
Improving Backtrack Search for SAT by Meansof RedundancyLaure Brisoux, �Eric Gr�egoire, and Lakhdar Sa��sCRIL { Universit�e d'Artoisrue de l'Universit�e SP16F-62037 Lens Cedex,France.fbrisoux,gregoire,saisg@cril.univ-artois.frAbstract. In this paper, a new heuristic that can be grafted to many ofthe most e�cient branching strategies for Davis and Putnam proceduresfor SAT is described. This heuristic gives a higher weight to clauses thathave been shown unsatis�able at some previous steps of the search pro-cess. It is shown e�cient for many classes of SAT instances, in particularstructured ones.1 IntroductionFor many years, the problem of propositional satis�ability (SAT) has receivedlittle attention in spite of the fact that it is recognized as a central issue in manyareas of arti�cial intelligence and other computer science domains. Recently,there has been a surge in interest in designing new computational techniquesto address it. On the one hand, very simple stochastic search techniques haveproved e�cient in solving large and hard consistent SAT problems (see e.g. [26,25] [1] [20]). On the other hand, several people have tried to improve the bestlogically complete techniques for SAT. Currently, the most e�cient logicallycomplete techniques are still based on the classical Davis and Putnam proce-dure[11]. In this paper we refer to the Davis-Logemman-Loveland procedure [10](in short DPLL). Some new e�cient versions of DPLL have been proposed re-cently, extending its practical scope to a really signi�cant extent. Among them,let us simply mention some of the most e�cient ones, namely C-SAT [3] [13],Tableau [9], POSIT [16], Satz [5], Relsat [2], GRASP [19] and DP+TSAT [21,22]. Their e�ciency is based on several principal ingredients. First, a smart useof data structures and programming skills can pay a lot with respect to thisparticular problem. Some adequate local treatment before and during the searchcan allow for better results for many classes of problems, in particular in de-tecting local inconsistencies. Last but not least, the quality of the branchingstrategy appears to be the key for good performance results. In this paper, it isshown that this strategy can advantageously include a new heuristic, that givesa higher weight to clauses that appeared unsatis�able at some previous steps ofthe search process.



Such an heuristic avoids the extra-space and computation required by tech-niques that use additional ingredients to avoid repetitive search (e.g. addingclauses when unsatis�ability is reached at some level of the search tree [19, 2,17]).The paper is organized as follows. First, the addressed formal framework isbriey recalled and DPLL with its main computational features are reviewed.Then this new heuristic is motivated and presented. Experimental results onvarious standard benchmarks are given to illustrate its e�ciency1. Finally, thelimits and the possible extensions of the approach, together with promising fur-ther possible paths of research are discussed.2 Backtrack Search SAT AlgorithmsLet us �rst recall the formal framework under consideration. SAT consists inchecking the satis�ability of a boolean formula in conjunctive normal form(CNF). A CNF formula is a set (interpreted as a conjunction) of clauses, wherea clause is a disjunction of literals. A literal is a positive or negated propositionalvariable.An interpretation of a boolean formula is an assignment of truth values to itsvariables. A model is an interpretation that satis�es the formula. Accordingly,SAT consists in �nding a model of a CNF formula when such a model does existor in proving that such a model does not exist. SAT is an NP-complete problemmeaning that all algorithm to solve it should be exponential in the worst cases,unless P = NP [7].However, not all SAT instances do exhibit the same di�culty, with respectto usual algorithms to solve it. Theoretical and experimental results even showgood average-case performance for several classes of SAT instances (see e.g. [15]).In the following, we shall refer to a variety of benchmarks for SAT [12]2 andhard random 3-SAT instances, i.e. instances from a random generation modelwhere the number of literals per clause is 3, the sign of each literal is randomlygenerated (with a probability 0.5) and the ratio of variables to clauses is 4.25([27], [9], [4] and [14]). Those last problems prove exponential for resolution [6].Recently, very simple stochastic search techniques have proved e�cient insolving large and hard consistent SAT problems, in particular the above men-tioned hard random 3-SAT consistent instances (see e.g. [26, 25] [1] [28] [20]).However, such techniques are logically incomplete since they do not cover thewhole search space. Accordingly, they cannot be used as such to prove the incon-sistency of SAT instances (see however [21]). Actually, the most e�cient logicallycomplete techniques are still based on the classical DPLL procedure (see Fig. 1)[10, 11].1 Our system is available from http://www.lifl.fr/~brisoux2 These benchmarks are available from http://dimacs.rutgers.edu/Challenges/index.html.



