
Θ. A CSP is consistent if it has a solution. In this paper we restrict ourselves to
binary CSPs, i.e., CSPs where only binary constraints are used. A binary CSP
can be represented by a constraint network which is a labelled digraph where
each node is labelled by a variable xi (or simply by the variable index i) and each
directed edge is labelled by a binary relation. We will use the notation Rij to
denote the relation constraining the variable pair 〈xi, xj〉. A constraint graph for
such a problem is an undirected graph where the nodes represent variables and
two nodes are linked to represent the existence of a constraint which involves
these variables. At most a single edge will join two nodes, even if they are related
by more than one constraint. By overloading notation, we also use Rij to denote
the constraint Rij(xi, xj) itself. If the domain of the variables is finite, CSPs can
be solved by backtracking over the ordered domains of the single variables. If
the domain of the variables is infinite, as is the case with RCC-8, backtracking
over the domain is not possible and other methods have to be applied. Infinite
domains is a central difference of spatial or temporal CSPs to normal CSPs. For
instance, there are infinitely many time points or temporal intervals on the time
line and infinitely many regions in a two or three dimensional space.

One way of dealing with infinite domains is using constraints over a finite set
of binary relations, by employing a relation algebra [LM94]. A relation algebra
consists of a set of binary relations which is closed under several operations
on relations and contains some particular relations. The operations are union
(∪), intersection (∩), composition (◦), complement (̄ ), and conversion (̆ ), where

conversion is defined as R̆
def
= {〈x, y〉 | 〈y, x〉 ∈ R} and composition is defined as

R ◦ S def
= {〈x, y〉 | ∃z : 〈x, z〉 ∈ R ∧ 〈z, y〉 ∈ S}. The particular binary relations

mentioned above are the empty relation ∅ which does not contain any pair, the
universal relation ∗ which contains all possible pairs, and the identity relation Id
which contains all pairs of identical elements in a set of constraints. We assume
that a set of constraints Θ contains one constraint for each pair of variables
involved in Θ, i.e., if no information is given about the relation holding between
two variables xi and xj , then the universal relation ∗ constrains the pair, i.e.,
Rij = ∗. Another assumption that we make is that whenever a constraint Rij

between xi and xj is in Θ, the converse relation constrains xj and xi , i.e., R̆ij

= Rji.

Of particular interest are relation algebras that are based on finite sets of
jointly exhaustive and pairwise disjoint (JEPD) relations. JEPD relations are
sometimes called atomic, basic, or base relations. We refer to them as base
relations. RCC-8 is the set of base relations of RCC. Since any two entities are
related by exactly one of the base relations, they can be used to represent definite
knowledge with respect to the given level of granularity. Indefinite knowledge can
be specified by unions of possible base relations. For these relation algebras, the
universal relation is the union over all base relations. Converse, complement,
intersection and union of relations can easily be obtained by performing the
corresponding set theoretic operations. Composition of base relations has to be



Table 2: Composition of RCC-8 relations
� DC EC PO TPP NTPP TPPi NTPPi EQ

DC *
DC,EC
PO,TPP
NTPP

DC,EC
PO,TPP
NTPP

DC,EC
PO,TPP
NTPP

DC,EC
PO,TPP
NTPP

DC DC DC

EC
DC,EC

PO,TPPi
NTPPi

DC,EC
PO,TPP
TPPi,EQ

DC,EC
PO,TPP
NTPP

EC,PO
TPP
NTPP

PO,TPP
NTPP DC,EC DC EC

PO
DC,EC

PO,TPPi
NTPPi

DC,EC
PO,TPPi
NTPPi

*
PO,TPP
NTPP

PO,TPP
NTPP

DC,EC
PO,TPPi
NTPPi

DC,EC
PO,TPPi
NTPPi

PO

TPP DC DC,EC
DC,EC
PO,TPP
NTPP

TPP
NTPP NTPP

DC,EC
PO,TPP
TPPi,EQ

DC,EC
PO,TPPi
NTPPi

TPP

NTPP DC DC
DC,EC
PO,TPP
NTPP

NTPP NTPP
DC,EC
PO,TPP
NTPP

* NTPP

TPPi
DC,EC

PO,TPPi
NTPPi

EC,PO
TPPi
NTPPi

PO,TPPi
NTPPi

PO,EQ
TPP
TPPi

PO,TPP
NTPP

TPPi
NTPPi NTPPi TPPi

NTPPi
DC,EC

PO TPPi
NTPPi

PO,TPPi
NTPPi

PO,TPPi
NTPPi

PO,TPPi
NTPPi

PO,TPP
NTPP
NTPPi

TPPi,EQ

NTPPi NTPPi NTPPi

EQ DC EC PO TPP NTPP TPPi NTPPi EQ

computed using the semantics of the relations. Composition of unions of base
relations can be obtained by computing only the union of the composition of
the base relations. Usually, compositions of the base relations are pre-computed
and stored in a composition table. The composition table for RCC-8 is shown in
Table 2.

2.2 Composition and Weak Composition

According to the definition of composition, we have to look at an infinite num-
ber of tuples in order to compute composition of base relations, which is clearly
not feasible. Fortunately, many domains such as points or intervals on a time
line are ordered or otherwise well-structured domains and composition can be
computed using the semantics of the relations. However, for domains such as
arbitrary spatial regions that are not well structured and where there is no com-
mon representation for the entities we consider, computing the true composition
is not feasible and composition has to be approximated by using weak compo-
sition [RL05]. Further, there exist compositions that cannot be expressed by
disjunctions of RCC-8 base relations [LY03,RL05]. Weak composition (�) of two
relations S and T for a set of base relations B is defined as the strongest relation

R ∈ 2B which contains S◦T , or formally, S�T def
= {Ri ∈ B | Ri∩(S◦T ) 6= ∅}. The

advantage of weak composition is that we stay within the given set of relations
R = 2B while applying the algebraic operators, as R is by definition closed under
weak composition, union, intersection, and converse. The composition operation
for RCC-8 captured by Table 2 is actually weak composition [RL05].



2.3 Path Consistency and Algebraic Closure

Because of the high complexity of deciding consistency and computing relations
entailed by a given CSP, different forms of local consistency and algorithms
for achieving local consistency have been introduced in the literature. When
solving a CSP, local consistency is used to prune the search space by eliminating
local inconsistencies. In some cases local consistency is even enough for deciding
consistency. The path consistency algorithm is one of the central methods to solve
constraint networks in qualitative spatial and temporal calculi. Path consistency
is implemented by introducing rules defining compositions and intersections of
supported relations. Path consistency propagates constraints in a network by
iteratively performing the following operation until a fixed point R is reached:

∀i, j, k Rij ← Rij ∩ (Rik ◦Rkj)

If Rij = ∅ for a pair (i, j) then R is inconsistent, otherwise R is path consistent.
When weak composition differs from composition, we cannot apply the path

consistency algorithm as it requires composition and not just weak composition.
We can, however, replace the composition operator in the path consistency al-
gorithm with the weak composition operator. The resulting algorithm is called
the algebraic closure or a-closure algorithm [LR04]. In the rest of the paper,
we prefer the equivalent term path consistency with weak composition which we
shorten to 5-path consistency when enforced on chordal constraint graphs. Sim-
ilarly, the backtracking algorithm that uses 5-path consistency as a subroutine
to solve the consistency problem for RCC8 networks (Section 3.3) is called 5-
Consistency and the reasoner which implements all these algorithms is called
PyRCC85.

Similarly to the PPC algorithm defined in [BSH99] which utilizes classical
path consistency [Mon74], 5-path consistency considers only triangles of nodes
in the chordal graph corresponding to a constraint network, and enforces partial
path consistency on these triangles. We will use the terms partial path consis-
tency and 5-path consistency interchangeably throughout this paper, since in
our case we enforce partial path consistency on the chordal constraint graph of
a given RCC-8 network.6

This completes our presentation of preliminaries. We now proceed with the main
results of the paper.

3 Solving Chordal RCC-8 Networks

We now start presenting the main contribution of this paper: how to solve chordal
RCC-8 networks efficiently and what impact this special case can have to solving
general RCC-8 networks.

6 We remind the reader that PPC enforces path consistency on the constraint graph
of a given CSP, which could be any graph in the general case.
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We start by introducing chordal graphs and networks, and partial path con-
sistency. The state of the art reasoners, including PyRCC8, consider complete
graphs when checking the consistency of an input network. The techniques of
this section will show how to make this task more efficient using 5-path con-
sistency if the underlying constraint graphs are chordal or by turning them into
chordal if they are not.

3.1 Chordal Graphs and Graph Triangulation

In this section we list some definitions and theorems from graph theory that are
essential in understanding the discussion to follow, and the new algorithms to be
presented in Section 3.3. The interested reader may find more results regarding
chordal graphs, and graph theory in general, in [Gol04].

Definition 1 Let G = (V,E) be an undirected graph. The following are well-
known concepts from graph theory:

– The neighborhood of a vertex v ∈ V is N(v) = {v′ 6= v | (v, v′) ∈ E}. The
neighborhood of a set of vertices S is N(S) =

⋃
s∈S N(s) \ S.

– If S ⊂ V is a set of vertices of G, the subgraph induced by S, denoted by
G(S), is the subgraph that has exactly the edges that appear in G over the
vertex set S.

– The vertex set of G is denoted by V (G).
– A subset of vertices S ⊆ V is a minimal separator iff G(V \ S) has at least

two connected components C1 and C2 such that N(V (C1)) = N(V (C2)) = S.
– If (v1, v2, . . . , vk, vk+1 = v1) with k > 3 is a cycle, then any edge on two

nonadjacent vertices vi, vj with 1 < j − i < k − 1 is a chord of this cycle.
– G is chordal or triangulated if every cycle of length greater than 3 has a

chord.
– A clique is a set of vertices which are pairwise adjacent. A clique is maximal

if it is not a subset of a larger clique.



– A vertex v ∈ V is simplicial if the set of its neighbors N(v) induces a clique,
i.e., ∀s, t ∈ V , if s, t ∈ N(v) then (s, t) ∈ E.

– Let d = (vn, . . . , v1) be an ordering of V . Also, let Gi denote the subgraph
of G induced by Vi = {v1, . . . , vi}; note that Gn = G. The ordering d is
a perfect elimination ordering of G if every vertex vi with n ≥ i ≥ 1 is a
simplicial vertex of the graph Gi.

The following theorem gives some well-known properties of chordal graphs [Gol04].

Theorem 1 Let G = (V,E) be an undirected chordal graph. The following state-
ments are equivalent and characterize G :

– G admits a perfect elimination ordering.
– Every minimal separator of G is a clique.
– There exists a tree T , called a clique tree of G, whose vertex set is the set

of maximal cliques of G and whose edge set is the set of minimal separators
of G.

The graph shown in Figure 2 consists of a cycle which is formed by the black
solid edges and two chords that correspond to the dotted edges. As for this part,
the graph is chordal. However, removing one dotted edge would result in a non-
chordal graph. Indeed, the other dotted edge with three black edges would form
a cycle of length four with no chords. Chordality checking can be done in linear
time, since testing whether an ordering is a perfect elimination ordering can be
performed in linear time with the lexicographic breadth-first search algorithm
or the maximum cardinality search algorithm [BBH02]. Both algorithms have
time complexity O(|V |+ |E|) for a given graph G = (V,E).

If a graph is not chordal, it can be made so by the addition of a set of
new edges, called fill edges. This process is usually called triangulation of the
given graph. The fill edges can be found by eliminating the vertices one by one
and connecting all vertices in the neighborhood of each eliminated vertex, thus
making it simplicial in the elimination graph. This process constructs a perfect
elimination ordering as a byproduct. If the graph was already chordal, following
its perfect elimination ordering during triangulation has the result that no fill
edges are added. A perfect elimination ordering for the chordal graph shown in
Figure 2 would be the ordering (B,D,E,C,A) of its set of vertices.

In general, it is desirable to achieve chordality with as few fill edges as pos-
sible. However, obtaining an optimum graph triangulation is known to be NP-
hard [BBH02]. For this purpose several advanced heuristic algorithms have been
developed to aid the approximation of a good triangulation [CM94]. In our im-
plementation of PyRCC85 discussed in Section 3.3 below, we use the simple
minimum degree heuristic to obtain an elimination ordering of the set of vertices
V . The minimum degree heuristic, whenever applied, chooses the vertex with the
smallest number of neighbors which consequently produces a clique of minimal
size.
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Fig. 3: Triangulation and decomposition of a network

In the rest of the paper, the concepts of chordal graphs introduced above will
be applied to the constraint graph of a given RCC-8 network. If such a graph is
not chordal, it will be made into one by introducing fill edges that correspond to
the universal relation. In what follows, we will often refer to universal relations as
trivial constraints, since they basically allow every RCC-8 configuration between
two spatial regions.

3.2 5-Path Consistency and Patchwork

We now show that 5-path consistency is sufficient to decide the consistency of
a network with relations from the maximal tractables subsets Ĥ8, C8, and Q8 of
RCC-8. The proof of our result makes use of the patchwork property of RCC-8
networks originally defined in [LM07] and more recently used in [Hua12]. This
property, which we define below, allows to “patch” a number of satisfiable RCC-
8 networks into a bigger network (their union) which is also satisfiable, assuming
that the networks “agree” on their common part.

Let C be a constraint network from a given CSP. We will use VC to refer to the
set of variables of C. If V is any set of variables, CV will be the constraint network
that results from C by keeping only the constraints which involve variables of
V.

Definition 2 We will say that a CSP has the patchwork property if for any
finite satisfiable constraint networks C and C ′ of the CSP such that CVC∩VC′ =
C ′VC∩VC′ , the constraint network C ∪ C ′ is satisfiable [Hua12].

Proposition 1 The three CSPs for path consistent Ĥ8, C8, and Q8 networks,
respectively, all have patchwork [Hua12].

Proposition 2 Let C be an RCC-8 constraint network with relations from Ĥ8, C8,
and Q8 on its edges. Let G be the chordal graph that results from triangulating
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Fig. 4: Pruning capacity of PC on a chordal constraint network and its completion

the associated constraint graph of C, and T a clique tree of G. Let C ′ denote the
constraint network corresponding to G (C ′ is C plus some universal relations
corresponding to fill edges). C is consistent if all the networks corresponding to
the nodes of T are path consistent.

Proof. Let T = (V,E), where V = {V1, V2, . . . , Vn} is the set of all maximal
cliques of G. We enforce path consistency on C ′. For every complete subgraph
Gi of G induced by Vi, path consistency can decide the satisfiability of the
corresponding subnetwork C ′i of C ′, because we have relations from the maximal

tractable subsets Ĥ8, C8, and Q8 of RCC-8. If all C ′i’s are satisfiable then for
any two networks C ′j and C ′k with 1 ≤ j < k ≤ n we have that (C ′j)VC′

j
∩VC′

k

=

(C ′k)VC′
j
∩VC′

k

. Thus, it follows from Proposition 1 that
⋃n

i=1 C
′
i = C ′ is satisfiable.

Since C ′ is at least as restrictive as C, C is satisfiable.

An example of Proposition 2 is shown in Figure 3. The constraint graph of
the initial network C is shown in (a). Then, we triangulate this graph by adding
edge (v2, v3) that is depicted as a dotted line in (b). Finally, we obtain a decom-
position of this graph that consists of maximal cliques {v1, v2, v3}, {v2, v3, v4},
and {v2, v4, v5}, and is separated by minimal separators {v2, v3} and {v2, v4}
(as viewed in the clique tree in (c)). Path consistency can be enforced upon
the corresponding subnetworks, and given that they are satisfiable, they can be
“patched” back together into a satisfiable network. This process can be viewed
as an appliance of reverse amalgamation. In this example, by enforcing path
consistency on the chordal constraint network we consider only 3 triangles of re-
lations. If we had opted to complete the constraint network depicted in Figure 3
and obtain the corresponding complete constraint graph of order 5, enforcing
path consistency would result in considering a total of 10 triangles of relations.



In general, the number of cycles of length 3, viz. triangles, in a complete graph G
of order n, denoted by c3(G), is given by the following mathematical expression:

c3(G) = n!/(6(n− 3)!)

Given the results in this section the question arises whether more pruning can
be obtained by completing a chordal graph. In Figure 4 we present an example
of the pruning capacity of path consistency on a chordal constraint network and
its completion. The chordal constraint network in Figure 4a is path consistent
with respect to its corresponding chordal graph. However, the addition of edge
(B,C) that completes the network, shown in Figure 4b, results in the pruning
of base relation EQ on edge (B,E). Thus, in the case of RCC-8 we cannot have
a result similar to the one by Bliek and Sam-Haroud that consider convex CSPs
and show that the pruning capacity of path consistency on the chordal graph is
equivalent to the pruning capacity of path consistency on the completed network
when we consider the common edges [BSH99].

Let us now present a simple example that considers an RCC-8 network con-
sisting of four RCC-8 relations that together form a cycle of length 4. We trian-
gulate the constraint graph corresponding to this network in two different ways,
one for each of the two diagonals of the graph serving as a chord. We enforce
path consistency on the obtained constraint graph for each of the two cases. This
gives rise to the following interesting result:

Corollary 1 Given the RCC-8 network shown below, suppose that K, L, M ,
and N are RCC-8 relations from the maximal tractable subsets Ĥ8, C8, and Q8

of RCC-8, and suppose that diagonals are the universal relation.

x yK

w

*

z

L M*

N

Then, the following holds:

– If the initial RCC-8 network is inconsistent, then using any of the two di-
agonals as a chord to triangulate the constraint graph and enforcing path
consistency on the obtained chordal graph, results in the assignment of the
empty relation ∅ to the corresponding diagonal edge.

The above result is a direct consequence of Proposition 2 as it demonstrates
how fill edges that correspond to universal relations contribute to the consistency
checking and inferring process in RCC-8 reasoning with chordal graphs.



5-Path-Consistency(C, G)
Input: A constraint network C and its chordal graph G
Output: True if constraint network C is path consistent, and False otherwise

1: Q ← {(i, j) | (i, j) ∈ E } // Initialize the queue
2: while Q is not empty do
3: select and delete an (i, j) from Q
4: foreach k such that (i, k), (k, j) ∈ E do
5: t ← Cik ∩ (Cij � Cjk )
6: if t 6= Cik then
7: if t = ∅ then return False
8: Cik ← t
9: Cki ← t̆

10: Q ← Q ∪ {(i, k)}
11: t ← Ckj ∩ (Cki � Cij )
12: if t 6= Ckj then
13: if t = ∅ then return False
14: Ckj ← t
15: Cjk ← t̆
16: Q ← Q ∪ {(k, j)}
17:return True

Fig. 5: 5-Path-Consistency Algorithm

We now present the implementation of a reasoner that makes use of chordal
graphs which we call PyRCC85.

3.3 5-Path Consistency and 5-Consistency

In this section, we give an algorithm to decide the consistency problem of a
RCC-8 network by using maximal tractable subsets Ĥ8, C8, and Q8 of RCC-8
and consistency checking restricted to triangles of the chordal network. This
algorithm will be presented in the context of our PyRCC85 reasoner.

First, we consider function 5-path consistency, shown in Figure 5, which
takes as parameters a network C, and its corresponding chordal constraint graph
G = (V,E) which is obtained by triangulating the constraint graph correspond-
ing to C. The objective of 5-path consistency is to enforce path consistency
to all triangles of relations in G. Notice that this will result in path consistent
complete networks that correspond to the nodes of a clique tree T of G. Thus,
it follows from Proposition 2 that 5-path consistency decides the consistency of
network C, assuming that C contains relations from maximal tractable subsets
Ĥ8, C8, and Q8 of RCC-8. If δ denotes the maximum degree of a vertex of G, we
have that for each arc (i, j) selected at line 3, there are at most δ vertices of G
corresponding to index k such that vi, vj , vk forms a triangle. Additionaly, there



5-Consistency(C, G)
Input: A constraint network C and its chordal graph G
Output: A refined constraint network C’ if C is satisfiable, and None otherwise

1: if not 5-Path-Consistency(C, G) then
2: return None
3: if no constraint can be split then
4: return C
5: else
6: choose unprocessed constraint xiRxj ;

split R into S1, ..., Sk ∈ S: S1 ∪ ... ∪ Sk = R
7: Values ← {Sl | 1 ≤ l ≤ k}
8: foreach V in Values do
9: replace xiRxj with xiV xj in C

10: result = 5-Consistency(C, G)
11: if result 6= None then
12: return result
13: return None

Fig. 6: Recursive 5-Consistency Algorithm

exist |E| arcs in the network and one can remove at most |B| values from any
relation that corresponds to an arc, where B refers to the set of base relations
of RCC-8. As a result, the time and space complexity of 5-path consistency is
O(δ · |E| · |B|) and O(|E|) respectively.

