
Using SAT Encodings
to Derive CSP Value Ordering Heuristics

Christophe Lecoutre, Lakhdar Sais, and Julien Vion

CRIL-CNRS FRE 2499,
Université d’Artois

Lens, France
{lecoutre, sais, vion}@cril.univ-artois.fr

Abstract. In this paper, we address the issue of value ordering heuristics in the
context of a backtracking search algorithm that exploits binary branching and the
adaptive variable ordering heuristic dom/wdeg. Our initial experimentation on
random instances shows that (in this context), contrary to general belief, follow-
ing the fail-first policy instead of the promise policy is not really penalis-
ing. Furthermore, using SAT encodings of CSP instances, a new value ordering
heuristic related to the fail-first policy can be naturally derived from the well-
known Jeroslow-Wang heuristic. This heuristic, called min-inverse, exploits the
bi-directionality of constraint supports to give a more comprehensive picture in
terms of domain reduction when a given value is assigned to (resp. removed from)
a given variable. An extensive experimentation on a wide range of CSP instances
shows that min-inverse can outperform the other known value ordering heuris-
tics.

1 Introduction

For solving instances of the Constraint Satisfaction Problem (CSP), backtracking search
algorithms are commonly used. To limit their combinatorial explosion, various im-
provements have been proposed (e.g. ordering heuristics, filtering techniques and con-
flict analysis). It is well known that the ordering used to perform search decisions has
a great impact on the size of the search tree. At each stage, one needs to decide the
value to assign to a variable. So far, such decisions have been performed by choosing
the variable in a first step (vertical selection) and the value to assign in a second step
(horizontal selection).

Many works have been devoted to the first selection step. Variable ordering heuris-
tics that have been proposed can be conveniently classified as static (e.g. deg), dynamic
(e.g. dom [15], bz [6], dom/ddeg [4]) and adaptive (e.g. dom/wdeg [5]). The heuristic
dom/wdeg has been shown superior to the other ones [5, 21, 16, 28]. However, value
ordering (the second step of the decision) has clearly been considered for a long time
as potentially of marginal effect to search improvements. The arguments behind this
can be related to the fact that selecting a given value is computationally more difficult
than selecting a given variable, particularly when one considers dynamic selection. The
second reason for considering value ordering as useless is that, when facing unsatisfi-
able instances or when searching all solutions, one needs to consider all values for each

variable. As clearly shown by Smith and Sturdy [26], these arguments hold when search
is based on d-way branching but not on 2-way branching. d-way branching means that,
at each node of the search tree, a variable x is selected and d branches are considered
where d is the current size of the domain of x: the ith branch corresponds to x = ai

where ai denotes the ith value of the domain of x. On the other hand, with binary (or
2-way) branching, at each node of the search tree, a pair (x,a) is selected where x is an
unassigned variable and a a value in the domain of x, and two branches are considered:
the first one corresponds to the assignment x = a and the second one to the refutation
x 6= a. These two schemes are not equivalent as it has been shown that binary branching
is more powerful than non-binary branching [17].

Traditionally, two principles are considered during search: at each step, select the
variable which is the most constrained and select then the least constrained value (e.g.
min-conflicts [12]). These principles respectively correspond to two policies called
fail-first and promise, and one interesting issue is the adherence assessment of
heuristics to both policies [2, 29]. In this paper, we focus on value ordering heuris-
tics, and more precisely, we try to determine if value ordering heuristics should adhere
in priority to the promise policy. Of course, one can be surprised that we address this
issue as it is commonly admitted that it should be the case. In particular, a lot of works
support the idea that a value must be chosen by estimating the number of solutions or
conflicts. One has then to prefer the value that maximizes the estimated number of solu-
tions in the remaining network [8, 13, 24, 20] or minimizes the number of conflicts with
variables in the neighbourhood [12, 23].