Procedure DPLL(S)Input : a set S of clausesOutput : a satisfying truth assignment of S if found,or a de�nitive statement that S is inconsistent.BeginPropagation of unit literals;if the empty clause is generated then return (false);else if all variables are assigned then return (true)else beginp := some unassigned literal selected by a branching rule ;return (DPLL(S ^ p ) _ DPLL(S ^ :p)) ;end ;end ;end ; Fig. 1. DPLL procedureSome new e�cient versions of DPLL have been proposed recently, extendingits practical scope to a really signi�cant extent. Among them, let us simplymention the most e�cient ones, namely C-SAT [3] [13], Tableau [9], POSIT[16], Satz [5], Relsat [2], GRASP [19] and DP+TSAT [21, 22]. One of the keyfeature for e�ciency in the DPLL procedure lies in its branching rule strategy.Accordingly, many branching rules have been proposed in the literature. Let usreview the most e�cient of them.It is widely accepted that literals occurring in the shortest clauses shouldbe preferred to some extent. Actually, for each unassigned literal l, a score f(l)is de�ned as follows. First, a weight is assigned to each clause translating theabove idea. Several measures for this weight have been proposed. Mainly, [18]proposed 2�r, where r is the length of the clause. On the other hand, empiricalresults led Dubois and Boufkhad to adopt � ln(1� 1(2r�1)2 ) as the recommendedweight, increasing the weight di�erence between clauses of various lengths. LetS be the set of clauses. f(l) = X8c2S s:t: l2cweight(c)Then the �nal score of a variable x is given byA(x) = f(x) + f(:x) + ��min(f(x); f(:x)) (1)(where � is empirically set to 1.5 [3]).Following close motivations, Freeman [16] proposedA0(x) = f(x) + f(:x) + �0 � f(x)� f(:x) (2)



(where �0 is empirically set to 1024 ).Let us note that the role of the ��min(f(x); f(:x)) and �0 � f(x)� f(:x)terms is to balance the search tree.These A(x) and A0(x) functions that are be maximized, play the role ofbranching rules and prove very e�cient. This family of branching rules includesmany variants. Let us mention Rauzy's FFIS [24] (First Failed In Shortenedclauses) and also variants that attempt to explore at a minimal cost the e�ect offurther additional resolution steps [3] or to even more exploit the power of unitpropagation [5].3 A New HeuristicDPLL is mainly devised in such way that it attempts to cover the whole searchspace, exhibiting a model or showing that any branch leads to unsatis�ability.Accordingly, the intuition behind the heuristic we shall propose is not coveredby the above branching strategy. Intuitively, it is as follows.Whenever some clauses have been shown unsatis�able at some steps of thesearch process, this information should not be neglected in the remaining searchprocess. On the contrary, in the development of the other branches of the searchtree it could be e�cient to try to encounter these situations of unsatis�abilityagain, everywhere and as soon as possible, modulo the other factors allowingan e�cient branching rule to be obtained. This can be done by selecting with ahigher priority the literals occurring in these clauses.Interestingly enough, such an heuristic can be grafted to the above e�cientbranching strategies. Formally, it is translated through a numerical factor �cthat is introduced in the function f in the following way.A new generic selection function f is thus given byf(l) = X8c2s s:t: l2c�c weight(c)where �c is set to 1, initially.Each time DPLL selects a propositional variable that would immediately leadto inconsistency, each initial clause c of the SAT instance that would be shownunsatis�able at this step of the search tree has its factor �c increased by a givenvalue , and its importance is thus increased in the further search .Let us stress that such a transformed evaluation function requires an extracomputing cost that is negligible and does not require additional clauses tobe recorded. The �c weight expresses the degree of redundancy of a clause c.Intuitively, increasing the weight of clauses that have been previously shownunsatis�able direct the search on the probable inconsistent kernels.In the following section, we give  the best experimental value with respectto several classes of SAT instances.