For the general case of RCC-8 networks, we have a backtracking algorithm,
called 5-Consistency, which is presented in Figure 6. The algorithm splits a
relation R into relations that belong to some tractable set of relations S (line
6). Then, each of these relations is instantiated accordingly to the constraint
network C (line 9) and the 5-path consistency algorithm is reapplied. Notice,
however that, except for the first step, the 5-path consistency algorithm only
has to be run for the paths that are possibly affected by each prior instantiation,
which takes Θ(δ · |B|) intersections and compositions. This detail is not included
in Figure 6.

PyRCC85 also offers an additional algorithm, which is the iterative counter-
part of the recursive chronological backtracking algorithm. The iterative algo-
rithm is shown in Figure 7. The recursive and iterative algorithms are function-
ally equivalent. However, the iterative algorithm can not suffer from a recursion
depth or a recursion stack limit, which is the case for recursion in many lan-
guages, such as C, C++, Python, and Java.



5-Consistency(C, G)
Input: A constraint network C and its chordal graph G
Output: A refined constraint network C’ if C is satisfiable, and None otherwise

1: Stack ← {} // Initialize stack
2: if not 5-Path-Consistency(C, G) then
3: return None
4: while 1 do
5: if no constraint can be split then
6: return C
7: else
8: choose unprocessed constraint xiRxj ;

split R into S1, ..., Sk ∈ S: S1 ∪ ... ∪ Sk = R
9: Values ← {Sl | 1 ≤ l ≤ k}

10: while 1 do
11: if not Values then
12: while Stack do
13: C, Values = Stack.pop()
14: if Values then
15: break
16: else
17: return None
18: V = Values.pop()
19: replace xiRxj with xiV xj in C
20: if 5-Path-Consistency(C, G) then
21: break
22: Stack.push(C, Values)
23:raise RuntimeError, Can’t happen

Fig. 7: Iterative 5-Consistency Algorithm

4 PyRCC8 - A state of the art reasoner for RCC-8

In this section we present PyRCC87, an open source, efficient reasoner for RCC-
8 written in Python, that has served as the basis for the reasoner for chordal
RCC-8 networks that we discussed in Section 3. PyRCC8 is implemented using
PyPy, a fast, compliant implementation of the Python 2 language. To the best of
our knowledge, PyRCC8 is the first implementation of a RCC-8 reasoner on top
of a trace-based JIT compiler. Previous implementations have used either static
compilers, e.g., Renz’s solver [RN01] and GQR [GWW08], or method-based JIT
compilers, e.g., the RCC-8 reasoning module of the description logic reasoner
PelletSpatial [SS09]. The advantage of trace-based JIT compilers is that they
can discover optimization opportunities in common dynamic execution paths,

7 http://pypi.python.org/pypi/PyRCC8/



that are not apparent to a static compiler or a method-based JIT compiler
[BCFR09,BCF+11].

PyRCC8 offers a path consistency algorithm for solving tractable RCC-8 net-
works and a backtracking-based algorithm for general networks. Both algorithms
draw on the original ideas of [RN01], but offer some more interesting features
that we discuss below.

The path consistency algorithm processes arcs in a strict FIFO manner. This
functionality is based on the implementation of a hybrid queue data structure
that comprises a double-ended queue and a set. This allows pushing, popping,
and membership checking of an arc to be achieved in O(1) time.

The path consistency algorithm can also handle weighted arcs according to
their restrictiveness. Most restrictive arcs are processed first because they restrict
other arcs more and, thus, render them less prone to be processed again. Two
weighting schemes are being used: (i) exact weighting of arcs [RN01], and (ii)
approximate weighting of arcs, using the approach by Van Beek and Manchak
[vBM96]. This functionality is based on the implementation of a priority queue
data structure that comprises a heap and a hash map. This allows pushing, and
popping of an arc to be achieved in O(log(n)) time, and membership checking of
an arc to be achieved in O(1) time.

Both our hybrid queue and priority queue data structure implementations are
more advanced than the queue data structures found in Renz’s solver, GQR, and
PelletSpatial (e.g., Renz’s solver uses a n× n matrix as a queue). Furthermore,
our path consistency algorithm processes only meaningful arcs, i.e., arcs that
do not correspond to the universal relation8, thus, doing also fewer consistency
checks.

Regarding concistency of general RCC-8 networks, PyRCC8 is the only rea-
soner we know that offers an iterative counterpart of the recursive backtracing
algorithm. Additionaly, PyRCC8 precomputes the converse of relations to avoid
time consuming and exhaustive repetition of converse computations for large
datasets.

Finally, regarding heuristics, the classic weight and cardinality heuristics
[vBM96] are implemented and used in the selection of sub-relations and the
ordering of variables. PyRCC8 offers static and dynamic reasoning as in [RN01]
and also considers heuristic criteria based on the scope (local or global) of con-
straints.

4.1 Comparing PyRCC8 to other reasoners

Since PyRCC8 is a new reasoner, we compared its performance with that of
Renz’s solver [RN01], GQR [GWW08] release 1418, and PelletSpatial [SS09] ver-
sion 0.1, with their best performing heuristics enabled. At this point we should
mention that PelletSpatial has no backtracking algorithm for general RCC-8
networks, and offers only a path consistency algorithm. Additionaly, it receives

8 The result of the composition of any relation with the universal relation is the
universal relation.
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Fig. 8: Comparison of different PC algorithms

as input spatial relations expressed in RDF/XML syntax of OWL2. Since Pel-
letSpatial proved to be highly inefficient and could not meet our expectations,
we left it out in most of our experimental comparisons.

The experiments were carried out on a computer with an Intel Xeon 4 Core
X3220 processor with a CPU frequency of 2.40 GHz, 8 GB RAM, and the Debian
Lenny x86 64 OS. Renz’s solver and GQR were compiled with gcc/g++ 4.4.3.
PelletSpatial was run with OpenJDK 6 build 19, which implements Java SE 6.
PyRCC8 was run with PyPy 1.8, which implements Python 2.7.2. Only one of
the CPU cores was used for the experiments.

Path Consistency. The performance of the path consistency algorithm is crucial
for the overall performance of a qualitative reasoner, since path consistency can
be used to solve tractable networks, can be run as a preprocessing step, and
as the consistency checking step of any backtracking algorithm. For our first
experiment, we compared PyRCC8’s path consistency implementation to that
of Renz’s solver and GQR. We considered network sizes between 1000 and 9000
nodes. For each size, 30 networks were generated using all RCC-8 relations with
Renz’s random instance generator [RN01]. Additionaly, networks were generated
with an average degree (the number of non-universal constraints involving a
node in average) of 9.5, because this degree belongs to the phase transition of
RCC-8 relations for randomly generated RCC-8 networks [RN01], and, hence,
guarantees hard and more time consuming, in terms of solubility, instances for
the path consistency algorithm. The results of this experiment are shown in
Figure 8. The corresponding graph shows that PyRCC8 outperforms GQR and
Renz’s solver for path consistency checking. In fact, as constraint networks grow
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Fig. 9: Comparison of different PC algorithms using the admingeo dataset

larger, PyRCC8 becomes about 3 times faster than GQR and steadily opens the
gap with Renz’s solver.

For our second experiment we compared PyRCC8’s path consistency im-
plementation to that of Renz’s solver, GQR, and PelletSpatial, using a dataset
which encodes the administrative geography of Great Britain using RCC-8 [GDH08].
We call this dataset admingeo in what follows. The admingeo dataset is a real
dataset published by Ordnance Survey and consists of RCC-8 base relations
between geographic entities in Great Britain.9 Since the data is encoded in
RDF/XML syntax of OWL2, we had to translate it to match the input for-
mat of PyRCC8, Renz’s solver, and GQR. The admingeo dataset is very large
and very sparse, posing a challenge of scalability to any path consistency algo-
rithm implementation. A nice visualisation of the admingeo dataset where its
sparseness becomes apparent is depicted in Figure 10.10 The admingeo dataset
comprises a consistent constraint network of over 10000 nodes and nearly 80000
relations. For our experiment we created constraint networks of different size, by
taking into account a minimum number of relations from the initial dataset and
increasing it at every next step. Of course, the whole dataset was used as a final
step. The results of the path consistency experiment using the admingeo dataset

9 http://www.ordnancesurvey.co.uk/ontology/AdministrativeGeography/v2.0/

AdministrativeGeography.rdf
10 We used Gephi [BHJ09] to create this visualisation. The visualisation can be viewed

in full color in the following link: https://www.dropbox.com/s/879iaghq4qglth4/
OS.pdf. Colors outline the community structure of the network, i.e., colors signify
groups of nodes with dense connections within them.



Fig. 10: A visualisation of the admingeo dataset

are shown in Figure 9. Again, PyRCC8 outperforms significantly all other rea-
soners, with the exception of Renz’s solver when the whole dataset is considered
at the final step, where both reasoners are very close to each other. At the final
step, the existence of some identity relations in the network, cause the queue
used by PyRCC8 to expand dramatically to retain candidate arcs for revision.
Therefore, the advantage of starting with a compact queue of meaningful arcs
disappears. We believe this is also the case with GQR. Notice that there is no
experimental results for PelletSpatial after the step where 60000 relations were
considered. At that point, PelletSpatial went into swap after having run for over
30 hours.

Since the admingeo dataset comprises a consistent constraint network, we
also tried to impose an inconsistency in the dataset and perform our experiment
again for all the aforementioned reasoners. Due to the sparseness of the constraint
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network obtained from the dataset and the fact that it consists solely of RCC-
8 base relations, the imposed inconsistencies could not propagate sufficiently
and thinned out into trivial local inconsistencies almost immediately. In fact,
every reasoner was able to detect the inconsistency very fast, during a first
iteration of the queue of arcs which represent relations. Additionally, the fact
that every reasoner was able to detect the inconsistency during a first iteration of
the queue of arcs, deems the performance of every reasoner strongly dependent
on the position of the arc in the queue that exposes the inconcistency, and, thus,
renders any obtained results misleading and uninteresting.

To the best of our knowledge, this is the first set of experiments with RCC-8
reasoners where a real and big dataset has been used. We hope that using real
and big datasets to evaluate the performance qualitative spatial reasoners will
continue given the interest of the community11 and the use of qualitative spatial
relations in publicly available datasets today, e.g., in linked data [KKK+11,
Ope12]. In Section 5.1 later, we try to tackle a dataset which is even bigger than
admingeo.

Consistency checking. To assess the speed of the backtracking search of PyRCC8,
we considered network sizes between 100 and 900 nodes. For each size, 30 net-
works were generated using all RCC-8 relations with Renz’s random instance
generator [RN01]. Again, networks were generated with an average degree of

11 See the focus of the Workshop “Benchmarks and Applications of Spatial
Reasoning” at IJCAI 2011 (http://reasoner.informatik.uni-freiburg.de/
ijcai11-bench/).
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9.5, to ensure the hardness of our instances. The results of the consistency ex-
periment are shown in Figure 11. PyRCC8 outperforms GQR and comes close
to the performance of the backtracking algorithm in Renz’s solver. The latter
result is due to more abstract coding of heuristics in PyRCC8 as opposed to
Renz’s solver, which affects the execution speed.

The excellent experimental results of PyRCC8 presented above demonstrate
the advantages of this particular implementation, but also the potential benefits
of trace-based JITs over static compilers. Figure 11 shows that as constraint
networks grow larger, the trace-based JIT kicks in and makes PyRCC8 behave
in a more scalable and robust manner as opposed to the statically compiled
reasoners.

5 Experimental Results

In this section, we compare the performance of PyRCC85 with that of PyRCC8
performing experiments that target both path concistency and consistency check-
ing implementations. We do not use other reasoners in our experiments, because
our main point is to show how partial path consistency is compared to path
consistency in the context of RCC-8. For this purpose, having two implementa-
tions that are very similar in their core components, is not only sufficient, but
necessary for avoiding confusion and clearly comparing an aproach using trian-
gulations of constraint graphs with an approach using complete graphs. Both
reasoners were configured for best performance. The experiments were carried
out on the same machine as described in Section 4.1, and both Python imple-
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Fig. 14: Comparison diagrams of PC algorithms

mentations were run with PyPy 1.8. Only one of the CPU cores was used for
the experiments.

Path Consistency. In this case, we used the admingeo dataset presented ear-
lier [GDH08]. We performed the experiment in the same way as described in
Section 4.1. The results of the path consistency experiment using the (consis-
tent) admingeo dataset are shown in Figure 12.

The path consistency implementation of PyRCC85, viz.5-path consistency,
outperforms the path consistency implementation of PyRCC8 by a very large
margin. When the whole dataset is considered at the final step, PyRCC8 de-
cides the consistency of the constraint network in about 5 hours on the Lenny
machine, whereas PyRCC85 requires less than 40 minutes for the same task. In
fact, PyRCC85 runs significantly faster than PyRCC8 for all different network
sizes. This comes as no surprise. Completing a network of more than 10000 nodes
results in about 50 million edges that PyRCC8 has to consider. On the other
hand, triangulating the network with an initial count of nearly 80000 edges, re-



sulted in a total of only 4 million edges for PyRCC85 to consider. A detailed
diagrammatic comparison on the number of edges for initial, chordal, and com-
plete graph configurations of admingeo dataset instances as a function of the
considered number of nodes is shown in Figure 13. The results shown in Fig-
ure 12 are also comparable to the ones shown in Figure 9 of Section 4.1, since the
same dataset is used and, thus, the performance of PyRCC8 remains unchanged.
It follows that for this particular dataset, PyRCC85 not only significantly out-
performs PyRCC8, but the state of the art reasoners in total too.

The number of edges in a network inevitably affects the number of revisions of
arcs that different path consistency algorithm implementations have to perform.
A diagrammatic comparison on the number of arcs that each algorithm processes
is shown in Figure 14a. The result is again overwhelmingly in favor of PyRCC85.
When the whole dataset is considered at the final step, PyRCC8 revises about
40 million arcs, whereas PyRCC85 revises only 2.5 million arcs. Every revision
of an arc results in several composition and intersection operations that we will
refer to as consistency checks. A diagrammatic comparison on the number of
consistency checks that each algorithm performs is shown in Figure 14b. At
the final step, PyRCC8 performs around 500 billion consistency checks, whereas
PyRCC85 performs only 10 billion consistency checks.

A summary of the results that is based on the average of the different param-
eters used for comparing our PC algorithms for all steps follows. The percentage
decrease is shown in the last column.

PyRCC8 PyRCC85 %
CPU time 1825.129s 289.203s 84.15%

revised arcs 4834133.78 373080.28 92.28%
consistency checks 3.606e+ 10 1.181e+ 09 96.72%

It is clear that for large sparse spatial networks, graph triangulation offers a
great advantage over graph completion and, thus, 5-path consistency is the bet-
ter choice. Similar results are obtained for randomly generated sparse networks.
However, path consistency implementations of the state of the art reasoners
deal very easily with randomly generated instances, even if they are in the phase
transition region, as the ones used in Section 4.1. We considered the admingeo
dataset to be a much more interesting case, since it proved to really strain the
different implementations.

Consistency checking. To assess the speed of the backtracking search algorithms
we used for consistency checking, we considered network sizes of 100 nodes for
an average degree d varying from 3 to 15 with a step of 0.5. For each series, 300
networks were generated using all RCC-8 relations with Renz’s random instance
generator [RN01]. The hardest instances are located in an interval where the
average degree ranges from 8 to 11 and the phase transition occurs. The main
objective of our experimentation is to compare the efficiency of the different
consistency algorithms. For this purpose we use the same parameters as with
the path consistency experiment, that is, CPU time, number of revised arcs,
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and number of consistency checks. The results of the consistency experiment
based on the CPU time of execution are shown in Figure 15.

PyRCC85 outperforms PyRCC8 as long as relatively sparse constraint net-
works are considered. Significant gains in the performance of PyRCC85 are
noted in the phase transition region where the hardest and more time con-
suming, in terms of solubility, instances appear. However, the performance of
PyRCC85 deteriorates when constraint networks of average degree d > 12 are
considered. RCC-8 networks with an average degree d > 12 are over-constrained,
dense, and soluble with a very low probability, thus, they are often easy to de-
cide [RN01]. As networks become more dense, PyRCC85 tries to simulate the
behavior of PyRCC8, by considering more and more initial edges that result to
a much denser chordal graph as shown in Figure 16. This has a direct impact on
PyRCC85’s computational complexity. Let us explain why.

A chordal constraint graph in PyRCC85 is represented as a dictionary, an
unordered set of key:value pairs where every key is a vertex of the graph and
its value is the set of its neighbors. When an arc (i, j) is processed we compute
the intersection between vertex’s i and vertex’s j sets of neighbors to obtain
all triangles of relations that arc (i, j) is part of. In the average case, the time
complexity for this operation is O(min(|N(i)|, |N(j)|). It is clear that a big
average degree of the initial network results in a bigger average degree of its
chordal constraint graph after triangulation and, thus, time complexity rises. Of
course, one could precompute and store all triangles of relations, but for large
datasets this would lead to large space requirements. Though it may be argued
that the time performance of the 5-path consistency algorithm is related to
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the details of our implementation, intuitively, a cost in restricting consistency
checking to the corresponding chordal graph of an RCC-8 network is inevitable,
and must be paid at some point regardless of implementation design.

We continue our analysis with a diagrammatic comparison on the number
of arcs that each consistency algorithm processes, shown in Figure 17a. Again,
the difference in the performance of PyRCC85 and PyRCC8 is bigger in the
phase transition region. Finally, since every revision of an arc results in several
consistency checks, similarly with the path consistency experiment, we provide
a diagrammatic comparison on the number of consistency checks that each al-
gorithm performs, shown in Figure 17b. A summary of the results that is based
on the average of the different parameters used for our comparisons for all steps
follows. The percentage decrease is shown in the last column.

PyRCC8 PyRCC85 %
CPU time 0.524s 0.509s 2.80%

revised arcs 1300.681 801.204 38.40%
consistency checks 105751.173 74864.985 29.21%
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One would expect that since our consistency algorithm implementations are
strongly dependent on the underlying path consistency algorithms, performance
results of our consistency experiment would reflect those of our path consistency
experiment. This is true up to the point when dense graphs of relative big size are
considered. Our experimental results show that the performance of PyRCC85
is deteriorating, with respect to the performance of PyRCC8, when dealing with
dense graphs. However, overall the performance of PyRCC85 is much better,
especially for network instances in the phase transition region that are the most
difficult to solve. We used the maximal tractable subset Ĥ8 of RCC-8 as a split
set (line 6 in Figure 6), since it best decomposes RCC-8 relations [RN01]. The
performance gain in the phase transition region would be more apparent if we
had opted for a tractable set of relations with a bigger average branching factor
(e.g., the set of RCC-8 base relations B) [RN99], because this would make input
RCC-8 networks even more difficult to solve in the phase transition region.

As a second experiment for assessing the speed of the two backtracking al-
gorithms, we considered hard instances with network sizes of 30 nodes for an
average degree d varying from 5 to 17 with a step of 0.5. For each series, 300 net-
works were generated using only RCC-8 relations from the NP8 class of relations
with Renz’s random instance generator [RN01]. In the case of NP8 relations the
hardest instances are located in an interval where the average degree ranges from
10 to 13 and the phase transition occurs. The results of this experiment based
on the CPU time of execution are shown in Figure 18. An interesting immediate
observation is that in this experiment PyRCC85 performs better than PyRCC8
for all series of varying degrees, and the performance of PyRCC85 does not
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Fig. 20: Comparison diagrams of PC algorithms

deteriorate when dense networks are considered. We provide the following two
explanations for this behavior: (i) the network sizes considered are small and
don’t allow for a big average degree12 of the chordal constraint graphs which are
obtained after triangulating the initial networks, and (ii) network instances with
only NP8 relations become over-constrained at a mush faster rate than normal
RCC-8 network instances and, thus, pose nearly no challenge at all for either
reasoner when they become dense. Figure 13 provides a detailed diagrammatic
comparison on the number of edges for initial, chordal, and complete graph
configurations of hard instances as a function of the average degree of initial
networks.

A diagrammatic comparison on the number of arcs that each consistency
algorithm processes is shown in Figure 20a. Finally, since every revision of an
arc results in several consistency checks, similarly with the path consistency

12 We remind the reader that the bigger the average degree of a graph, the more
complexity is imposed on PyRCC85 as explained in the previous experiment where
network instances from all RCC-8 relations where considered.



experiment, we provide a diagrammatic comparison on the number of consistency
checks that each algorithm performs, shown in Figure 20b.

A summary of the results that is based on the average of the different pa-
rameters used for our comparisons for all steps follows. The percentage decrease
is shown in the last column.

PyRCC8 PyRCC85 %
CPU time 0.516s 0.438s 15.11%

revised arcs 867.480 650.020 25.07%
consistency checks 37165.678 23061.819 37.95%

This experiment demonstrates that the use of 5-path consistency can be
also extremely beneficial for hard instaces of RCC-8 networks, i.e., networks that
consist of the NP8 class of relations of RCC-8. Although it is safe to assume that
hard instances do not correspond to real case scenarios, they are often used to
test the efficiency of algorithm implementations. Again, the maximal tractable
subset Ĥ8 of RCC-8 was our split set of choice.

5.1 Pushing the Envelope in RCC-8 Reasoning

We employed the GADM13 dataset, a spatial database of the location of the
world’s administrative areas, to perform some experiments. The GADM dataset
consists of 276728 regions and 590865 RCC-8 relations. Completing such a net-
work results in about 40 billion edges. As expected, none of the state of the art
RCC-8 reasoners [RN01, GWW08, SS09], including PyRCC8 and PyRCC85,
could tackle this dataset. Specifically, GQR and Renz’s solver cannot reason
with more than 36000 and 32000 spatial regions respectively, as they produce
memory allocation errors. We did not test the dataset against PelletSpatial, but
given the poor results with the far smaller admingeo dataset described in Sec-
tion 4.1, it was deemed unnecessary. Then, we created a small subset of the
GADM dataset by considering only the 5% of its relations. This resulted in a
dataset of 38000 spatial regions and 31000 relations. We managed to test both
PyRCC8 and PyRCC85 against this dataset. Given the sparseness of the net-
work, PyRCC8 was able to decide its satisfiability in approximately 106 seconds,
whereas PyRCC85 required only around 16 seconds.

In light of the above experiment, the question remains whether it is possible
to reason with such large datasets using the known approaches in spatial rea-
soning and the state of the art reasoning tools. We believe that in order to make
progress, we have to go beyond current implementations and consider alternative
techniques, e.g., based on multicore CPUs or clusters of computers. In our work,
we are currently exploring the use of systems like Pregel [MAB+10] for scalable
and fault-tolerant graph computations over clusters of commodity machines.
We consider chordal graphs as the graph represention of choice for constructing
network decompositions that could be useful for the aforementioned techniques.

13 http://gadm.geovocab.org/



6 Related Work

The previous sections have already discussed a lot of related work in the area of
RCC-8 and compared our work with existing RCC-8 reasoners. In this section,
we discuss some more published papers that relate to other aspects of our work.

Bliek and Sam-Haroud were the first to study chordal graphs in the context of
finite domain CSPs in [BSH99]. They show that for a convex CSP with graph G,
strong path consistency is equivalent to strong path consistency computed only
on the completion of G with the arcs that make it chordal. Similarly, Chmeiss
and Condotta use partial path consistency to decide the consistency of pre-
convex Interval Algebra networks [CC11]. Finally, chordal graphs have also been
used for solving networks of temporal difference constraints [XC03,PdWvdK08,
PdWvdK12]. All of the above works exhibit many similarities in terms of the
data structures and triangulation algorithms used for chordal graphs.

The proof techniques that we used in Section 3.2 are related to a number of
papers that have appeared in the literature. In [LW06], Li et al. show that RCC-8
binary constraint networks can be consistently one-shot extended. In [LKRL08],
various ways of combining binary constraint networks in qualitative reasoning
are discussed. In [LHR09], Li et al. speed up consistency checking in sparse
atomic Interval Algebra networks, by recursively decomposing the networks in
a divide-and-conquer manner and eliminating the need for examining triangles
across subnetworks when enforcing path consistency. In [BW11], Bodirsky et al.
introduce the notion of tree decomposition for constraint networks, and define
the amalgamation property for atomic RCC-8 networks that allows satisfiable
subnetworks to be glued together in a tree-like manner resulting in a satisfiable
network. In [Hua12], Huang shows that the patchwork property, in the presence
of compactness, holds for Interval Algebra and RCC-8 networks, for all maximal
tractable subsets of the respective calculi, thus, significantly stregthening all
previous results regarding the Interval Algebra, RCC-8, and their fragments and
extensions.

7 Conclusion and Future Work

In this paper we introduced 5-path consistency for RCC-8 networks. Based on
the patchwork property defined in [Hua12], we showed that 5-path consistency
is sufficient to decide the consistency problem for the maximal tractable subsets
Ĥ8, C8, and Q8 of RCC-8. Further, we gave algorithms to solve networks of
RCC-8 and presented extensive experimental results on both real and random
network instances of RCC-8 accompanied by a detailed summary. Finally, we
showed that in the case of RCC-8 we cannot have a result similar to the one by
Bliek and Sam-Haroud that consider convex CSPs and show that the pruning
capacity of path consistency on the chordal graph is equivalent to the pruning
capacity of path consistency on the completed network when we consider the
common edges [BSH99].

Future work consists of using other methods of triangulation and comparing
the behavior of our algorithm for these different methods. We consider chordal



graphs as the graph represention of choice for constructing network decompo-
sitions, and we will explore applications of this representation with distributed
systems such as Pregel [MAB+10]. We would also like to study solving spa-
tial networks incrementally in the way of [PdWYS10]. Further, we will try to
find subsets of RCC-8 where 5-path consistency can be used to derive minimal
RCC-8 networks.

As a final note, it was stated in Section 2 that RCC-8 networks are encoded
as CSPs. Thus, we would like to bring RCC-8 reasoning closer to traditional
constraint programming notions. For example, since path consistency is one of
the central methods to solve constraint networks in RCC-8, we could explore
the use of singleton local consistencies [PSW00] in the context of qualitative
spatial reasoning. Additionally, it would be interesting to introduce soft con-
straints [Bar02] in qualitative constraint networks. Finally, we will research on
how our techniques can benefit from the existence of implicit constraints as
recently introduced in [Ren12].
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ABSTRACT
We extend RDF with the ability to represent property val-
ues that exist, but are unknown or partially known, using
constraints. Following ideas from the incomplete informa-
tion literature, we develop a semantics for this extension of
RDF, called RDFi, and study SPARQL query evaluation in
this framework.

1. INTRODUCTION
Incomplete information has been studied in-depth in rela-

tional databases [12, 6] and knowledge representation. It is
also an important issue in Semantic Web frameworks such as
RDF, description logics, and OWL 2 especially given that all
these systems rely on the Open World Assumption (OWA).
Making the OWA means that we cannot capture negative
information implicitly, i.e., if a formula φ is not entailed by
our knowledge base, we cannot assume its negation as in the
Closed World Assumption (CWA).

Application knowledge captured by databases and knowl-
edge bases is often incomplete, thus the OWA is a useful as-
sumption to make. In general, the richer an application do-
main is, the more possible it is that a framework based on in-
complete information will be required. Incomplete informa-
tion can also arise even if we start from complete databases,
e.g., in relational view updates, data integration, data ex-
change, etc., thus the detailed study of incomplete informa-
tion has been a recurring theme in the literature throughout
the years.

In the context of the Web, incomplete information has re-
cently been studied in detail for XML [2, 5]. As Semantic
Web technologies achieve maturity and gain acceptance in
a wide variety of application domains through the creation
of ontologies and linked data pools, we expect the study of
issues related to incomplete information to gain more atten-
tion in the Semantic Web community as well. There have
been some recent papers that confirm our expectations.

[9] introduces the concept of anonymous timestamps in
general temporal RDF graphs, i.e., graphs containing quads
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of the form (s, p, o)[t] where t is a timestamp (a natural num-
ber) or an anonymous timestamp x stating that the triple
(s, p, o) is valid in some unknown time point x. [11] subse-
quently extends the concept of general temporal RDF graphs
of [9] so that one is allowed to express temporal constraints
involving anonymous timestamps using a formula φ which
is a conjunction of order constraints x1 OP x2 where OP is
an arithmetic comparison operator such as <, ≤, etc. [11]
calls c-temporal graphs the resulting pairs (G,φ) where G
is a general temporal RDF graph and φ is a conjunction of
constraints. [11] defines a semantics for c-temporal graphs
and studies the relevant problem of entailment.

More recently, [4] examines the question of whether
SPARQL is an appropriate language for RDF given the
OWA typically associated with the framework. It defines
a certain answer semantics for SPARQL query evaluation
based on well-known ideas from incomplete information re-
search. According to this semantics, if G is an RDF graph
then evaluating a SPARQL query q over G is defined as
evaluating q over all graphs H ⊇ G that are possible ex-
tensions of G according to the OWA, and then taking the
intersection of all answers. [4] shows that if we evaluate a
monotone graph pattern (e.g., one using only the operators
AND, UNION, and FILTER) using the well-known W3C
semantics, we get the same result we would get if we used
the certain answer semantics. The converse also holds, thus
monotone SPARQL graph patterns are exactly the ones that
have this nice property. However, OPTIONAL (OPT) is not
a monotone operator and the two semantics do not coincide
for it. [4] defines the notion of weak monotonicity that ap-
pears to capture the intuition behind OPT, and shows that
a SPARQL query q is weakly monotone if and only if eval-
uating q under the W3C semantics gives the same result as
evaluating q under a new semantics appropriate for weakly
monotone queries. Finally, [4] shows that the fragment of
SPARQL consisting of the well-designed graph patterns de-
fined originally in [26] is weakly monotone.

1.1 Contributions
In this paper we continue the line of research started by [9,

11, 4] and study in a general way an important kind of in-
complete information that has so far been ignored in the
context of RDF. Our contributions are the following.

First, we extend RDF with the ability to define a new kind
of literals for each datatype. These literals will be called e-
literals (“e” comes from the word “existential”) and can be
used to represent values of properties that exist but are un-
known or partially known. Such information is abundant



in recent applications where RDF is being used (e.g., sen-
sor networks, the modeling of geospatial information, etc.).
In the proposed extension of RDF, called RDFi (where “i”
stands for“incomplete”), e-literals are allowed to appear only
in the object position of triples.

Previous research on incomplete information in databases
and knowledge representation has shown that in many appli-
cations, having the ability to state constraints about values
that are only partially known is a very desirable feature and
leads to the development of very expressive formalisms [6,
15]. In the spirit of this tradition, RDFi allows partial infor-
mation regarding property values represented by e-literals
to be expressed by a quantifier-free formula of a first-order
constraint language L. Thus, RDFi extends the concept of
an RDF graph to the concept of an RDFi database which
is a pair (G,φ) where G is an RDF graph possibly contain-
ing triples with e-literals in their object positions, and φ is a
quantifier-free formula of L. Our recent workshop paper [22]
motivates the need for introducing RDFi by concentrating
on the representation of incomplete spatial knowledge.

Following ideas from the incomplete information litera-
ture [12, 6], we develop a semantics for RDFi databases and
SPARQL query evaluation. The semantics defines the set
of possible RDF graphs corresponding to an RDFi database
and the fundamental concept of certain answer for SPARQL
query evaluation over an RDFi database. We transfer the
well-known concept of representation system from [12] to the
case of RDFi, and show that CONSTRUCT queries with-
out blank nodes in their templates and using only operators
AND, UNION, and FILTER or the restricted fragment of
graph patterns corresponding to the well-designed patterns
of [4] can be used to define a representation system for RDFi.
Our results for the monotonicity of CONSTRUCT queries
(even in the case of well-designed patterns that contain oper-
ator OPT) indicate their importance and sets an interesting
subject to explore in theoretical treatments of RDF.

We define the fundamental concept of certain answer to
SPARQL queries over RDFi databases and present an algo-
rithm for its computation. Finally, we present preliminary
complexity results for computing certain answers by consid-
ering equality, temporal, and spatial constraint languages
L and the class of CONSTRUCT queries of our represen-
tation system. Our results show that the data complex-
ity of evaluating a query of this class over RDFi databases
increases from LOGSPACE (the upper bound for evaluat-
ing queries from this class over RDF graphs [26]) to coNP-
complete for the case of equality and temporal constraints.
This result is in line with similar complexity results for
querying incomplete information in relational databases [6,
14]. The same coNP-completeness bound is shown for the
case of spatial constraints on rectangles in Q2 [14]. For topo-
logical constraints over more general spatial regions (regu-
lar, closed subsets of Q2), the best upper bound that we
can show is EXPTIME. To the best of our knowledge, it is
an open problem how to achieve better complexity results
in this case. The complexity of the closely related prob-
lem of SPARQL query evaluation over RDF graphs (e.g.,
as manifested in geospatial extensions stSPARQL [18] and
GeoSPARQL [23]) has not been investigated so far in any
detail, and it remains an open problem as well.

The organization of the paper is as follows. Section 2
presents the properties that we expect constraint languages
to have so that they can be used in RDFi. In addition, it

defines some useful constraint languages that will be used
in the paper. Section 3 introduces RDFi and then Section 4
defines its semantics. Section 5 defines the evaluation of
SPARQL queries over RDFi databases. Section 6 presents
fragments of SPARQL that can be used to define a repre-
sentation system for RDFi. Section 7 gives an algorithm
for computing the certain answer for SPARQL queries over
RDFi databases and presents our complexity results. Sec-
tions 8 and 9 discuss related and future work respectively.
Last, the Appendix contains the complete proofs of the re-
sults established in this paper.

2. CONSTRAINT LANGUAGES
We will consider many-sorted first-order languages, struc-

tures, and theories. Every language L will be interpreted
over a fixed structure, called the intended structure, which
will be denoted by ML. If ML is a structure then Th(ML)
will denote the theory of ML, i.e., the set of sentences of L
that are true in ML. For every language L, we will distin-
guish a class of quantifier free formulae called L-constraints.
The atomic formulae of L will be included in the class
of L-constraints. There will also be two distinguished L-
constraints true and false with obvious semantics.

Every first-order language L we consider has a distin-
guished equality predicate, denoted by EQ, with the stan-
dard semantics. The class of L-constraints is assumed to:
a) contain all formulae t1 EQ t2 where t1, t2 are terms of
L, and b) be weakly closed under negation, i.e., the negation
of every L-constraint is equivalent to a disjunction of L-
constraints. This property is needed in Section 7 where the
certain answer to a SPARQL query over an RDFi database
is computed.

Section A of the Appendix defines formally various con-
straint languages that allow us to explore the scope of mod-
eling possibilities that RDFi offers. These languages are
ECL, diPCL, dePCL, PCL, TCL and RCL. ECL is the first
order language of equality constraints of the form x EQ y
and x EQ c (where x, y are variables and c is a constant)
interpreted over an infinite domain [6]. When used in RDFi,
this language allows us to extend RDF with the ability to
represent “marked nulls” as in classical relational databases
[12]. The languages diPCL and dePCL are the first or-
der languages of temporal difference constraints of the form
x − y ≤ c interpreted over the integers (diPCL) or the ra-
tionals (dePCL) [14]. These are constraint languages that
allow RDFi to represent incomplete temporal information
as in [9, 11] and older works such as [16]. PCL, TCL and
RCL are spatial constraint languages and are defined in de-
tail below. PCL is the language that we have used in our
introductory paper [22] and we will also use it in the exam-
ples of this paper. PCL, TCL and RCL will be referred to in
Section 8 where the power of RDFi for geospatial modeling
is compared with other modeling frameworks.

2.1 The Languages PCL, TCL, and RCL
The language PCL (Polygon Constraint Language) allows

us to represent topological properties of non-empty, regu-
lar closed subsets of Q2 (we call them regions). PCL is
a first-order language with the following 6 binary predicate
symbols corresponding to the topological relations of RCC-8
calculus [28]: DC,EC,PO,EQ,TPP, and NTPP. The con-
stant symbols of PCL represent polygons in Q2. We will
write these constants as conjunctions of linear constraints



in quotes (half-space representation of the convex polygon).
The terms and atomic formulae of PCL are defined as fol-
lows. Constants and variables are terms. An atomic formula
of PCL (PCL-constraint) is a formula of the form t1 R t2
where t1, t2 are terms and R is one of the above predicates.

The intended structure for PCL, denoted by MPCL, has
the set of non-empty, regular closed subsets of Q2 as its
domain. MPCL interprets each constant symbol by the cor-
responding polygon in Q2 and each of the predicate symbols
by the corresponding topological relation of RCC-8 [28].

Language TCL (Topological Constraint Language) is de-
fined like PCL, but now terms can only be variables (no
topological reasoning with constants, i.e., landmarks [20], is
allowed). Language RCL (Rectangle Constraint Language)
is a simpler first-order constraint language that represents
information about rectangles in Q2 using rational constants
and order or difference constraints (x−y ≤ c) on the vertices
of rectangles. RCL has essentially the same expressive power
with dePCL, but it’s been carefully crafted for rectangles.

3. THE RDFi FRAMEWORK
As in theoretical treatments of RDF [26], we assume the

existence of pairwise-disjoint, countably infinite sets I , B,
and L that contain IRIs, blank nodes, and literals respec-
tively. We also assume the existence of a datatype map
M [10] and distinguish a set of datatypes A from M for
which e-literals are allowed. Finally, we assume the ex-
istence of a many-sorted first order constraint language L
with the properties discussed in Section 2. L is related to
the datatype map M in the following way:

• The set of sorts of L is the set of datatypes A of M .

• The set of constants of L is the union of the lexical
spaces of the datatypes in A.

• ML interprets every constant c of L with sort d by
its corresponding value given by the lexical-to-value
mapping of the datatype d in A.

The set of constants of L (equivalently: the set of literals
of the datatypes in A) will be denoted by C. We also assume
the existence of a countably infinite set of e-literals for each
datatype in A and use U to denote the union of these sets.
By convention, the identifiers of e-literals will start with an
underscore, e.g., _R5. C and U are assumed to be disjoint
from each other and from I , B, and L. The set of RDFi

terms, denoted by T , can now be defined as the union I ∪
B ∪ L ∪ C ∪ U .

In the rest of our examples we will assume that L is PCL,
so C is the set of all polygons in Q2 written in the linear
constraint syntax of Section 2.

We now define the basic concepts of RDFi: e-triples, con-
ditional triples, conditional graphs, global constraints, and
databases. Triples in RDFi (called e-triples) are as in RDF
but now e-literals are also allowed in the object position.
Combining an e-triple with a conjunction of L-constraints,
we get a conditional triple. Graphs in RDFi are conditional
and consist of sets of conditional triples. Global constraints
are simply Boolean combinations of L-constraints. The com-
bination of a conditional graph and a global constraint is
called a database.

Definition 3.1. An e-triple is an element of the set (I ∪
B) × I × T . If (s, p, o) is an e-triple, s will be called the

subject, p the predicate, and o the object of the triple. A
conditional triple is a pair (t, θ) where t is an e-triple and
θ is a conjunction of L-constraints. If (t, θ) is a conditional
triple, θ will be called the condition of the triple.

Definition 3.2. A global constraint is a Boolean combi-
nation of L-constraints.

Definition 3.3. A conditional graph is a set of condi-
tional triples. An RDFi database D is a pair D = (G,φ)
where G is a conditional graph and φ a global constraint.

In the rest of the paper, when we want to refer to standard
RDF constructs we will write“RDF triple”and“RDF graph”
so that no confusion with RDFi is possible.

Example 3.4. The following pair is an RDFi database.

( { ((hotspot1, type, Hotspot), true),
((fire1, type, Fire), true),
((hotspot1, correspondsTo, fire1), true),
((fire1, occuredIn, _R1), true) },

_R1 NTPP "x ≥ 6 ∧ x ≤ 23 ∧ y ≥ 8 ∧ y ≤ 19" )

Example 3.5. The following pair is an RDFi database
with a disjunctive global constraint.