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γFig. 2. Average number of assignments w.r.t. 4 Experimental ResultsThe e�ciency of most DPLL procedures does not depend on the branchingstrategy only but also depends on the following other principal ingredients. First,a smart use of data structures and programming skills can pay a lot with respectto this particular problem. E�cient implementations often rely on a code that isoften really intricate. Also, some adequate local treatment before and during thesearch can allow for better results for many classes of problems. In particular, itcan allow us to detect inconsistencies that are local in the sense that they canbe related to a small subset of clauses in the SAT instance. For instance, theexecution of a local search procedure can be inserted as a �rst step of DPLL (see[20], [8]). This step can provide us a model or even allow for the further detectionof inconsistencies that are local in the above sense. Also, a limited number ofresolution steps at the root node can allow some of these inconsistencies tobe detected. Accordingly, all these facets play a role in the e�ciency of thesatis�ability checking program.As the heuristic described in this paper can be grafted to most branchingstrategies, we have experimented it with the basic one presented above, inside astraightforward implementation, allowing us to make abstraction of coding tricks.Accordingly, it should be clear that the experimental results in this paper arenot expected to defeat the performance of the best SAT systems, but simply toillustrate the gain that most systems (including the best ones) could obtain, usingthis additional heuristic. Let us also stress that this heuristic does not intervenewith local treatment at the root.First, the heuristic has been experimented in the framework of hard random3-SAT instances. In Figure 2, the average number of assignments obtained forvarious values of  is given for 200 3-SAT instances at the threshold with 250variables, using the standard Jeroslow and Wang 2�r rule weight inside the score



function A(x) = f(x) + f(:x) + 1:5 � min(f(x); f(:x)). A similar behaviourhas been obtained for other 3-SAT hard instances using Boufkhad's weight ruleand Freeman's score rule. A signi�cant performance improvement is obtainedwhen this new additional heuristic is used. Quite surprisingly, the gain does notincrease in a signi�cant way whenever  is more than 0.5. We are currentlyinvestigating the theoretical explanation of this feature. Accordingly, we settled to 0.5.
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γ=0.5Fig. 3. Results for 3-SAT instances using the A(x) branching rule (1)In Figure 3, average results for 3-SAT instances3 (200 instances with a vari-ables/clauses ratio being 4.25 ) are illustrated; the e�ect of using the additionalheuristic with  set to 0.5 on the score function A(x) integrating Jeroslow andWang weight rules and the instances as above is given. Similar �gures are ob-3 These experimentations have been conducted on 133 Pentium PC's.



tained for Freeman's score rule (2) using the same weight rule. In any case, asigni�cant performance improvement is obtained using the heuristic.Table 1. Some results for DIMACS instances: weight vs. no-weight resultsDimacs Size A(x) branching rule (1) = 0  = 0:5Instances Sat. # Var. #Cla. # assignments seconds # assignments secondspar16-1 Y. 1015 3310 3327186 73.85 898435 28.33par16-4-c Y. 324 1292 587249 23.76 282760 12.91aim-100-2 0-no.1 N. 100 200 27056964 944.58 589 0.06aim-200-1 6-no-2 N. 200 320 *** > 7200 1459555 211.91hanoi4 Y. 718 4934 *** > 7200 35899827 3114.00ssa2670-130 N. 1359 3321 *** > 7200 9023846 483.18ssa2670-141 N. 986 2315 *** > 7200 16808521 594.90bf1355-075 N. 2180 6778 *** > 7200 30124 5.36bf1355-638 N. 2177 4768 *** > 7200 16737 3.48f7hh.15 Y. 5315 140258 *** > 14400 442332 1073.40f8h 10 N. 2459 25290 3562510 2159.16 172344 116.75ii16e1 Y. 1245 14766 *** > 7200 77465 118.98ii32d2 Y. 404 3153 20630465 5462.36 39993 12.162bitadd 12 Y. 708 1702 15508567 1363.66 1413216 109.71e0ddr2 10by5 Y. 19500 103887 