( { ((hotspot1, type, Hotspot), true),
((fire1, type, Fire), true),
((hotspot1, correspondsTo, fire1), true),
((fire1, occuredIn, _R1), true),
((fire2, occuredIn,

"x ≥ 6 ∧ x ≤ 23 ∧ y ≥ 8 ∧ y ≤ 19"), true) },

(_R1 NTPP "x ≥ 6 ∧ x ≤ 23 ∧ y ≥ 8 ∧ y ≤ 19" ∧
_R1 NTPP "x ≥ 10 ∧ x ≤ 21 ∧ y ≥ 12 ∧ y ≤ 17") ∨

_R1 PO "x ≥ 2 ∧ x ≤ 6 ∧ y ≥ 4 ∧ y ≤ 8" )

4. SEMANTICS OF RDFi

The semantics of RDFi are inspired by [12]. An RDFi

database D = (G,φ) corresponds to a set of possible RDF
graphs each one representing a possible state of the real
world. This set of possible graphs captures completely the
semantics of an RDFi database. The global constraint φ de-
termines the number of possible RDF graphs corresponding
to D; there is one RDF graph for each solution of φ obtained
by considering the e-literals of φ as variables and solving the
constraint φ.

Example 4.1. Let D = (G,φ) be the RDFi database
given in Example 3.4. Database D mentions a hotspot, which
is located in a region that is inside but does not intersect
with the boundary of rectangle defined by the points (6, 8)
and (23, 19). The same knowledge can be represented by an
(infinite) set of possible RDF graphs, one for each rectangle
inside P . Two of these graphs are:

G1 = { (hotspot1, type, Hotspot), (fire1, type, Fire),
(hotspot1, correspondsTo, fire1),
(fire1, occuredIn, "x ≥ 11 ∧ x ≤ 15 ∧ y ≥ 13 ∧ y ≤ 15")}

G2 = { (hotspot1, type, Hotspot), (fire1, type, Fire),
(hotspot1, correspondsTo, fire1),
(fire1, occuredIn, "x ≥ 10 ∧ x ≤ 21 ∧ y ≥ 12 ∧ y ≤ 17")}



In order to be able to go from RDFi databases to the
equivalent set of possible RDF graphs, the notion of valua-
tion is needed. Informally, a valuation maps an e-literal to
a specific constant from C.

Definition 4.2. A valuation v is a function from U to
C assigning to each e-literal from U a constant from C.

We denote by v(t) the application of valuation v to an e-
triple t. v(t) is obtained from t by replacing any e-literal l
appearing in t by v( l) and leaving all other terms the same.
If θ is a formula of L (e.g., the condition of a conditional
triple or the global constraint of a database) then v(θ) de-
notes the application of v to formula θ. The expression v(θ)
is obtained from θ by replacing all e-literals l of θ by v( l).

Next, we give the definition of applying a valuation to a
conditional graph.

Definition 4.3. Let G be a conditional graph and v a
valuation. Then v(G) denotes the RDF graph

{v(t) | (t, θ) ∈ G and ML |= v(θ)}.
The set of valuations that satisfy the global constraint of

an RDFi database determines the set of possible RDF graphs
that correspond to it. This set of graphs is denoted using
the function Rep as it is traditional in incomplete relational
databases.

Definition 4.4. Let D = (G,φ) be an RDFi database.
The set of RDF graphs corresponding to D is the following:

Rep(D) = {H | there exists a valuation v

such that ML |= v(φ) and H ⊇ v(G)}
In incomplete relational databases [12], Rep is a semantic

function: it is used to map a table (a syntactic construct)
to a set of relational instances (i.e., a set of possible words,
a semantic construct). According to the well-known distinc-
tion between model theoretic and proof theoretic approaches
to relational databases, Rep and the approaches based on it
[12, 6] belong to the model theoretic camp. However, the
use of function Rep in the above definition is different. Rep
takes an RDFi database (a syntactic construct) and maps
it to a set of possible RDF graphs (a syntactic construct
again). This set of possible graphs can then be mapped to
a set of possible worlds using the well-known RDF model
theory [10]. This is a deliberate choice in our work since
we want to explore which well-known tools from incomplete
relational databases carry over to the RDF framework.

Notice that the definition of Rep above uses the contain-
ment relation instead of equality. The reason for this is to
capture the OWA that the RDF model makes. By using the
containment relation, Rep(D) includes all graphsH contain-
ing at least the triples of v(G). In this respect, we follow
the approach of [4, Section 3], where the question of whether
SPARQL is a good language for RDF is examined in the light
of the fact that RDF adopts the OWA. To account for this,
an RDF graph G is seen to correspond to a set of possible
RDF graphs H such that G ⊆ H (in the sense of the OWA:
all triples in G also hold in H). The above definition takes
this concept of [4] to its rightful destination: the full treat-
ment of incomplete information in RDF. As we have already
noted in the introduction, the kinds of incomplete informa-
tion we study here for RDF has not been studied in [4]; only
the issue of OWA has been explored there.

The following notation will be useful below.

Notation 1. Let G be a set of RDF graphs and q a
SPARQL query. The expression

⋂G will denote the set⋂
G∈G G. The expression JqKG, which extends the notation

of [26] to the case of sets of RDF graphs, will denote the
element-wise evaluation of q over G, that is,

JqKG = {JqKG | G ∈ G}.
Given the semantics of an RDFi database as a set of pos-

sible RDF graphs, what is an appropriate definition for the
answer to a certainty query? This is captured by the fol-
lowing definition of certain answer which extends the corre-
sponding definition of Section 3.1 of [4] by applying it to a
more general incomplete information setting.

Definition 4.5. Let q be a query and G a set of RDF
graphs. The certain answer to q over G is the set

⋂JqKG.

Example 4.6. Let us consider the following query over
the database of Example 3.4: “Find all fires that have oc-
curred in a region which is a non-tangential proper part
of the rectangle defined by the points (2, 4) and (28, 22)”.
The certain answer to this query is the set of mappings
{{?F → fire1}}.

5. EVALUATING SPARQL ON RDFi

DATABASES
Let us now discuss how to evaluate SPARQL queries

on RDFi databases. We will use the algebraic syntax of
SPARQL presented in [17]. We will consider only the mono-
tone graph pattern fragment of SPARQL which uses only
the AND, UNION, and FILTER operators [4]. We will deal
with both SELECT and CONSTRUCT query forms. Due
to the presence of e-literals, query evaluation now becomes
more complicated and is similar to query evaluation for con-
ditional tables [12, 6]. The exact details will be given later
in this section.

We use set semantics for query evaluation by extending
the SPARQL query evaluation approach of [26]. Blank nodes
are interpreted as in SPARQL, i.e., as constants different
from each other. Notice that this is not the same as the
semantics of blank nodes in RDF model theory [10] where
they are treated as existentially quantified variables.

We assume the existence of the following disjoint sets of
variables: (i) the set of normal query variables Vn that range
over IRIs, blank nodes, or RDF literals, and (ii) the set of
special query variables Vs that range over literals from the
set C or e-literals from the set U . We use V to denote the
set of all variables Vn ∪ Vs. Set V is assumed to be disjoint
from the set of terms T we defined in Section 3.

We first define the concept of e-mapping (“e” from the
word “existential”) which extends the concept of mapping
of [17] with the ability to have an e-literal as value of a
special query variable.

Definition 5.1. An e-mapping ν is a partial function ν :
V → T such that ν(x) ∈ I∪B∪L if x ∈ Vn and ν(x) ∈ C∪U
if x ∈ Vs.

Example 5.2. The following are e-mappings.

µ1 = { ?F → fire1, ?S → "x ≥ 1 ∧ x ≤ 2 ∧ y ≥ 1 ∧ y ≤ 2" }
µ2 = { ?F → fire1, ?S → _R1 }
µ3 = { ?F → fire1, ?S → _R2 }
µ4 = { ?F → fire1 }



The notions of domain and restriction of an e-mapping as
well as the notion of compatibility of two e-mappings are
defined as for mappings in the obvious way [26] (we also use
the same notation for them).

We now extend the concept of e-mapping and define con-
ditional mappings, i.e., mappings that are equipped with a
condition which constrains e-literals that appear in the e-
mapping.

Definition 5.3. A conditional mapping µ is a pair (ν, θ)
where ν is an e-mapping and θ is a conjunction of L-
constraints.

Example 5.4. The following are conditional mappings.

µ1 = ({?F → fire1, ?S → "x ≥ 1 ∧ x ≤ 2 ∧ y ≥ 1 ∧ y ≤ 2"}, true)
µ2 = ({?F → fire1, ?S → _R1},

_R1 NTPP "x ≥ 0 ∧ x ≤ 10 ∧ y ≥ 0 ∧ y ≤ 10")
µ3 = ({?F → fire1, ?S → _R1},

(_R1 NTPP _R2) ∧
(_R2 DC "x ≥ 0 ∧ x ≤ 1 ∧ y ≥ 0 ∧ y ≤ 1") )

µ4 = ({?F → fire1, ?S → _R1}, true)

Notice that conditional mappings with constraint true,
such as µ4 above, are logically equivalent to e-mappings.

The notions of domain and restriction for a conditional
mapping are now defined as follows.

Definition 5.5. The domain of a conditional mapping
µ = (ν, θ), denoted by dom(µ), is the domain of ν, i.e., the
subset of V where the partial function ν is defined.

Definition 5.6. Let µ = (ν, θ) be a conditional mapping
with domain S and W ⊆ S. The restriction of the mapping
µ to W , denoted by µ|W , is the mapping (ν|W , θ) where ν|W
is the restriction of mapping ν to W .

We now define the basic notion of triple pattern.

Definition 5.7. A triple pattern is an element of the set
(I ∪ V )× (I ∪ V )× (I ∪ L ∪ C ∪ U ∪ V ).

Note that we do not allow blank nodes to appear in a triple
pattern as in standard SPARQL since such blank nodes can
equivalently be substituted by new query variables.

If p is a triple pattern, var(p) denotes the variables ap-
pearing in p. A conditional mapping can be applied to a
triple pattern. Let µ = (ν, θ) be a conditional mapping and
p a triple pattern such that var(p) ⊆ dom(µ). We denote by
µ(p) the triple obtained from p by replacing each variable
x ∈ var(p) by ν(x).

We now introduce the notion of compatible conditional
mappings as in [26].

Definition 5.8. Two conditional mappings µ1 = (ν1, θ1)
and µ2 = (ν2, θ2) are compatible if the e-mappings ν1 and
ν2 are compatible, i.e., for all x ∈ dom(µ1) ∩ dom(µ2), we
have ν1(x) = ν2(x).

Example 5.9. Mappings µ1 and µ2 from Example 5.4 are
not compatible, while mappings µ2 and µ3 are.

To take into account e-literals, we also need to define an-
other notion of compatibility of two conditional mappings.

Definition 5.10. Two conditional mappings µ1 =
(ν1, θ1) and µ2 = (ν2, θ2) are possibly compatible if for all
x ∈ dom(µ1) ∩ dom(µ2), we have ν1(x) = ν2(x) or at least
one of ν1(x), ν2(x) where x ∈ Vs is an e-literal from U .

Example 5.11. Conditional mappings µ1, µ2, and µ3

from Example 5.4 are pairwise possibly compatible.

If two conditional mappings are possibly compatible, then
we can define their join as follows.

Definition 5.12. Let µ1 = (ν1, θ1) and µ2 = (ν2, θ2) be
possibly compatible conditional mappings. The join µ11µ2

is a new conditional mapping (ν3, θ3) where:

i. ν3(x) = ν1(x) = ν2(x) for each x ∈ dom(µ1) ∩ dom(µ2)
such that ν1(x) = ν2(x).

ii. ν3(x) = ν1(x) for each x ∈ dom(µ1)∩dom(µ2) such that
ν1(x) is an e-literal and ν2(x) is a literal from C.

iii. ν3(x) = ν2(x) for each x ∈ dom(µ1)∩dom(µ2) such that
ν2(x) is an e-literal and ν1(x) is a literal from C.

iv. ν3(x) = ν1(x) for x ∈ dom(µ1)∩dom(µ2) such that both
ν1(x) and ν2(x) are e-literals.

v. ν3(x) = ν1(x) for x ∈ dom(µ1) \ dom(µ2).

vi. ν3(x) = ν2(x) for x ∈ dom(µ2) \ dom(µ1).

vii. θ3 is θ1 ∧ θ2 ∧ ξ1 ∧ ξ2 ∧ ξ3 where:

- ξ1 is
∧

i vi EQ ti, where the vi’s and ti’s are all
the pairs of e-literals ν1(x) and ν2(x) from Case
(iv) above. If there are no such pairs, then ξ1 is
true.

- ξ2 is
∧

i wi EQ li where the wi’s and li’s are all
the pairs of e-literals ν1(x) and literals ν2(x) from
the set C from Case (ii) above. If there are no such
pairs, then ξ2 is true.

- ξ3 is
∧

i wi EQ li where the wi’s and li’s are all
the pairs of e-literals ν2(x) and literals ν1(x) from
the set C from Case (iii) above. If there are no
such pairs, then ξ3 is true.

The predicate EQ used in the above definition is the equal-
ity predicate of L.

Example 5.13. If µ1 and µ2 are the conditional map-
pings of Example 5.4, then:

µ11µ2 = ({?F → fire1, ?S → _R1}, true ∧
_R1 EQ "x ≥ 1 ∧ x ≤ 2 ∧ y ≥ 1 ∧ y ≤ 2" ∧
_R1 NTPP "x ≥ 0 ∧ x ≤ 10 ∧ y ≥ 0 ∧ y ≤ 10" )

For two sets of conditional mappings Ω1 and Ω2, the op-
eration of join is now defined as follows.

Ω11Ω2 = {µ11µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 are possibly

compatible conditional mappings}
The reader is invited to compare this definition with the

definition of join of mappings for RDF [26]. The new thing
with conditional mappings is that due to the presence of e-
literals, we have to anticipate the possibility that two map-
pings from Ω1 and Ω2 become compatible when e-literals are
substituted by constants from C. We anticipate this case by
adding relevant constraints to the condition of a mapping.

The operation of union is defined as in the standard case:

Ω1 ∪ Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2}



We now define the operator of difference:

Ω1 \ Ω2 =

{µ1 ∈ Ω1 | for all µ2 ∈ Ω2, µ1 and µ2 are not compatible} ∪
{(ν, θ′) | µ = (ν, θ) ∈ Ω1 and µ1 = (ν1, θ1), . . . , µn = (νn, θn)

∈ Ω2 such that µi, µ are possibly compatible for all

1 ≤ i ≤ n, and for every other µj ∈ Ω2 different than

the µi’s, µj and µ are not compatible. In this case, θ′ is

θ
∧

i

(
θi ⊃

∨

x

(
¬(µ(x) EQ µi(x))

)
)

for every x ∈ dom(µ) ∩ dom(µi) ∩ Vs and 1 ≤ i ≤ n}
The reader is invited to compare this definition with the

definition of difference in [26]. The new thing in RDFi is
that we have to anticipate the possibility that a mapping µ
from Ω1 is not compatible with all the mappings of Ω2 (i.e.,
it should be included in the difference) due to the presence
of e-literals in it given some constraints. These constraints
are added to the condition of µ.

Example 5.14. Let Ω1 = {µ11, µ12}, Ω2 = {µ21, µ22} be
sets of conditional mappings such that

µ11 = ({?F → fire1, ?S → _R1},
_R1 NTPP "x ≥ 0 ∧ x ≤ 10 ∧ y ≥ 0 ∧ y ≤ 10")

µ12 = ({?F → fire1, ?S → "x ≥ 1 ∧ x ≤ 2 ∧ y ≥ 1 ∧ y ≤ 2"},
_R1 PO "x ≥ 0 ∧ x ≤ 10 ∧ y ≥ 0 ∧ y ≤ 10")

µ21 = ({?F → fire2}, true)

µ22 = ({?F → fire1, ?S → "x ≥ 1 ∧ x ≤ 2 ∧ y ≥ 1 ∧ y ≤ 2"},true)

Then, Ω1 \ Ω2 = {µ} where µ has been constructed from
µ11 ∈ Ω1 and is the following mapping:

µ = ({?F → fire1, ?S → _R1},
(_R1 NTPP "x ≥ 0 ∧ x ≤ 10 ∧ y ≥ 0 ∧ y ≤ 10") ∧

¬(_R1 EQ "x ≥ 1 ∧ x ≤ 2 ∧ y ≥ 1 ∧ y ≤ 2") )

The operation of left-outer join is defined as in the stan-
dard case:

Ω11Ω2 = (Ω11Ω2) ∪ (Ω1 \ Ω2)

It has been noted in [26] that the OPT operator of
SPARQL (the counterpart of the left-outer join algebraic
operator) can be used to express difference in SPARQL. For
data models that make the OWA, such an operator is unnat-
ural since negative information cannot be expressed. How-
ever, we deliberately include operator OPT because if it is
combined with operators AND and FILTER under certain
syntactic restrictions, it turns out that the resulting graph
patterns cannot express a difference operator anymore [4].
In particular, the class of graph patterns produced by this
syntactic restriction are known as well-designed graph pat-
terns. Well-designed graph patterns are discussed in more
depth in Section 6 where representation systems for RDFi

are investigated.
We can now define the result of evaluating a graph pat-

tern over an RDFi database (the definition of graph patterns
is omitted). Given the previous operations on sets of map-
pings, graph pattern evaluation in RDFi can now be defined
exactly as in standard SPARQL for RDF graphs [26] except
for the case of evaluating a triple pattern.

Definition 5.15. Let D = (G,φ) be an RDFi database.
Evaluating a graph pattern P over database D is denoted by
JP KD and is defined recursively as follows:

1. If P is the triple pattern (s, p, o) then we have two
cases. If o is a literal from the set C then

JP KD ={µ = (ν, θ) | dom(µ) = var(P ) and

(µ(P ), θ) ∈ G} ∪
{µ = (ν, ( l EQ o) ∧ θ) | dom(µ) = var(P ),

((ν(s), ν(p), l), θ) ∈ G and l ∈ U}
else

JP KD ={µ = (ν, θ) | dom(µ) = var(P ), (µ(P ), θ) ∈ G}

2. If P is P1 AND P2 then JP KD = JP1KD1JP2KD.

3. If P is P1 UNION P2 then JP KD = JP1KD ∪ JP2KD.

4. If P is P1 OPT P2 then JP KD = JP1KD1JP2KD.
In the first item of the above definition the“else”part is to

accommodate the case in which evaluation can be done as in
standard SPARQL. This is the case in which the object part
of the triple pattern is not a literal from C. The “if” part
accommodates the case in which the triple pattern involves
a literal o from the set C. Here, there are two alternatives:
the graph contains a conditional triple matching with every
component of the triple pattern (i.e., a triple which has o in
the object position) or it contains a conditional triple with
an e-literal l from U in the object position. We catch a
possible match for the second case by adding in the condition
of the mapping the constraint that restricts the value of e-
literal l to be equal to the literal o of the triple pattern
(i.e., the constraint l EQ o). In all cases of the first item
of the above definition, since the triples in the database are
conditional, their conditions become parts of the conditions
of the mappings in the answer.

Example 5.16. Let us first give two examples for the
evaluation of triple patterns over the database D of Exam-
ple 3.5.

J(?F, occuredIn, "x ≥ 1 ∧ x ≤ 2 ∧ y ≥ 1 ∧ y ≤ 2")KD = { } ∪
{({?F → fire1}, _R1 EQ "x ≥ 1 ∧ x ≤ 2 ∧ y ≥ 1 ∧ y ≤ 2")}

J(?F, occuredIn, "x ≥ 6 ∧ x ≤ 23 ∧ y ≥ 8 ∧ y ≤ 19")KD =
{({?F → fire2}, true)} ∪ {({?F → fire1},

_R1 EQ "x ≥ 6 ∧ x ≤ 23 ∧ y ≥ 8 ∧ y ≤ 19")}
These examples correspond to the “if”part of the first item of
Definition 5.15 in which the triple pattern involves a literal
from the set C.

Example 5.17. Let us now give an example of an eval-
uation of graph pattern P1 AND P2 over the database
D of Example 3.4, where P1, P2 are the triple patterns
(?F, type,Fire) and (?F, occuredIn, ?R) respectively. Ac-
cording to the above definition, we have:

J(P1 AND P2)KD = JP1KD 1 JP2KD =
J(?F, type, Fire)KD 1 J(?F, occuredIn, ?R)KD =
{({?F → fire1}, true)} 1 {({?F → fire1, ?R → _R1}, true)} =

{({?F → fire1, ?R → _R1}, true)}
The evaluation of both triple patterns P1, P2 corresponds to
the “else” part of the first item of Definition 5.15. In this
case evaluation is done as in standard SPARQL, but here
conditions of matched triples have to be transferred to the
respective answer, i.e., we have conditional mappings.



Let us now consider the operator FILTER. It is natural
to allow FILTER graph patterns to contain conjunctions of
L-constraints as expressions that constrain query variables,
e.g., constraints like ?X NTPP ?Y or ?X EQ "x ≥ 1 ∧ x ≤
2 ∧ y ≥ 1 ∧ y ≤ 2" when L is PCL as in our examples.

The evaluation of FILTER graph patterns involving L-
constraints can now be defined as follows. Notice that the
evaluation does not check for satisfaction of the constraints
as in standard SPARQL [26], but simply imposes these con-
straints on the mappings that are in the answer of the graph
pattern involved.

Definition 5.18. Given an RDFi database D = (G,φ),
a graph pattern P and a conjunction of L-constraints R, we
have:

JP FILTER RKD = {µ′ = (ν, θ′) | µ = (ν, θ) ∈ JP KD
and θ′ is θ ∧ ν(R) }

In the above definition, ν(R) denotes the application of
e-mapping ν to condition R, i.e., the conjunction of L-
constraints obtained from R when each variable x of R which
also belongs to dom(ν) is substituted by ν(x).

The extension of FILTER to the case that R is a Boolean
combination of L-constraints is now easy to define and is
omitted. Similarly, the extension of FILTER to the case
that R contains also other built-in conditions of standard
SPARQL [26] is easy to define and is omitted as well.

The following example illustrates the definition and shows
that the purpose of constraint ν(R) is to deal in a uniform
way with the case that the object of a triple is a constant
from C or an e-literal from U . Notice that ν(R) is required
because mappings in our case can contain variables with e-
literals as values, thus we might not be able to deduce their
satisfaction yet. Thus, evaluation of FILTERs is “lazy”. In
an implementation, one can also simplify constraints at this
stage; such issues are beyond the scope of this paper.

Example 5.19. Based on the evaluation of the graph pat-
tern of Example 5.17, the evaluation of the graph pattern
((P1 AND P2) FILTER R), where R is the PCL-constraint
(?R NTPP "x ≥ 10 ∧ x ≤ 21 ∧ y ≥ 12 ∧ y ≤ 17"), is the
following:

J(P1 AND P2) FILTER RKD =
J((?F, type,Fire) AND (?F, occuredIn, ?R)) FILTER
(?R NTPP "x ≥ 10 ∧ x ≤ 21 ∧ y ≥ 12 ∧ y ≤ 17")KD =
{({?F → fire1, ?R → _R1},

_R1 NTPP "x ≥ 10 ∧ x ≤ 21 ∧ y ≥ 12 ∧ y ≤ 17")}

The next definition defines the concept of a SELECT
query [26].

Definition 5.20. A SELECT query is a pair (W,P )
where W is a set of variables from the set V and P is a
graph pattern.

Example 5.21. Let us consider the following query over
the database of Example 3.4: “Find all fires that have oc-
curred in a region which is a non-tangential proper part of
rectangle defined by the points (10, 12) and (21, 17)”. This
query can be expressed as follows:

({?F}, (?F, type,Fire) AND (?F, occuredIn, ?R)
FILTER (?R NTPP "x ≥ 10 ∧ x ≤ 21 ∧ y ≥ 12 ∧ y ≤ 17"))

The next definition defines the notion of answer to a SE-
LECT query. In contrast to SELECT queries over RDF
graphs, SELECT queries over RDFi databases have answers
that consist of conditional mappings so they might be harder
to understand.

Definition 5.22. Let q = (W,P ) be a SELECT query.
The answer to q over an RDFi database D = (G,φ) (in
symbols JqKD) is the set of conditional mappings {µ|W | µ ∈
JP KD}.

The conditional mappings of the answer to a query might
contain e-literals. These literals are constrained by the
global constraint φ, therefore φ can be understood to be
implicitly included in the answer (this can also be done for-
mally by considering answers to be pairs).

Example 5.23. The answer to the query from Example
5.21 can be obtained from the evaluation of the respective
graph pattern from Example 5.19. The answer is a set that
contains only the following mapping:

({?F → fire1}, _R1 NTPP "x ≥ 10 ∧ x ≤ 21 ∧ y ≥ 12 ∧ y ≤ 17" )

This answer is conditional. Because the information in the
database of Example 3.4 is indefinite (the exact geometry of
R1 is not known), we cannot say for sure whether fire1

satisfies the requirements of the query. These requirements
are satisfied under the condition given in the above mapping.

Let us now introduce the notion of a template and define
the CONSTRUCT query form.

Definition 5.24. A template E is a finite subset of the
set (T ∪ V )× (I ∪ V )× (T ∪ V ).

Thus, the elements of a template are like triple patterns
but blank nodes are also allowed in the subject and object
positions. We denote by var(E) and blank(E) the set of
variables and set of blank nodes appearing in the elements
of E respectively.

Definition 5.25. A CONSTRUCT query is a pair
(E,P ) where E is a template and P a graph pattern.

Example 5.26. Let us consider the query of Exam-
ple 5.21. A new version of this query using the CON-
STRUCT query form is:

({(?F, type,Fire)}, (?F, type,Fire) AND (?F, occuredIn, ?R)
FILTER (?R NTPP "x ≥ 10 ∧ x ≤ 21 ∧ y ≥ 12 ∧ y ≤ 17"))

Next we define what it means for a conditional mapping
to be applied to a template.

Definition 5.27. Let µ = (ν, θ) be a conditional mapping
and E a template. We denote by µ(E) the application of
conditional mapping µ to template E. µ(E) is obtained from
E by replacing in E every variable x of var(E)∩ dom(µ) by
ν(x).

Templates are used to specify the graph that results from
the evaluation of a CONSTRUCT query.

Example 5.28. Let us consider the template E =
{(?F, type, ?Z), (?F, occuredIn, ?S)} and mapping µ4 from
Example 5.4. The result of applying µ4 to E is the following
set:

{(fire1, type, ?Z), (fire1, occuredIn, R1)}



Notice that Definition 5.27 does not require a conditional
mapping to share any variables with the template to which
it is applied. As a consequence, the first element of µ4(E)
is not a valid e-triple, i.e., it is not an element of the set
(I ∪B)× I ×T . Such a triple is dropped from the answer to
a CONSTRUCT query (see Definition 5.30 below).

Next we define the concept of answer to a CONSTRUCT
query. The definition extends the specification of standard
SPARQL [27] to account for the RDFi framework and fol-
lows the formal approach of [25]. Before we give the defini-
tion, we need to introduce the notion of renaming function.

Definition 5.29. Let E be a template, P a graph pattern,
and D = (G,φ) an RDFi database. The set {fµ | µ ∈
JP KD} is a set of renaming functions for E and JP KD if
the following properties are satisfied: 1) the domain of every
function fµ is blank(E) and its range is a subset of (B \
blank(G)), 2) every function fµ is one-to-one, and 3) for
every pair of distinct mappings µ1, µ2 ∈ JP KD, fµ1 , fµ2 have
disjoint ranges.

The application of a renaming function fµ to a template
E is denoted by fµ(E) and results in renaming the blank
nodes of E according to fµ.

Definition 5.30. Let q = (E,P ) be a CONSTRUCT
query, D = (G,φ) an RDFi database and F = {fµ | µ ∈
JP KD} a fixed set of renaming functions. The answer to q
over D (in symbols JqKD) is the RDFi database D′ = (G′, φ)
where

G′ =
⋃

µ=(ν,θ)∈JP KD
{(t, θ) | t ∈ (µ(fµ(E))∩((I∪B)×I×T ))}.

In the above definition, renaming functions are used to
ensure that brand new blank nodes are created for each con-
ditional mapping µ. The intersection with (I ∪ B) × I × T
makes sure that no illegal triples are returned as answers
(see Example 5.28 above).

Example 5.31. The answer to the CONSTRUCT query
from Example 5.26 can be obtained from the evaluation of the
respective graph pattern from Example 5.19. The answer is
the following RDFi database:

( { ((fire1, type, Fire),
_R1 NTPP "x ≥ 10 ∧ x ≤ 21 ∧ y ≥ 12 ∧ y ≤ 17") },

_R1 NTPP "x ≥ 6 ∧ x ≤ 23 ∧ y ≥ 8 ∧ y ≤ 19" )

6. REPRESENTATION SYSTEMS FOR
RDFi

Let us now recall the semantics of RDFi as given by Rep.
Rep(D) is the set of possible RDF graphs corresponding to
an RDFi database D. Clearly, if we were to evaluate a query
q over D, we could use the semantics of RDFi and evaluate
q over any RDF graph of Rep(D) as follows:

JqKRep(D) = {JqKG | G ∈ Rep(D)}
However, this is not the best answer we wish to have in

terms of representation; we queried an RDFi database and
got an answer which is a set of RDF graphs. Any well-
defined query language should have the closure property,
i.e., the output (answer) should be of the same type as the

input. Ideally, we would like to have an RDFi database
as the output. Thus, we are interested in finding an RDFi

database JqKD representing the answer JqKRep(D). This re-
quirement is translated to the following formula:

Rep(JqKD) = JqKRep(D) (1)

Formula (1) allows us to compute the answer to any query
over an RDFi database in a consistent way with respect to
the semantics of RDFi without having the need to apply the
query on all possible RDF graphs. JqKD can be computed
using the algebra of Section 5 above. But can the algebra of
Section 5 compute always such a database JqKD representing
JqKRep(D)? In other words, can we prove (1) for all SPARQL
queries considered in Section 5? The answer is no in gen-
eral. The following example modelled after [7] illustrates
this negative fact.

Example 6.1. Consider the RDFi database D = (G, φ),
where G = {((s, p, o), true)} and φ = true, i.e., D contains
the single triple (s, p, o) where s, p, o ∈ I. Consider now a
CONSTRUCT query q over D that selects all triples having
s as the subject. The algebraic version of query q would be
({(s, ?p, ?o)}, (s, ?p, ?o)) and evaluated as JqKD using Defini-
tion 5.30. Then, the triple (s, p, o) and nothing else is in the
resulting database JqKD. However, equation (1) is not satis-
fied, since for instance (c, d, e) occurs in some g ∈ Rep(JqKD)
according to the definition of Rep, whereas (c, d, e) /∈ g for
all g ∈ JqKRep(D).

Note that the above counterexample to (1) exploits only
the fact that RDF makes the OWA. In other words, the
counterexample would hold for any approach to incomplete
information in RDF which respects the OWA. Thus, unless
the CWA is adopted, which we do not want to do since we
are in the realm of RDF, condition (1) has to be relaxed1.

In the rest of this section we follow the literature of in-
complete information [12, 6] and show how (1) can be weak-
ened. The key concept for achieving this is the concept of
certain answer we defined earlier. Given a fixed fragment of
SPARQL Q, two RDFi databases cannot be distinguished
by Q if they give the same certain answer to every query in
Q. The next definition formalizes this fact using the con-
cept of Q-equivalence. Originally this concept was defined
for incomplete relational databases in [12].

Definition 6.2. Let Q be a fragment of SPARQL, and G,
H two sets of RDF graphs. G and H are called Q-equivalent
(denoted by G ≡Q H) if they give the same certain answer
to every query in the language, that is,

⋂JqKG =
⋂JqKH for

all q ∈ Q.

We can now define the notion of a representation sys-
tem which gives a formal characterization of the correctness
of computing the answer to a query directly on an RDFi

database instead of using the set of possible graphs given
by Rep. The definition of representation system (originally
defined in [12] for incomplete relational databases) corre-
sponds to the notion of weak query system defined in the
same context by [6].

Definition 6.3. Let D be the set of all RDFi databases,
G the set of all RDF graphs, Rep : D → G a function deter-
mining the set of possible RDF graphs corresponding to an
1If the CWA is adopted, we can prove (1) using similar tech-
niques to the ones that enable us to prove Theorem 6.14
below.



RDFi database, and Q a fragment of SPARQL. The triple
〈D, Rep,Q〉 is a representation system if for all D ∈ D and
all q ∈ Q, there exists an RDFi database JqKD ∈ D such that
the following condition is satisfied:

Rep(JqKD) ≡Q JqKRep(D)

The next step towards the development of a representa-
tion system for RDFi and SPARQL is to introduce various
fragments of SPARQL that we will consider and define the
notions of monotonicity and coinitiality as is done in [12].
As in Section 5, our only addition to standard SPARQL
is the extension of FILTERs with another kind of condi-
tions that are constraints of L. We also consider the frag-
ment of SPARQL graph patterns known as well-designed.
Well-designed graph patterns form a practical fragment of
SPARQL graph patterns that include the OPT operator and
it has been showed in [26, 4] that that they have nice proper-
ties, such as lower combined complexity than in the general
case, a normal form which is useful for optimization, and
they are also weakly monotone. Thus, it is worth studying
them in the context of RDFi. Section B of the Appendix
contains formal definitions and relevant background results
for well-designed graph patterns.

Notation 2. We denote by QC
F (resp. QS

F) the set of
all CONSTRUCT (resp. SELECT) queries consisting of
triple patterns, and graph pattern expressions from class
F. We also denote by QC

WD (resp. QS
WD) the set of all

CONSTRUCT (resp. SELECT) queries consisting of well-

designed graph patterns. Last, we denote by QC′
F all CON-

STRUCT queries without blank nodes in their templates.

The following definition introduces the concept of mono-
tone fragments of SPARQL applied to RDF graphs. Then,
Proposition 6.5 give us some fragments of SPARQL that are
monotone.

Definition 6.4. A fragment Q of SPARQL is monotone
if for every q ∈ Q and RDF graphs G and H such that
G ⊆ H, it is JqKG ⊆ JqKH .

Proposition 6.5. The following results hold with respect
to the monotonicity of SPARQL: a) Language QS

AUF is
monotone. b) The presence of OPT or CONSTRUCT
makes a fragment of SPARQL not monotone. c) Language

QC′
AUF is monotone. d) Language QC′

WD is monotone.

Parts a) − c) of the above proposition are trivial exten-
sions of relevant results in [4]. However, part d) is an inter-
esting result showing that the weak monotonicity property
of well-designed graph patterns suffices to get a monotone
fragment of SPARQL containing the OPT operator, i.e., the
class of CONSTRUCT queries without blank nodes in their
templates. This is a result that cannot be established for
the case of SELECT queries and with this respect CON-
STRUCT queries deserve closer attention.

Monotonicity is a sufficient property for establishing our
results about representation systems. Thus, in the following,

we focus on the monotone query languages QC′
AUF and QC′

WD.

Definition 6.6. Let G and H be sets of RDF graphs. We
say that G and H are coinitial, denoted by G ≈ H, if for any
G ∈ G there exists H ∈ H such that H ⊆ G, and for any
H ∈ H there exists G ∈ G such that G ⊆ H.

Example 6.7. The following sets are coinitial.

G = {{(a, b, c), (a, e, d), (a, f, g)}, {(a, b, c), (a, e, d)}, {(a, b, c)}}
H = {{(a, b, c), (a, e, d)}, {(a, b, c)}}

A direct consequence of the definition of coinitial sets is
that they have the same greatest lower-bound elements with
respect to the subset relation. In the above example, the
greatest lower bound is

⋂G =
⋂H = {(a, b, c)}.

Proposition 6.8. Let Q be a monotone fragment of
SPARQL and G and H sets of RDF graphs. If G ≈ H then,
for any q ∈ Q, it holds that JqKG ≈ JqKH.

Lemma 6.9. Let G and H be sets of RDF graphs. If G
and H are coinitial then G ≡QC′

AUF
H.

We will now present our main theorem which character-

izes the evaluation of monotone QC′
AUF and QC′

WD queries
(Theorem 6.14). Before we do this, we need a few defini-
tions and preliminary results. The first definition allows us
to apply a valuation to a conditional mapping. By applying
a valuation to a conditional mapping, we get an ordinary
mapping like in the case of RDF simply by disregarding the
constraint that results since it is equivalent to true.

Definition 6.10. Let v : U → C be a valuation and µ =
(ν, θ) a conditional mapping such that ML |= v(θ). Then
v(µ) denotes the mapping that results from substituting in
e-mapping ν the constant v( l) for each e-literal l.

In a similar way, we can extend a valuation v to a set of
mappings Ω as follows.

Definition 6.11. Let Ω be a set of conditional mappings
and v : U → C a valuation. Then

v(Ω) = {v(µ) | µ = (ν, θ) ∈ Ω and ML |= v(θ)}.

The next definition allows us to apply a valuation to an
RDFi database.

Definition 6.12. Let v : U → C be a valuation and D =
(G,φ) an RDFi database such that ML |= v(φ). Then v(D)
denotes the RDF graph v(G).

Proposition 6.13. Let D = (G,φ) be an RDFi database,
q a query from a monotone fragment Q of SPARQL, and v
a valuation such that ML |= v(φ). Then, v(JqKD) = JqKv(D)

implies Rep(JqKD) ≈ JqKRep(D).

We are now ready to prove our main result.

Theorem 6.14. The triples 〈D, Rep,QC′
AUF 〉 and

〈D, Rep,QC′
WD〉 are representation systems.

Since SELECT queries in SPARQL take as input an RDF
graph but return a set of mappings (i.e., we do not have
closure), it is not clear how to include them in the developed
concept of a representation system (but see the discussion
about SELECT in Section 7 below).

7. CERTAIN ANSWER COMPUTATION
This section studies how the certain answer to a SPARQL

query q over an RDFi database D can be computed, i.e.,
how to compute

⋂JqKRep(D). Having Theorem 6.14, it is



easy to compute the certain answer to a query in the frag-

ment of SPARQL QC′
AUF or QC′

WD. Since 〈D, Rep,QC′
AUF 〉

and 〈D, Rep,QC′
WD〉 are representation systems, we can ap-

ply Definition 6.2 for the identity query to get
⋂JqKRep(D) =⋂

Rep(JqKD) for all q and D. Thus, we can equivalently
compute

⋂
Rep(JqKD) where JqKD can be computed using

the algebra of Section 5.
Before presenting the algorithm for certain answer com-

putation, we need to introduce some auxiliary constructs
similar to the ones defined in [12, 6] in the case of incom-
plete relational databases.

Definition 7.1. Let D = (G,φ) be an RDFi database.
The EQ-completed form of D is the RDFi database DEQ =
(GEQ, φ) where GEQ is the same as G except that all e-
literals l ∈ U appearing in G have been replaced in GEQ

by the constant c ∈ C such that φ |= l EQ c (if such a
constant exists).

In other words, in the EQ-completed form of an RDFi

database D, all e-literals that are entailed by the global con-
straint to be equal to a constant from C are substituted by
that constant in all the triples in which they appear.

Definition 7.2. Let D = (G,φ) be an RDFi database.
The normalized form of D is the RDFi database D∗ =
(G∗, φ) where G∗ is the set

{(t, θ) | (t, θi) ∈ G for all i = 1 . . . n, and θ is
∨

i

θi}.

Given the above definition, the normalized form of an
RDFi database D is one that consists of the same global
constraint and a graph in which conditional triples with the
same triple part have been joined into a single conditional
triple with a condition which is the disjunction of the con-
ditions of the original triples. Notice that these new con-
ditional triples do not follow Definition 3.1 which assumes
conditions to be conjunctions of L-constraints. We will allow
this deviation from Definition 3.1 in this section.

Lemma 7.3. Let D = (G,φ) be an RDFi database. Then:
⋂
Rep(D) =

⋂
Rep((DEQ)∗)

Having Lemma 7.3, it is easy to give an algorithm that
computes the certain answer to a query.