25681427 5498.15 905054 278.16bw large.d Y. 6325 131973 *** > 172800 158265845 73829.20logistics.d Y. 2160 27242 *** > 172800 *** > 172800Dimacs Size A0(x) branching rule (2) = 0  = 0:5Instances Sat. # Var. # Cla. # assignments seconds # assignments secondspar16-1 Y. 1015 33.6 3327186 74.81 757032 24.98par16-4-c Y. 324 1292 587249 23.30 250183 11.81aim-100-2 0-no-1 N. 100 200 27703970 932.16 586 0.06aim-200-1 6-no-2 N. 200 320 *** > 7200 1459555 112.98hanoi4 Y. 718 4934 *** > 7200 43012777 3892.86ssa2670-130 N. 1359 3321 *** > 7200 9023846 385.38ssa2670-141 N. 986 2315 *** > 7200 16808521 628.26bf1355-075 N. 2180 6778 *** > 7200 29129 5.00bf1355-638 N. 2177 4768 *** > 7200 16706 3.55f7hh.15 Y. 5315 140258 *** > 14400 *** > 14400f8h 10 N. 2459 25290 3562510 2159.16 66625 41.60ii16e1 Y. 1245 14766 1023 7.05 1023 7.05ii32d2 Y. 404 3153 87651 23.18 5925 1.762bitadd 12 Y. 708 1702 *** > 7200 *** > 7200e0ddr2 10by5 Y. 19500 103887 19987285 4311.01 1012918 318.45bw large.d Y. 6325 131973 **** > 172800 118425586 59229.61logistics.d Y. 2160 27242 **** > 172800 11617271 18196.40Then, this heuristic has been experimented in an extensive manner with re-spect to structured problems4 , using the standard DIMACS benchmarks [12]and the Kautz and Selman's planning instances5. Some results are given in Ta-ble 1 and discussed below. We kept 0.5 as value for . Extensive results onDIMACS benchmarks are available from the authors6 .4 These experimentations have been conducted on 166 Pentium PC's.5 available from ftp://ftp.research.att.com/dist/ai6 http://www.lifl.fr/~brisoux



Clearly enough, the empirical results con�rm the intuition. Performance im-provement is obtained with respect to most (consistent and inconsistent) prob-lems classes. Such a result is even more important for many classes of structuredproblems. Although our implementation of DPLL on a 166 Pentium is a straight-forward one that does not use e�cient coding tricks and extra features leadingto greater e�ciency, it is worth noting that it already performs better for manyDIMACS instances [12] than advanced platforms like C-SAT [3], GRASP [19],POSIT [16], Satz [5] and Relsat [2] (comparing the published computing times).Interestingly very good results are obtained on hard planning problems andcon�rms new perspectives on handling these problems in an e�cient way, usingSAT related-techniques.In conclusion, it proves thus e�cient to attempt to direct DPLL towardsalready discovered inconsistencies in the search process in most cases.5 ConclusionsClearly, the DPLL procedure is oriented towards the proof of inconsistency.Branching rules attempt to shorten the search tree as much as possible. In-consistencies detected in such trees do not necessary rely on the whole path ofinstantiated variables leading to them. On the contrary, a same cause of inconsis-tency can appear several time in the search tree. Accordingly, we propose to favorthe selection of literals occurring in clauses that have been shown unsatis�ableat some previous steps of the search process without the need of recording addi-tional clauses. Interestingly enough, this can be grafted at almost no computingcost to most existing branching rules, allowing us to balance the importance ofthis feature with other criteria that are necessary for computational e�ciency.6 AcknowledgmentsThis work has been supported in part by a Contrat d'objectif de la R�egionNord/Pas-de-Calais. Many thanks to our colleagues at CRIL, in particular O.Bailleux, Y. Boufkhad, P. Marquis and B. Mazure for fruitful discussions aboutthis paper.References1. Arti�cial Intelligence, volume 81, March 1996. Special volume on frontiers inproblem solving: phase transition and complexity.2. R. J. Bayardo Jr. and R. C. Schrag. Using csp look-back techniques to solve real-world SAT instances. In Proc. of the Fourteenth National Conference on Arti�cialIntelligence (AAAI'97), pages 203{208, 1997.3. Y. Boufkhad. Aspects propabilistes et algorithmiques du probl�eme de satis�abilit�e.PhD thesis, Universit�e de Paris VI, 1996.
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