Theorem 7.4. Let D = (G,φ) be an RDFi database and

q a query from QC′
AUF or QC′

WD. The certain answer of q
over D can be computed as follows: i) compute JqKD ac-
cording to Section 5 and let Dq = (Gq, φ) be the resulting
RDFi database, ii) compute the RDFi database (Hq, φ) =
((Dq)

EQ)∗, and iii) return the following set of RDF triples:

{(s, p, o) | ((s, p, o), θ) ∈ Hq such that φ |= θ and o /∈ U}
Let us now present a preliminary analysis of the data com-

plexity of computing the certain answer to a CONSTRUCT
query over an RDFi database when L is a constraint lan-
guage. Following [6], we first define the corresponding deci-
sion problem.

Definition 7.5. Let q be a CONSTRUCT query. The
certainty problem for query q, RDF graph H, and RDFi

database D, is to decide whether H ⊆ ⋂JqKRep(D). We de-
note this problem by CERTC(q,H,D).

The next theorem shows how one can transform the cer-
tainty problem we defined above to the problem of deciding
whether ψ ∈ Th(ML) for an appropriate sentence ψ of L.

Theorem 7.6. Let D = (G,φ) be an RDFi database, q a

query from QC′
AUF or QC′

WD, and H an RDF graph. Then,
CERTC(q,H,D) is equivalent to deciding whether the fol-
lowing formula is true in ML:

∧

t∈H

(∀ l)(φ( l) ⊃ Θ(t, q,D, l)) (2)

In the above formula:

- l is the vector of all e-literals in the database D.

- Θ(t, q,D, l) is a disjunction θ1∨· · ·∨θk that is constructed
as follows. Let JqKD = (G′, φ). Θ(t, q,D, l) has a
disjunct θi for each conditional triple (t′i, θ

′
i) ∈ G′ such

that t and t′i have the same subject and predicate. θi
is:

- θ′i if t and t′i have the same object as well.

- θ′i∧( l EQ o) if the object of t is o ∈ C and the object
of t′i is l ∈ U .

If t does not agree in the subject and predicate position
with some t′i, then Θ(t, q,D, l) is taken to be false.

We can also prove a theorem like the above for SELECT
queries by defining the relevant decision problem and devel-
oping appropriate versions of the relevant results of Section 6
that are needed. This involves first modifying Definition 6.2
so that H and G are sets of sets of mappings and q is a
SELECT query form (we call this SELECT-equivalence).
Then, the condition of Definition 6.3, modified so that Q-
equivalence is substituted by SELECT-equivalence, can be
proved using essentially the same techniques as the ones used
to prove Theorem C.1.

7.1 Data Complexity Results
The data complexity of the certainty problem,

CERTC(q,H,D), for q in the QC′
AUF fragment of SPARQL

and D in the set of RDFi databases with constraints
from ECL, diPCL, dePCL, and RCL is coNP-complete.
This follows easily from known results of [6] for ECL and
[14, 16, 35] for diPCL, dePCL, and RCL. Thus, we have
the expected increase in data complexity given that the
complexity of evaluating AND, UNION, and FILTER graph
patterns over RDF graphs can be done in LOGSPACE [26].

Theorem 7.6 gives us immediately some easy upper
bounds on the data complexity of the certainty problem in
the case of RDFi with L equal to TCL or PCL. The satisfia-
bility problem for conjunctions of TCL-constraints is known
to be in PTIME [29]. Thus, the entailment problems aris-
ing in Theorem 7.6 can be trivially solved in EXPTIME.
Therefore, the certainty problem is also in EXPTIME. To
the best of our knowledge, no better bounds are known in
the literature of TCL that we could have used to achieve
a tighter bound for the certainty problem as we have done
with the languages of the previous paragraph.

[20] shows that conjunctions of atomic RCC-5 constraints
involving constants that are polygons in V -representation
(called landmarks in [20]) can be decided in PTIME. There-
fore, by restricting PCL so that only RCC-5 constraints are
allowed and constants are given in V -representation, the cer-
tainty problem in this case is also in EXPTIME.



8. RELATED WORK
Incomplete information has been studied in-depth in re-

lational databases starting with the paper of [12]. More
recently, papers on uncertain [30, 3] and probabilistic [33]
database models have reignited interest in this area.

In the context of the Web, incomplete information has
been studied in detail for XML [2, 5]. Related work for in-
complete information in RDF [9, 11, 4] has been discussed
in the introduction, so we do not repeat the details here.
The study of incomplete information in RDF undertaken in
this paper goes beyond [4] where only the issue of OWA for
RDF is investigated. Other cases of incomplete information
in RDF (e.g., blank nodes according to the W3C RDF se-
mantics which is different than the SPARQL semantics as
we pointed out in Section 5) can also be investigated using
an approach similar to ours. Comparing our work with [9,
11], we point out that these papers study complementary
issues in the sense that they concentrate on temporal infor-
mation of a specific kind only (validity time for a tuple).
From a technical point of view, the approach of [11] is simi-
lar to ours since it is based on constraints, but, whereas we
concentrate on query answering for RDFi, [11] concentrates
more on semantic issues such as temporal graph entailment.
It is easy to see that RDFi can be used to represent in-
complete temporal information that can be modeled as the
object of a triple using any of the temporal constraint lan-
guages of [15]. An example of this situation is when we want
to represent incomplete information about the time an event
occurred. This is called user-defined time in the temporal
database literature and it has not been studied in [9, 11].

Recently, some papers have started studying the problem
of representing probabilistic information in RDF and query-
ing it using SPARQL [34, 19]. It would be interesting to
investigate how these approaches can be combined with the
work presented in this paper as [8] has done in the model of
probabilistic c-tables.

It is interesting to compare the expressive power that
RDFi gives us to other recent works that use Semantic
Web data models and languages for geospatial applications.
When equipped with a constraint language like TCL, PCL,
or RCL, RDFi goes beyond the proposals of the geospatial
extensions of SPARQL, stSPARQL [18] and GeoSPARQL
[23] that cannot query incomplete geospatial information.
While GeoSPARQL provides a vocabulary for asserting
topological relations (the topology vocabulary extension),
the complexity of query evaluation over RDF graphs in this
case has not been investigated so far in any detail and re-
mains an open problem.

Incomplete geospatial information as it is studied in this
paper can also be expressed in spatial description logics [24,
21]. For efficiency reasons, spatial DL reasoners such as
RacerPro2 and PelletSpatial [32] have opted for separating
spatial relations from standard DL axioms as we have done
by separating graphs and constraints. Since RDF graphs
can be seen as DL ABoxes with atomic concepts only, all
the results of this paper can be transferred to the relevant
subsets of spatial DLs and their reasoners so they are of
interest to this important Semantic Web area as well.

9. FUTURE WORK
Our future work focuses on the following: 1) explore other

2http://www.racer-systems.com/

fragments of SPARQL that can be used to define a repre-
sentation system for RDFi, 2) study in more depth the com-
plexity of certain answer computation for the various spatial
and temporal constraint languages L we considered or the
one used in [11] and identify tractable classes, and 3) study
the complexity of evaluating various fragments of SPARQL
over RDFi databases like it has been done in [26, 31] for the
case of SPARQL and RDF.
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[25] J. Pérez, M. Arenas, and C. Gutierrez. Semantics of
SPARQL. Technical report, Univ. de Chile, 2006.
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APPENDIX
The Appendix is structured as follows. In Section A we
formally define a number of constraint languages for model-
ing information in geospatial and temporal domains. These
languages have been already defined informally in Section 2.
Then, Section B gives formal definitions for the concept of
well-designed graph patterns and relevant concepts, such as
subsumption for mappings and weak monotonicity, while it
presents known results for well-designed patterns. These re-
sults are useful for establishing the monotonicity results for
the fragment of SPARQL corresponding to CONSTRUCT
queries with well-designed graph patterns and without blank
nodes in their templates. Section C provides the proofs for
the section of Representation Systems (Section 6), while Sec-
tion D provides the proofs for the section of Certain An-
swer Computation (Section 7). Last, Section E is devoted
to additional propositions that are useful to establish some
propositions and/or theorems of Section 6.

A. CONSTRAINT LANGUAGES
In this section we define formally all the constraint lan-

guages used in the paper.

A.1 The Language ECL
The language ECL (Equality Constraint Language) with

predicate symbol = and an infinite number of constants
has been defined in [13]. The intended structure for this
language interprets symbol = as equality and constants as
“themselves”. An ECL-constraint is an ECL formula of the
form x1 = x2 where x1, x2 are variables or constants.

ECL has been used by [13] for the development of an ex-
tended relational model based on ECL-constraints and by
[12, 1, 6] for querying and updating incomplete information
in relational databases.

The following two languages are from [16].

A.2 The Language diPCL
The language diPCL (discrete Point Constraint

Language) allows us to make statements about points
in discrete time. diPCL is a first-order language with
constants from the set of integers Z, a 2-ary function
symbol −, and a binary predicate symbol <. The terms and
atomic formulae of diPCL are defined as follows. Constants
and variables are terms. If t1 and t2 are constants or
variables, then t1 − t2 is a term. An atomic formula of
diPCL (diPCL-constraint) is a formula of the form t ∼ c
or c ∼ t where ∼ is either < or =, t is a term, and c is a
constant. For example, the following are diPCL-constraints:

x1 − x2 < 2, x1 = 5, x1 < 6

The intended structure for diPCL, denoted by MdiPCL,
has the set of integer constants as its domain. MdiPCL in-
terprets each constant symbol by the corresponding integer
number in N, function symbol − by the subtraction opera-
tion over the integers, and predicate symbol < by the rela-
tion “less than”. Then, theory Th(MdiPCL) is a sub-theory
of Th(Z,+,<), the theory of integers with addition and or-
der.

A.3 The Language dePCL
The language dePCL (dense Point Constraint Language)

allows us to make statements about points in dense time.



dePCL is a first-order language with constants from the set
of rational numbers Q, a 2-ary function symbol −, and a
binary predicate symbol <. The terms and atomic formulae
of dePCL are defined as follows. Constants and variables are
terms. If t1 and t2 are constants or variables, then t1 − t2 is
a term. An atomic formula of dePCL (dePCL-constraint)
is a formula of the form t ∼ c or c ∼ t where ∼ is either
< or =, t is a term, and c is a constant. For example, the
following are dePCL-constraints:

x1 − x2 < 1/2, x1 = 5/2, x1 < 6/1

The intended structure for dePCL, denoted by MdePCL,
has the set of rational constants as its domain. MdePCL in-
terprets each constant symbol by the corresponding rational
number in Q, function symbol − by the subtraction opera-
tion over the rationals, and predicate sybmol < by the rela-
tion “less than”. Then, theory Th(MdePCL) is a sub-theory
of Th(R,+, <), the theory of real numbers with addition
and order.

A.4 The Language TCL
The language TCL (Topological Constraint Language) al-

lows us to represent topological properties of non-empty, reg-
ular closed subsets of Q2 (we will call these subsets regions
for brevity). TCL is a first-order language with the follow-
ing 6 binary predicate symbols: DC,EC,PO,EQ,TPP, and
NTPP. An atomic formula of TCL is a formula of the form
r1 R r2 where r1, r2 are variables and R is one of the above
predicates. We will often use the terminology L-constraints
to refer to atomic formulae of an arbitrary constraint lan-
guage L. For example, the following are TCL-constraints:

r1 NTPP r2, r2 PO r3, r2 EQ r3

The intended structure for TCL, denoted by MTCL, has
the set of regions as its domain, and interprets each of the
predicate symbols given above by the corresponding topo-
logical relation of RCC-8 [28]. Note that relations NTPPi
and TPPi of RCC-8 are not included in the vocabulary of
TCL since they can be expressed by interchanging the argu-
ments of NTPP and TPP.

The language TCL allows us to capture the topology of re-
gions of interest to an application but makes no commitment
regarding other non-topological properties of these regions,
e.g., shape. The language PCL considered below deals with
polygonal shapes.

A.5 The Language RCL
The language RCL (Rectangle Constraint Language) al-

lows us to capture spatial and metric constraints (e.g., topo-
logical or directional, and horizontal or vertical distance
constraints among the edges of rectangles) involving rect-
angles with sides parallel to the axes in Q2 (we will call
them boxes). RCL is useful not only for modeling regions
of space with such rectangular shapes but also for model-
ing minimum bounding rectangles that are typically used as
approximations of spatial objects, e.g., in spatial data struc-
tures and elsewhere.

RCL is a first-order language with equality and 2 sorts:
the sort Q for rational constants, and the sort R for boxes.
The set of non-logical symbols of RCL includes: all ratio-
nal constants of sort Q, a 2-ary function symbol − of sort
(Q,Q,Q), function symbols LLx(·), LLy(·), URx(·), URy(·)
of sort (R,Q), and predicate symbol < of sort (Q,Q).

The terms and atomic formulae of RCL are defined as fol-
lows. Constants of sort Q and variables of sort R are terms.
If r is a variable of sort R then LLx(r), LLy(r), URx(r) and
URy(r) is a term of sort Q. If t1, t2 are terms of sort Q,
then t1 − t2 is a term of sort Q. An atomic formula of RCL
is a formula of the form t ∼ c where ∼ is < or =, t is a
term of sort Q, and c a rational constant. Symbol = is the
equality predicate for sort Q; we will not use the equality
predicate for sort R in our formulae.

The intended structure for RCL, denoted by MRCL, in-
terprets each non-logical symbol as follows. Each rational
constant is interpreted by its corresponding rational num-
ber. The function symbol − is interpreted by the subtrac-
tion operation over the rationals, while the function symbols
LLx(·), LLy(·), URx(·) and URy(·) are interpreted by the
easily-defined functions that given a box in Q2, return the
x- and y-coordinate of its lower-left and lower-right vertex
respectively. Predicate < is interpreted by the relation “less
than” over Q.

A RCL-constraint is a RCL formula of the form t ∼ c
where ∼ is =, <, >, ≤ or ≥, t is a term of sort Q, and c
a rational constant (the predicates <, ≤, and ≥ are defined
as usual). For example, the following are RCL-constraints:

LLx(r2)− LLx(r1) < 0, URy(r1)− LLy(r2) = 5/2

B. WELL-DESIGNED GRAPH PATTERNS
In this section we present relevant material and known

results for the fragment of SPARQL corresponding to the
notion of well-designed graph patterns. These come from
[26, 4].

The next definition introduces the notion of well-designed
graph patterns.

Definition B.1 (Well-designed Patterns [4]).
Let P be a graph pattern in the AND-FILTER-OPT
fragment of SPARQL. Then P is well-designed if (1) P is
safe, i.e., for every sub-pattern (P1 FILTER R) of P , it
holds that var(R) ⊆ var(P1), and (2) for every sub-pattern
P ′ = (P1 OPT P2) of P and variable ?X, if ?X occurs both
inside P2 and outside P ′, then it also occurs in P1.

In [26, 4], the authors identified in well-designed graph
patterns unique and interesting properties that make query
evaluation more efficient in contrast to what you get with-
out the syntactic restrictions imposed on the graph patterns
by Definition B.1 above. One of these properties is that
the fragment of SPARQL graph patterns corresponding to
well-designed graph patterns is weakly monotone. In the
following we introduce the notion of weak monotonicity, but
first we define the notion of subsumption for mappings which
is needed for weak monotonicity.

Definition B.2 (Subsumption of Mappings). Let
µ1, µ2 be mappings. We say that µ1 is subsumed by µ2, de-
noted by µ1 � µ2, if dom(µ1) ⊆ dom(µ2) and µ1(x) = µ2(x)
for every x ∈ dom(µ1). Let Ω1,Ω2 be set of mappings. We
say that Ω1 is subsumed by Ω2, denoted by Ω1 ⊑ Ω2, if
for every µ1 ∈ Ω1 there exists mapping µ2 ∈ Ω2 such that
µ1 � µ2.

Example B.3. Let us consider Example 5.2 again. Map-
ping µ4 is subsumed by mapping µ1, i.e., µ4 � µ1.

Informally, when a mapping µ subsumes a mapping µ′,
then µ contains additional information to µ′, i.e., it maps
additional variables to RDF terms.



Definition B.4 (Weak Monotonicity). Let P be a
graph pattern of SPARQL. P is said to be weakly monotone
if for every pair G,H of RDF graphs such that G ⊆ H, it is
JP KG ⊑ JP KH .

From [4] we know that every well-designed graph pattern
is weakly monotone.

Theorem B.5 (Theorem 4.3 of [4]). Every well-
designed graph pattern is weakly monotone.

C. PROOFS FOR SECTION 6

C.1 Proof of Proposition 6.5
Proof for part a)
The monotonicity property for QS

AUF follows easily from the
monotonicity property of graph patterns containing only
the AND, UNION, and FILTER operators as presented
in [4, Lemma 3.2].

Proof for part b)
From the same paper, it trivially follows that QS

OPT and
QC

OPT are not monotone.

Proof for part c)
Now consider a query q = (E,P ) ∈ QC

AUF and let G,H be
two RDF graphs such that G ⊆ H . According to Defini-
tion 4.6 of CONSTRUCT for RDF graphs as given in [25]
we have

JqKG =
⋃

µ∈JP KG
{µ(fµ(E)) ∩ ((I ∪ B)× I × T )} (1)

JqKH =
⋃

µ′∈JP KH
{µ′(fµ′(E)) ∩ ((I ∪B)× I × T )} (2)

From the monotonicity property of AUF graph pat-
terns [4] we have that JP KG ⊆ JP KH . Therefore, all map-
pings µ appearing in the union expression of formula (1)
appear also in the union expression of formula (2). There-
fore, if the sets in formulae (1) and (2) are the same, then
we shall get the required relation for monotonicity, that is,
JqKG ⊆ JqKH .

Notice, however, that this is not the case because of the
renaming functions. According to Definition 4.5 of [25], a re-
naming function not only depends on the mapping that has
been constructed from the evaluation of a graph pattern, but
also on the underlying RDF graph over which the graph pat-
tern is evaluated. Thus, a renaming function besides renam-
ing a specific blank node to another one per each mapping
solution, that renaming has to correspond to a fresh blank
node not appearing in the underlying RDF graph. There-
fore, a renaming function used in formula (1) could have
possibly renamed a blank node to a fresh one regarding G,
but not a fresh one regarding H , i.e., that blank node could
have been already in H .

Hence, in order to have the monotonicity property for
QC

AUF , we have to restrict ourselves in CONSTRUCT
queries without blank nodes in their template. In such a
case, the renaming functions do not have any effect on the
templates of CONSTRUCT queries. Hence, the sets in for-
mulae (1) and (2) are the same for same mappings, and
thus,

JqKG ⊆ JqKH .

Proof for part d)

Consider a query q = (E,P ) ∈ QC′
WD and let G,H be two

RDF graphs such that G ⊆ H . According to Definition 4.6
of CONSTRUCT for RDF graphs as given in [25] we have

JqKG =
⋃

µ∈JP KG
{µ(fµ(E)) ∩ ((I ∪B)× I × T )} (3)

JqKH =
⋃

µ′∈JP KH
{µ′(fµ′ (E)) ∩ ((I ∪ B)× I × T )} (4)

Since the template E does not contain blank nodes, we
can omit the renaming functions from these expressions and
get

JqKG =
⋃

µ∈JP KG
{µ(E) ∩ ((I ∪B)× I × T )} (5)

JqKH =
⋃

µ′∈JP KH
{µ′(E) ∩ ((I ∪B)× I × T )} (6)

Since P is well-designed, it follows from Theorem B.5 that
P is weakly monotone. Therefore, JP KG ⊑ JP KH . Hence, for
every mapping µ ∈ JP KG there exists mapping µ′ ∈ JP KH
such that µ � µ′. This means that µ, µ′ map the common
variables of their domains to the same RDF terms. Hence,
if a mapping µ ∈ JP KG produces triple t in JqKG, that triple
is also produced in JqKH by a mapping µ′ ∈ JP KH such that
µ � µ′. Thus, JqKG ⊆ JqKH .

C.2 Proof of Proposition 6.8
The proof of Proposition 6.8 is straightforward from the

monotonicity property. Since G ≈ H we have the following:

• for every G ∈ G there exists H ∈ H such that H ⊆ G
and

• for every H ∈ H there exists G ∈ G such that G ⊆ H .

Let q ∈ Q. Because Q is monotone, from the first item above
we have that JqKH ⊆ JqKG for every G ∈ G and some H ∈ H.
Notice also that this property holds for every set making up
JqKG and some JqKH ∈ JqKH. Similarly, from the second item
above we have that JqKG ⊆ JqKH for every H ∈ H and some
G ∈ G. Notice again that this property holds for every set
making up JqKH and some JqKG ∈ JqKG . Hence, JqKG and
JqKH are coinitial, that is,

JqKG ≈ JqKH.

C.3 Proof of Lemma 6.9
The proof is similar to the one given in [12, Lemma 4.2].

We have to prove that
⋂JqKG =

⋂JqKH for every q ∈ QC′
AUF .

Let G ≈ H. Then, from Proposition 6.8 and because of the

monotonicity property of QC′
AUF , we have that JqKG ≈ JqKH

for every q ∈ QC′
AUF . Thus, for every JqKG ∈ JqKG there

exists an JqKHG ∈ JqKH such that JqKHG ⊆ JqKG. So, we
have
⋂

JqKG =
⋂

G∈G
JqKG ⊇

⋂

G∈G
JqKHG ⊇

⋂

H∈H
JqKH =

⋂
JqKH.

To see why
⋂

G∈G
JqKG ⊇ ⋂

G∈G
JqKHG , notice that

⋂
G∈G

JqKG
and

⋂
G∈G

JqKHG can be written respectively as

JqKG1 ∩ JqKG2 ∩ · · · and JqKHG1
∩ JqKHG2

∩ · · ·



and that

JqKHGi
⊆ JqKGi .

Therefore, if an element x is in
⋂

G∈G
JqKHG , it will be in every

JqKHGi
, and thus it will be in every JqKGi , which proves the

relation.
Now, to see why

⋂
G∈G

JqKHG ⊇ ⋂
H∈H

JqKH , notice that the

relation can be written as
⋂

JqKHG ⊇
⋂

JqKH
where

HG ≡ {H ∈ H | H ⊆ G for some G ∈ G}.
Thus, HG ⊆ H, and therefore, we have that

⋂HG ⊇ ⋂H.
Similarly if q is a monotone query, we have JqKHG ⊆ JqKH
and

⋂JqKHG ⊇ ⋂JqKH.
Therefore, we showed that

⋂
JqKG ⊇

⋂
JqKH.

We work similarly to prove
⋂

JqKH ⊇
⋂

JqKG
and get

⋂
JqKG =

⋂
JqKH.

C.4 Proof of Proposition 6.13
Let JqKD be the pair D1 = (G1, φ) and G

′ an RDF graph
such that G′ ∈ Rep(D1). From the definition of Rep, there
exists a valuation v′ such that ML |= v′(φ) and G′ ⊇ v′(G1).
From the assumption that v(JqKD) = JqKv(D) and since
ML |= v′(φ) we get

G′ ⊇ v′(G1) = v′(D1) = v′(JqKD) = JqKv′(D) = H

where H is a new symbol introduced for convenience. Now,
observe that v′(D) is the RDF graph v′(G) which is an ele-
ment of Rep(D) since ML |= v′(φ). Since also

JqKRep(D) = {JqKG | G ∈ Rep(D)}
it turns out that H ∈ JqKRep(D). To see this, notice that

H = JqKv′(D)

and that

v′(D) ∈ Rep(D).

This proves that for each G′ ∈ Rep(JqKD) there exists
an H ∈ JqKRep(D) such that H ⊆ G′. To prove that
Rep(JqKD) ≈ JqKRep(D) we need to show the same for the
other direction.

Let H ′ be an RDF graph such that H ′ ∈ JqKRep(D). Then
H ′ = JqKH for some H ∈ Rep(D). From the definition
of Rep, there exists a valuation v′ such that ML |= v′(φ)
and H ⊇ v′(G) or equivalently H ⊇ v′(D). From our as-
sumption that v(JqKD) = JqKv(D) and ML |= v′(φ), we have
JqKv′(D) = v′(JqKD). Since q belongs to a monotone fragment
of SPARQL and H ⊇ v′(D), we have

JqKH ⊇ JqKv′(D)

which is equivalent to

H ′ ⊇ v′(JqKD).

Now observe that since ML |= v′(φ), v′(JqKD) is an RDF
graph G′ and that G′ ∈ Rep(JqKD). Therefore, we showed
that for everyH ′ ∈ JqKRep(D) there exists an G

′ ∈ Rep(JqKD)
such that G′ ⊆ H ′.

Hence

Rep(JqKD) ≈ JqKRep(D).

C.5 Proof of Theorem 6.14
The proof for item a) can be found in the proof for The-

orem C.1, while the proof for item b) can be found in the
proof for Theorem C.2 below.

Theorem C.1. The triple 〈D, Rep,QC′
AUF 〉 is a represen-

tation system.

Proof. To prove Theorem C.1, it is sufficient to show
that for any D = (G,φ) ∈ D and any query q = (E,P ) ∈
QC′

AUF it is possible to define JqKD in such a way that

Rep(JqKD) ≡QC′
AUF

JqKRep(D).

By Lemma 6.9 it is sufficient to prove that

Rep(JqKD) ≈ JqKRep(D). (1)

From Proposition 6.13 it now suffices to prove that for any
valuation v such that ML |= v(φ) it is

v(JqKD) = JqKv(D).

From Proposition E.2, the above holds if for any valuation
v such that ML |= v(φ), the following holds

v(JP KD) = JP Kv(D).

This is done by induction on the structure of graph pat-

terns P of QC′
AUF .

• P is (s, p, o) (base case):

We shall prove that v(JP KD) = JP Kv(D).

Let µ ∈ v(JP KD). Then, there exists a conditional map-
ping µ′ = (ν′, θ′) ∈ JP KD such that v(µ′) = µ and
ML |= v(θ′).

We now distinguish two cases corresponding to the two
cases of Definition 5.15 (1):

(i) In this case o ∈ C. In this case dom(ν′) does
not contain any special query variable, hence the
application of v to µ′ leaves ν′ unchanged. In
other words µ = v(µ′) = ν′.
Now we have two cases corresponding to the two
sets making up JP KD.
If µ = ν′ is an element of the first set, then

(µ′(P ), θ′) ∈ G.

Since ML |= v(θ′), this is written as

v(µ′(P )) ∈ v(G)

and because ML |= v(φ), this is equivalent to

v(µ′(P )) ∈ v(D).

Since also v(µ′) = µ, we have

µ(P ) ∈ v(D).

and hence

µ ∈ JP Kv(D).



If µ = ν′ is an element of the second set then
θ′ is θ ∧ ( l EQ o). Since ML |= v(θ′), we have
ML |= v(θ) and ML |= v( l EQ o). From the
second set of the first item of Definition 5.15 that
makes up JP KD, we have

((µ(s), µ(p), l), θ) ∈ G.

Since ML |= v(θ), we can apply v to the above
and get

v((µ(s), µ(p), l)) ∈ v(G).

Since also ML |= v(φ) and ML |= v( l EQ o) we
get

(µ(s), µ(p), o) ∈ v(D)

which is equivalently written as

µ(P ) ∈ v(D)

or

µ ∈ JP Kv(D).

(ii) In this case o ∈ I ∪B ∪ L ∪ V . Therefore ν′(o) ∈
I ∪ B ∪ L ∪ U ∪ C and

(µ′(P ), θ′) ∈ G.

Since ML |= v(θ′), we can apply v to the previous
relation and get

v(µ′(P )) ∈ v(G).

Because also ML |= v(φ), we have

v(µ′(P )) ∈ v(D).

The latter fact together with the fact that v(µ′) =
µ gives that

µ(P ) ∈ v(D)

and hence

µ ∈ JP Kv(D).

This establishes the fact that v(JP KD) ⊆ JP Kv(D). The
other direction of the proof is similar and goes as fol-
lows.

Let µ ∈ JP Kv(D). Then, µ(P ) ∈ v(D).

We now distinguish two cases corresponding to the two
cases of Definition 5.15 (1):

(i) In this case o ∈ C. Then, dom(µ) does not contain
any special query variable. Since µ(P ) ∈ v(D),
there exists conditional triple ((µ(s), µ(p), x), θ) ∈
G such that ML |= v(θ) and v(x) = o.
Now, we have two cases for x corresponding to the
two sets making up JP KD in Definition 5.15 (1):

– x is o. Then, a conditional mapping µ′ =
(µ, θ) is an element of the first set, i.e., µ′ ∈
JP KD. Since ML |= v(θ), we can apply v to
relation

µ′ ∈ JP KD
and get

v(µ′) ∈ v(JP KD).

Because dom(µ) does not contain any special
query variable the application of v to µ′ leaves
µ′ unchanged. Therefore,

v(µ′) ∈ v(JP KD)

becomes

µ ∈ v(JP KD).

– x is l. Then, a conditional mapping µ′ =
(µ, θ ∧ l EQ o) is an element of the second
set, i.e., µ′ ∈ JP KD. Since v( l) = v(x) = o,
we have ML |= v( l EQ o). Because also
ML |= v(θ), it holds that ML |= (θ∧ l EQ o),
and hence we can apply v to relation

µ′ ∈ JP KD
and get

v(µ′) ∈ v(JP KD).

Because dom(µ) does not contain any special
query variable the application of v to µ′ leaves
µ′ unchanged. Therefore,

v(µ′) ∈ v(JP KD)

becomes

µ ∈ v(JP KD).

(ii) In this case o ∈ I ∪B ∪L∪V . We have two cases
to consider.
If o ∈ I∪B∪L∪Vn, then dom(µ) does not contain
any special query variable. Since µ(P ) ∈ v(D),
there exists conditional triple (µ(P ), θ) ∈ G such
that ML |= v(θ). By the “else” part of Definition
5.15 the conditional mapping µ′ = (µ, θ) is an
element of JP KD, that is,

µ′ ∈ JP KD.
Since ML |= v(θ), we can apply valuation v to
this relation and get

v(µ′) ∈ v(JP KD)

which is equivalent to

µ ∈ v(JP KD)

since the application of v to µ′ leaves µ′ (and µ)
unchanged.

Now if o ∈ Vs, there exists a conditional mapping
µ′ = (ν′, θ) such that µ′ and µ are possibly com-
patible, dom(µ′) = dom(µ), and ML |= v(θ). The
conditional mapping µ′ is such that either ν′ = µ
or ν′(x) = µ(x) for every x ∈ dom(µ) \ {o} and
ν′(o) ∈ U with v(ν′(o)) = µ(o). In either case
µ(P ) ∈ v(D) implies

v(µ′(P )) ∈ v(D).

from which eliminating v we get

(µ′(P ), θ) ∈ G

or equivalently

µ′ ∈ JP KD.



Applying v to the last relation we have that

v(µ′) ∈ v(JP KD)

and thus

µ ∈ v(JP KD).

• Inductive step:

– P is P1 AND P2.
We have v(JP1KD) = JP1Kv(D) and v(JP2KD) =
JP2Kv(D) from the inductive hypothesis. We will
prove that v(JP1 AND P2KD) = JP1 AND P2Kv(D).

Let µ ∈ v(JP1 AND P2KD). Therefore there
exists a conditional mapping µ′ = (ν′, θ′) ∈
JP1 AND P2KD such that µ = v(µ′) and ML |=
v(θ′). Because JP1 AND P2KD = JP1KD1JP2KD,
there exist possibly compatible conditional map-
pings µ′

1 = (ν′1, θ
′
1) and µ′

2 = (ν′2, θ
′
2) such that

µ′ = µ′
11µ′

2, µ
′
1 ∈ JP1KD, and µ′

2 ∈ JP2KD. Because
of Proposition E.1 and the fact that ML |= v(θ′),
we have

µ = v(µ′) = v(µ′
11µ′

2) = v(µ′
1)1v(µ′

2).

Since ML |= v(θ′) it also holds ML |= v(θ′1) and
ML |= v(θ′2). Therefore, v(µ′

1) ∈ v(JP1KD) and
v(µ′

2) ∈ v(JP2KD). Notice also that because µ′
1 and

µ′
2 are possibly compatible, v(µ′

1) and v(µ′
2) are

compatible. Therefore,

v(µ′
1)1v(µ′

2) ∈ v(JP1KD)1v(JP2KD)

which is equivalent to

µ ∈ v(JP1KD)1v(JP2KD).

From the equalities of the inductive hypothesis, we
now get

µ ∈
(JP1Kv(D)1JP2Kv(D)

)

which is equivalent to

µ ∈ JP1 AND P2Kv(D).

This proof establishes that

v(JP1 AND P2KD) ⊆ JP1 AND P2Kv(D).

The other direction of the proof is similar and goes
as follows.

Let µ be a mapping such that µ ∈
JP1 AND P2Kv(D). Then µ ∈

(JP1Kv(D)1JP2Kv(D)

)
,

which due to the inductive hypothesis gives us

µ ∈ v(JP1KD)1v(JP2KD).

Therefore, there exist compatible mappings µ1 ∈
v(JP1KD) and µ2 ∈ v(JP2KD) such that µ =
µ11µ2. Thus, there exist conditional mappings
µ′
1 = (ν′1, θ

′
1) ∈ JP1KD and µ′

2 = (ν′2, θ
′
2) ∈ JP2KD

such that µ1 = v(µ′
1), µ2 = v(µ′

2), ML |= v(θ′1)
and ML |= v(θ′2). Notice also that µ′

1 and µ′
2 are

possibly compatible.
From Proposition E.1 and the fact that µ = µ11µ2,
we have

µ = µ11µ2 = v(µ′
1)1v(µ′

2) = v(µ′
11µ′

2).

Because µ′
1 ∈ JP1KD, µ′

2 ∈ JP2KD, and µ′
1, µ

′
2 are

possibly compatible, we have

µ′
11µ′

2 ∈ JP1KD1JP2KD.
Now let µ′ = (ν′, θ′) be a conditional mapping
such that µ′ = µ′

11µ′
2. Since ML |= v(θ′1) and

ML |= v(θ′2), the definition of join of two compat-
ible mappings gives us ML |= v(θ′). Therefore we
can apply the valuation v to µ′ and get

v(µ′) ∈ v(JP1KD1JP2KD).

From this and the fact that v(µ′) = v(µ′
11µ′

2) = µ
we get

µ ∈ v(JP1 AND P2KD).

– P is P1 UNION P2.
We have v(JP1KD) = JP1Kv(D) and v(JP2KD) =
JP2Kv(D) from the inductive hypothesis. We will
prove that

v(JP1 UNION P2KD) = JP1 UNION P2Kv(D).

A mapping µ is in JP1 UNION P2Kv(D) iff µ ∈
JP1Kv(D)∪ JP2Kv(D), which due to the inductive hy-
pothesis is equivalent to µ ∈ v(JP1KD) ∪ v(JP2KD),
which can be seen to be equivalent to µ ∈ v(JP1KD∪
JP2KD), which is equivalent to

µ ∈ v(JP1 UNION P2KD).

– P is P1 FILTER R.
We have v(JP1KD) = JP1Kv(D) from the inductive
hypothesis. We will prove that

v(JP1 FILTER RKD) = JP1 FILTER RKv(D)

Without loss of generality, we give the proof only
for the case of filters that are atomic L-constraints
(Definition 5.18). Let µ be in JP1 FILTERRKv(D).
By definition, this is equivalent to µ ∈ JP1Kv(D)

and µ |= R. From the inductive hypothesis, we
now have

µ ∈ v(JP1KD).

Thus, there exists a conditional mapping µ′ =
(ν′, θ′) ∈ JP1KD such that v(µ′) = µ and ML |=
v(θ′).
Let now µ1 = (ν′, θ1) be a conditional mapping
with θ1 = θ′ ∧ ν′(R). Because µ |= R, we have
ML |= µ(R). Therefore ML |= v(ν′(R)) since
v(µ′) = µ. Now notice that because ML |=
v(ν′(R)) and ML |= v(θ′), we have ML |= v(θ1).
Therefore v(µ1) is well defined and we have v(µ1) =
v(µ′) = µ.
The way µ1 and µ′ have been defined above, to-
gether with the definition of the evaluation of FIL-
TER graph patterns give us

µ1 ∈ JP1 FILTER RKD.
We can apply valuation v to

µ1 ∈ JP1 FILTER RKD
and get

v(µ1) ∈ v(JP1 FILTER RKD)



which is equivalent to µ ∈ v(JP1 FILTER RKD).

This proof establishes that

JP1 FILTER RKv(D) ⊆ v(JP1 FILTER RKD).

The other direction of the proof is similar and goes
as follows.
Let µ be a mapping in v(JP1 FILTER RKD).
Then there exists a conditional mapping µ1 =
(ν1, θ1) ∈ JP1 FILTER RKD such that v(µ1) = µ
and ML |= v(θ1). Therefore, from the definition of
FILTER evaluation there exists a conditional map-
ping µ2 = (ν1, θ2) such that µ2 ∈ JP1KD, where
θ1 = θ2 ∧ ν1(R). Since ML |= v(θ1), then it holds
that ML |= v(θ2) and ML |= v(ν1(R)). Thus

v(µ2) = v(µ1) = µ ∈ v(JP1KD).

Now using the inductive hypothesis, we have

µ ∈ JP1Kv(D).

Because ML |= v(ν1(R)) and µ = v(µ1), we have
ML |= µ(R). Thus we also have µ |= R. Hence

µ ∈ JP1 FILTER RKv(D).

Theorem C.2. The triple 〈D, Rep,QC′
WD〉 is a represen-

tation system.

Proof. The proof for Theorem C.2 is the same with the
proof for Theorem C.1 and differs only in the inductive step
for the OPTIONAL operator. Thus, in this case,

P is P1 OPT P2.

We have v(JP1KD) = JP1Kv(D) and v(JP2KD) = JP2Kv(D)

from the inductive hypothesis. We need to prove
v(JP1 OPT P2KD) = JP1 OPT P2Kv(D) or equivalently

v(JP1 OPT P2KD) = (JP1Kv(D)1JP2Kv(D))∪(JP1Kv(D)\JP2Kv(D)).
(1)

Let µ ∈ v(JP1 OPT P2KD). There exists conditional map-
ping µ′ = (ν′, θ′) ∈ JP1 OPT P2KD such that µ = v(µ′)
and ML |= v(θ′). Since JP1 OPT P2KD = JP1KD1JP2KD =
(JP1KD1JP2KD) ∪ (JP1KD \ JP2KD),

µ′ ∈ (JP1KD1JP2KD) or µ′ ∈ (JP1KD \ JP2KD).

For the first case, i.e., µ′ ∈ (JP1KD1JP2KD) the proof is
the same as in the proof of Theorem C.1, hence we finally
get that

µ ∈ (JP1Kv(D)1JP2Kv(D))

and thus from Formula (1) we have

µ ∈ JP1 OPT P2Kv(D).

For the second case, i.e., µ′ ∈ (JP1KD \ JP2KD), and the
definition of difference for sets of conditional mappings we
distinguish two cases:

1. µ′ ∈ JP1KD and for all µ2 ∈ JP2KD, µ′ and µ2 are not
compatible. Since ML |= v(θ′), we can apply valuation
v to µ′ and get

µ = v(µ′) ∈ v(JP1KD).

Since also every conditional mapping µ2 of JP2KD is not
compatible to µ′ — and hence not possibly compatible
to µ′ — v(µ′) is not compatible to every mapping µ′′ ∈
v(JP2KD). Therefore,

v(µ′) ∈ (v(JP1KD) \ v(JP2KD))

which from our hypothesis is equivalent to

µ ∈ (JP1Kv(D) \ JP2Kv(D)).

Hence, from Formula (1) we have

µ ∈ JP1 OPT P2Kv(D).

2. µ′ is the conditional mapping (ν′, θ′) and there exists
conditional mapping µ′′ = (ν′, θ) ∈ JP1KD such that

• µ′′ is not compatible to some mappings of JP2KD
and

• for the rest mappings µi = (νi, θi) ∈ JP2KD, µ′′ and
µi are possibly compatible and

θ′ is θ ∧
(
θi ⊃

∨

x

¬(µ′′(x) EQ µi(x))

)

for x ∈ dom(µ′′) ∩ dom(µi) ∩ Vs.

Since ML |= v(θ′), we can apply valuation v to µ′ and
get

µ = v(µ′) ∈ v(JP1KD \ JP2KD)

which can be written as

µ = v(µ′) ∈ (v(JP1KD) \ v(JP2KD)) .

To see this, notice that the above relation holds if and
only if v(µ′) ∈ v(JP1KD) and it is not compatible to
every mapping v(µ2) of v(JP2KD). Since ML |= v(θ′) it
holds ML |= v(θ) and thus v(µ′) = v(µ′′) ∈ v(JP1KD).
Let us now take a mapping µ2 in JP2KD. Then, a) ei-
ther µ′′, and consequently µ′, is not compatible to µ2,
or b) µ′′, and consequently µ′, is possible compatible
to µ2. For the first case v(µ′) is also not compatible to
v(µ2). For the second case v(µ′) is also not compati-
ble to v(µ2). To see this, notice that v(µ′) and v(µ2)
become compatible only when v(µ′(x)) = v(µ2(x))
for x ∈ dom(µ′) ∩ dom(µ2). In such cases, however,
ML 6|= θ′ and thus v(µ′) /∈ v(JP1KD).

Continuing the proof, from our hypothesis, relation

µ = v(µ′) ∈ (v(JP1KD) \ v(JP2KD))

now becomes

µ ∈ (JP1Kv(D) \ JP2Kv(D))

and thus from Formula (1) we get

µ ∈ JP1 OPT P2Kv(D).

This proves that v(JP1 OPT P2KD) ⊆ JP1 OPT P2Kv(D).
The other direction of the proof is similar.

D. PROOFS FOR SECTION 7



D.1 Proof of Lemma 7.3
To show that

⋂
Rep(D) =

⋂
Rep((DEQ)∗) we will first

prove that
⋂
Rep(D) ⊆

⋂
Rep((DEQ)∗).

Let t be an RDF triple such that t /∈ ⋂
Rep((DEQ)∗).

Then, by definition of Rep we get

t /∈
⋂

{H | there exists valuation v such that

ML |= v(φ) and H ⊇ v((GEQ)∗) }.

Therefore, there exists valuation v such that ML |= v(φ)
and t /∈ v((GEQ)∗), and thus

• either there is no conditional triple (t′, θ′) ∈ (GEQ)∗

such that ML |= v(θ′), that is, ML 6|= v(θ′),

• or all conditional triples (t′, θ′) ∈ (GEQ)∗ such that
ML |= v(θ′) are such that v(t′) 6= t.

Observe now that for conditional triples in (GEQ)∗, θ′ can
be written as

∨
i

θ′i. So, if (t′, θ′) ∈ (GEQ)∗, then (t′, θ′i) ∈

GEQ. Therefore, there will be a conditional triple (t′′, θ′i) ∈
G, such that t′ and t′′ possibly differ in their object position.
In the following we construct G and we show that t 6∈ v(G)
for this particular v.

For the first case above, and since ML 6|= v(θ′) we have
that ML 6|= v(θ′i) for every θ′i, and thus such triples are
dropped during application of valuation v to G. Hence, if it
was the case that t ∈ ⋂Rep(D), it would be so, only from
the second case above.

Consider now the second case above and a triple (t′, θ′) ∈
(GEQ)∗. Since ML |= v(θ′) and (t′, θ′i) ∈ GEQ, then some
(or even all) θ′i would be such that ML |= v(θ′i).

Let us now construct the conditional graph G from GEQ.
Since (t′, θ′i) ∈ GEQ, then there exists conditional triple
(t′′, θ′i) ∈ G such that t′ and t′′ possibly differ in their object
position. Let t′ be the e-triple (s, p, o). Then:

1. If o ∈ C, then either t′′ would be the same with t′, or
it would have in its object position an e-literal l such
that φ |= l EQ o.

2. If o 6∈ C, then t′ and t′′ would be the same.

Let us now apply valuation v to G. Notice that v(G) con-
tains only RDF triples coming from conditional triples with
a condition θ such that v(θ) is true. Thus, we could focus
only on the conditional triples of G with such conditions
(it is clear from above, that such conditional triples do ex-
ist). To construct the RDF graph v(G) it suffices to consider
the two items above when applying v to a conditional triple
(t′′, θ′i) of G.

According to the second item and since v(t′) 6= t (see
second case above), we have that v(t′′) 6= t as well. As for
the first item, if t′ = t′′, then clearly we have v(t′′) 6= t,
since v(t′) 6= t. Otherwise, t′′ would be the triple (s, p, l)
such that φ |= l EQ o. In such a case, the application of v
to t′ would leave t′ unchanged, thus the RDF triple t would
contain in the object position a literal from C and one that
would be different from o (this is because we are considering
the second case for which v(t′) 6= t). Since also φ |= l EQ o,
then every valuation v′ that makes v′(φ) true it should make
v′( l EQ o) true as well. Thus, such valuations would map
the e-literal l to the constant o. Since the valuation v we

consider is such a valuation, it maps l to the constant o.
Thus, again v(t′′) 6= t.

Therefore, we showed that v(G) cannot contain triple t
or equivalently that t /∈ v(G). Hence, from the definition of
Rep we have

t /∈
⋂
Rep(D)

which proves that
⋂
Rep(D) ⊆

⋂
Rep((DEQ)∗).

The other direction of the proof for showing
⋂
Rep((DEQ)∗) ⊆

⋂
Rep(D)

is similar.

D.2 Proof of Theorem 7.4
Notice that the certain answer for q over D is the set

⋂
JqKRep(D).

From the Representation Theorem and since q ∈ QC′
AUF it

suffices to show that the algorithm computes the set
⋂
Rep(JqKD).

Notice that equation
⋂

JqKRep(D) =
⋂
Rep(JqKD)

is a logical consequence of Definition 6.3 for the identity
query.

Having Lemma 7.3 it now suffices to prove that the given
algorithm computes the set

⋂
Rep(((JqKD)EQ)∗)

or, using the notation of Theorem 7.4, set
⋂
Rep(((Dq)

EQ)∗).

The first step of the algorithm evaluates q over D, that is,
it computes Dq = (Gq, φ), while the second step computes
the EQ-completed form of Dq , that is, (Dq)

EQ, and then its
normalized form, ((Dq)

EQ)∗.
It remains to show that step three computes exactly the

intersection over the RDF graphs in Rep(((Dq)
EQ)∗).

Consider the set
⋂
Rep(((Dq)

EQ)∗) or equivalently the set
⋂

{H | there exists valuation v such that

ML |= v(φ) and H ⊇ v(((Dq)
EQ)∗) }.

An RDF triple t belongs to the above set iff for all valua-
tions v such that ML |= v(φ), it holds

t ∈ v(((Dq)
EQ)∗).

This is equivalent to requiring that a conditional triple
(t′, θ′) exists in Hq such that ML |= v(θ′) and t = v(t′)
for all valuations v such that ML |= v(φ).

The first condition, that is, requiring that ML |= v(θ′)
holds for all valuations v such that ML |= v(φ), is equivalent
to requiring that φ |= θ′ holds, a requirement that step three
imposes.

As for the second condition, equation t = v(t′) holds for
any valuation v such that ML |= v(φ) iff t′ respects the
following two cases:



• it does not contain any e-literal in the object position,

• it does contain an e-literal l and all valuations v above
map l to the same constant c ∈ C, which t has it in
its object position.

Since step three selects all conditional triples (t′, θ) of Hq

such that φ |= θ and o 6∈ U , the first case above is satis-
fied. The second case above is out of question: Hq does not
contain such a triple since all such e-literals have already
been substituted by the respective constant c ∈ C such that
φ |= l EQ c.

Thus, step three computes exactly the set
⋂
Rep(((Dq)

EQ)∗).

D.3 Proof of Theorem 7.6
Working similar to Proof D.2, it suffices to show that an

RDF triple t is in the certain answer of q ∈ QC′
AUF over D,

that is, t ∈ ⋂Rep(JqKD), if and only if the following formula
is valid:

(∀ l)(φ( l) ⊃ Θ(t, q,D, l)) (1)

Let us now construct formula Θ(t, q, D, l) given the eval-
uation of q over D, i.e., JqKD = (G′, φ). Recall that formula
Θ(t, q,D, l) is a disjunction of constraints θi for each condi-
tional triple (t′i, θ

′
i) ∈ G′ such that if t and t′i have the same

subject and predicate, θi is

• θ′i if they agree in the object position as well,

• θ′i ∧ ( l EQ o) if t has the constant o ∈ C at the object
position and t′i has the e-literal l ∈ U at the object
position.

In every other case (i.e., t and t′i do not agree in the subject
and predicate or agree but the object of t is not a constant
from C or the object of t′i is not an e-literal from U) no
constraint θi is generated for those conditional triples and
yet Θ(t, q,D, l) is taken to be false. Therefore, formula (1)
is either unsatisfiable (we assume that the global constraint
is always satisfiable) or of the form

(∀ l)(φ( l) ⊃ θ1 ∨ . . . ∨ θk) (2)

Consider now an RDF triple t /∈ ⋂Rep(JqKD). Then there
exists valuation v such that ML |= v(φ) and t /∈ v(G′).
Therefore, G′ contains conditional triples (t′, θ′) such that
either

• ML 6|= v(θ′) or

• ML |= v(θ′) and t 6= v(t′).

Considering the first case above and since ML 6|= v(θ′),
formula (2) would be unsatisfiable. To see this, notice that
ML 6|= v(θ′) impliesML 6|= v(θ′i) andML 6|= v(θ′i∧( l EQ o))
and thus the disjunction θi∨ . . .∨θk in formula (2) is always
false, and hence the whole formula is unsatisfiable.

To prove our result (i.e., that formula (1) is unsatisfiable
for the specific RDF triple we considered), we have to show
that formula (2) is unsatisfiable as well for the case in which
ML |= v(θ′) and t 6= v(t′) (the second case above). Notice
that t 6= v(t′) implies one of the following cases:

• t and t′ do not agree in the subject or predicate posi-
tion, or

• if they do, either they do not agree in the object po-
sition, or their objects are not of the proper kind (i.e.,
the object of t is a constant from C and the object of

t′ is an e-literal from U), or if they are, then valuation
v does not map that e-literal to that constant.

From the first case, no constraint θi is included in for-
mula (2). As for the second case, either no constraint θi is
generated (the case in which they also differ in the object
position) or θi is θ

′
i ∧ ( l EQ o)). As we pointed above, since

valuation v does not map the e-literal l to the constant o,
then θi is false. Hence, formula (2) is unsatisfiable as well.

The other direction of the proof is similar.

D.4 Proofs for Section 7.1

Proposition D.1. Let D = (G,φ) be an RDFi database,

q a query from QC′
AUF and H an RDF graph. The cer-

tainty problem, CERTC(q,H,D), when the language of L-
constraints is ECL is coNP-complete.

Proof. To decide CERTC(q,H,D), we have to check
that H ⊆ ⋂JqKRep(D) which from Definition 4.4 is equiv-
alent to checking that H ⊆ JqKv(D) for all valuations v such
that MECL |= v(φ). Notice that the complement of this
problem is to check whether there exists a valuation v such
that MECL |= v(φ) and H 6⊆ JqKv(D). In other words, it
suffices to find a valuation v and a triple t ∈ H such that
MECL |= v(φ) and t /∈ JqKv(D). This last problem is in NP,
thus the certainty problem is in coNP.

Let us see why the complement problem defined above is
in NP. We need only guess a valuation v with length equal
to the number of e-literals in D, check that MECL |= v(φ),
a computation that is in the AC complexity class, and then
check that there exists t ∈ H such that t /∈ JqKv(D). The
steps for accomplishing the latter check, using Definition
4.6 for evaluating CONSTRUCT query forms of standard
SPARQL [25], are the following:

1. Choose the next triple t ∈ H .

2. Loop over all candidate mappings µ for set JP Kv(D) gen-
erating a mapping per iteration, where P is the graph
patter of query q.

3. Check that µ ∈ JP Kv(D).

4. Construct the renaming function fµ based on the map-
ping µ.

5. Generate set Sµ = {µ(fµ(E)) ∩ (I ∪ B)× I × T}.
6. Check whether t ∈ Sµ. If yes, move to step 1, otherwise

move to step 2. If there is no other mapping µ to check,
return“yes”. If there is no other triple to choose, return
“no”.

Step 2 above requires logarithmic space since the space re-
quired to store a candidate mapping µ from the set JP Kv(D)

is O(|P |(log|P | + log|D|)) bits. This is because the map-
ping will contain |P | variables and for each variable, it has
to contain its value from D. The required space for each
variable and value is log|P | and log|D|, respectively. Since
q is fixed, the graph pattern P is also fixed, therefore the
space becomes logarithmic in the size of the database D.

Step 3 above can also be computed in LOGSPACE using
the evaluation procedure EVAL presented in [26]. Further,
since q is fixed, then also the template E and graph pattern
P are fixed. Thus, set Sµ of step 5 is of fixed size.

The coNP-hardness of CERTC(q,H,D) comes from a re-
duction from 3DNF tautology, which is known to be coNP-
complete, and it is similar to the one employed in [6, Theo-
rem 5.11, p. 118].



Proposition D.2. Let D = (G,φ) be an RDFi database,

q a query from QC′
AUF and H an RDF graph. The cer-

tainty problem, CERTC(q,H,D), when the language of L-
constraints is one of dePCL, diPCL, or RCL is coNP-
complete.

Proof. We sketch the proof for dePCL. The proof is sim-
ilar for the cases of diPCL and RCL.

Similar to the proof for ECL, to decide CERTC(q,H,D),
we have to check that H ⊆ ⋂JqKRep(D) which from Defini-
tion 4.4 is equivalent to checking that H ⊆ JqKv(D) for all
valuations v such that MdePCL |= v(φ). The complement of
this problem is to check whether there exists a valuation v
such that MdePCL |= v(φ) and H 6⊆ JqKv(D). In other words,
it suffices to find a valuation v and a triple t ∈ H such that
MdePCL |= v(φ) and t /∈ JqKv(D). This last problem is in
NP, thus the certainty problem is in coNP.

Let us see why the complement problem defined above
is in NP. First, we use a non-deterministic Turing machine
to guess in polynomial time a valuation v that satisfies φ
and then iterate over every triple t of RDF graph H check-
ing whether t /∈ JqKv(D). This last check is done using the
procedure described in the proof for ECL.

Let us see now how we can guess a valuation v satisfying
the global constraint φ of D in polynomial time. To do this,
we have to guess a rational number for every e-literal of the
databaseD, substitute these values for e-literals in the global
constraint φ and check that φ is true in polynomial time.
Using Lemma 7.3 and Theorem 8.5 of [16], and Theorem
7.6 of our work, we can restrict the values over which the
e-literals range only to a finite number of integers. The
exact ranges are given in [16] and depend on the maximum
absolute value of the constants appearing in formula φ. Each
value in these ranges takes up only polynomial amount of
space with respect to the database size and the maximum
absolute value of the constants of φ, thus the guessing step
can be done in polynomial time. Then, it is trivial to verify
that v(φ) is true.

This proves that the complement of CERTC(q,H,D) is in
NP and consequently that CERTC(q,H,D) is in coNP. The
coNP-hardness of CERTC(q,H,D) follows from Proposition
3.1 of [35] where a sublanguage of dePCL/diPCL, similar to
RCL, is considered that contains only the “less-than” predi-
cate over rational or integer constants. Therefore, this lower
bound holds for the languages diPCL and RCL as well.

Proposition D.3. Let D = (G,φ) be an RDFi database,

q a query from QC′
AUF and H an RDF graph. The cer-

tainty problem, CERTC(q,H,D), when the language of L-
constraints is TCL is in EXPTIME.

Proof. Since the satisfiability problem for conjunctions
of TCL-constraints is known to be in PTIME [29], we can
transform Formula (2) in DNF, construct a constraint net-
work for each disjunct, and check them for consistency.
This can be trivially solved in EXPTIME (DNF transfor-
mation).

Proposition D.4. Let D = (G,φ) be an RDFi database,

q a query from QC′
AUF and H an RDF graph. The cer-

tainty problem, CERTC(q,H,D), when the language of L-
constraints is PCL with the predicates of the RCC-5 calculus
is in EXPTIME.

Proof. The above procedure applies also to the case of
PCL restricted to the topological relations of RCC-5 when

the involved constants are polygons in V -representation. In
[20] it is shown that the satisfiability problem for such con-
straints can be decided in PTIME.

E. ADDITIONAL PROPOSITIONS
The next proposition shows that the result of applying a

valuation to the join of two possibly compatible conditional
mappings is the same as applying first the valuation to the
conditional mappings and then computing their join as in
standard RDF.

Proposition E.1. Let v : U → C be a valuation and
µ1 = (ν1, θ1), µ2 = (ν2, θ2) be two possibly compatible con-
ditional mappings such that µ11µ2 = (ν3, θ3). Then

v(µ11µ2) = v(µ1)1v(µ2)

whenever these mappings are defined (i.e., whenever ML |=
v(θ3) and therefore ML |= v(θ1) and ML |= v(θ2)).

The proof follows easily from the definition of join for
conditional mappings and is omitted.

Proposition E.2. Let D = (G,φ) be an RDFi database,
q = (E,P ) a CONSTRUCT query without blank nodes
in E, and v a valuation such that ML |= v(φ). Then,
v(JP KD) = JP Kv(D) implies v(JqKD) = JqKv(D).

Proof. Let JqKD be the RDFi database D′ = (G′, φ)
where

G′ =
⋃

µ=(ν,θ)∈JP KD
{(t, θ) | t ∈ (µ(fµ(E))∩((I∪B)×I×T ))}.

Then v(JqKD) is the RDF graph v(D′) where

v(D′) =
⋃

µ∈JP KD
{v(t) | t ∈ (µ(fµ(E)) ∩ ((I ∪B)× I × T ))

and µ = (ν, θ) such that ML |= v(θ)}.
(1)

Likewise, let JqKv(D) be the RDF graph H . According to
the definition of the evaluation of CONSTRUCT queries
on RDF graphs [25], H is the following set:

H =
⋃

µ∈JP Kv(D)

{µ(fµ(E)) ∩ ((I ∪B)× I × T )} (2)

To prove our proposition, we have to show that H =
v(D′).

Let t ∈ H be an RDF triple. Then, there exists a mapping
µ ∈ JP Kv(D) such that

t ∈ (µ(fµ(E)) ∩ ((I ∪ B)× I × T )) (3)

From our assumption that v(JP KD) = JP Kv(D), we have

µ ∈ v(JP KD).

Therefore, there exists a conditional mapping µ′ = (ν′, θ′) ∈
JP KD such that ML |= v(θ′) and µ = v(µ′). Since µ = v(µ′)
relation (3) is written as

t ∈
(
v(µ′(fµ(E))) ∩ ((I ∪ B)× I × T )

)

which is equivalent to the following

t ∈ v
(
µ′(fµ(E)) ∩ ((I ∪B)× I × T )

)
. (4)



From (1) and since ML |= v(θ′) and µ′ ∈ JP KD, we have

v
(
µ′(fµ(E)) ∩ ((I ∪B)× I × T )

)
⊆ v(D′).

Because also of relation (4) we get

t ∈ v(D′).

Hence, we showed that every triple of H is a triple of v(D′).
The other direction of the proof is similar and goes as

follows.
Let t ∈ v(D′), then there exists conditional mapping µ =

(ν, θ) ∈ JP KD and conditional triple tc = (t′, θ) ∈ G′ such
that ML |= v(θ), v(tc) = v(t′) = t. From (1) we then have

t′ ∈ (µ(fµ(E)) ∩ ((I ∪B)× I × T )) . (5)

Since ML |= v(θ), v(µ) is defined and thus we have

v(µ) ∈ v(JP KD)

which from our assumption that v(JP KD) = JP Kv(D) we get

µ′ = v(µ) ∈ JP Kv(D).

Thus, applying valuation v to (5) we get

v(t′) ∈ v (µ(fµ(E)) ∩ ((I ∪B)× I × T ))

which is equivalent to

t ∈ (v(µ(fµ(E))) ∩ ((I ∪ B)× I × T )) .

Since µ′ = v(µ), the above relation becomes

t ∈
(
µ′(fµ(E)) ∩ ((I ∪B)× I × T )

)
.

From the above and because of (2) and µ′ ∈ JP Kv(D) we have

t ∈
(
µ′(fµ(E)) ∩ ((I ∪B)× I × T )

)
⊆ H

and hence

t ∈ H.
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