However, we noticed that most of the experimental results are given when d-way
branching and/or non adaptive variable heuristics (such as dom, bz, dom/ddeg) are
used. This is the reason why we decided to solve a wide range of random CSP in-
stances using the MAC algorithm, i.e. the algorithm that maintains arc consistency
during search [25]. We tested both branching schemes and both dynamic and adap-
tive variable ordering heuristics on 7 classes of binary instances situated at the phase
transition of search. For each class 〈n,d,e,t〉, defined as usually, 50 instances have been
generated. More precisely, the number of variables n has been set to 40, the domain
size d between 8 and 180, the number of constraints e between 753 and 84 (and, so
the density between 0.96 and 0.1) and the tightness t (which denotes here the prob-
ability that a pair of values is allowed by a relation) between 0.1 and 0.9. The first
class 〈40,8,753,0.1〉 corresponds to dense instances involving constraints of low tight-
ness whereas the seventh one 〈40,180,84,0.9〉 corresponds to sparse instances involving
constraints of high tightness. What is interesting here is that a significant sampling of
domain sizes, densities and tightnesses is considered.

In Tables 1 and 2, we can observe the results that we have obtained with the classical
value ordering heuristic min-conflicts and the “anti” heuristic max-conflicts1 iden-
tified as confts. Here min-conflicts corresponds to the heuristic called mc in [12] and
involves selecting the value with the lowest number of conflicts with values in adjacent
domains. Performances are given (on average) in terms of the cpu time (in seconds), the

1 The value ordering heuristics considered here are static [23]. It means that the order of values
is computed in a preprocessing step. In any case, we observed similar behaviours with dynamic
versions.

dom/ddeg dom/wdeg
Instances min-conflts max-confts ratio min-confts max-confts ratio

〈40-8-753-0.1〉
cpu 42.0 51.4 1.22 34.5 41.6 1.20
ccks 22M 27M 1.22 20M 24M 1.20

nodes 43, 269 55, 558 1.28 38, 104 48, 158 1.59

〈40-11-414-0.2〉
cpu 30.9 35.0 1.13 29.4 32.7 1.11
ccks 26M 29M 1.11 26M 29M 1.11

nodes 58, 955 70, 007 1.18 58, 055 67, 905 1.17

〈40-16-250-0.35〉
cpu 22.1 28.9 1.30 21.0 26.6 1.26
ccks 30M 40M 1.33 30M 37M 1.23

nodes 59, 669 83, 445 1.39 56, 036 75, 025 1.33

〈40-25-180-0.5〉
cpu 33.1 37.1 1.12 28.6 30.0 1.04
ccks 62M 67M 1.08 55M 57M 1.03

nodes 85, 122 98, 519 1.15 69, 805 78, 005 1.11

〈40-40-135-0.65〉
cpu 25.9 34.6 1.33 20.0 25.1 1.25
ccks 68M 89M 1.30 53M 66M 1.24

nodes 52, 622 74, 592 1.41 36, 571 49, 211 1.34

〈40-80-103-0.8〉
cpu 25.8 52.8 2.04 15.3 36.3 2.37
ccks 98M 193M 1.96 59M 133M 2.25

nodes 29, 989 72, 841 2.42 16, 163 45, 177 2.79

〈40-180-84-0.9〉
cpu 113.1 121.3 1.07 40.6 44.6 1.09
ccks 554M 587M 1.05 217M 231M 1.06

nodes 76, 788 85, 482 1.11 20, 077 22, 557 1.12

Table 1. MAC with d-way branching, dom/ddeg and dom/wdeg

dom/ddeg dom/wdeg
Instances min-confts max-confts ratio minconfts max-confts ratio

〈40-8-753-0.1〉
cpu 29.3 35.8 1.22 28.9 28.4 0.98
ccks 22M 27M 1.22 24M 23M 0.95

nodes 43, 268 55, 557 1.28 45, 650 46, 645 1.02

〈40-11-414-0.2〉
cpu 23.0 25.9 1.12 26.1 27.3 1.04
ccks 26M 29M 1.11 32M 33M 1.03

nodes 59, 002 70, 026 1.18 69, 111 76, 941 1.11

〈40-16-250-0.35〉
cpu 18.5 24.5 1.32 23.0 24.4 1.06
ccks 30M 40M 1.33 39M 41M 1.05

nodes 59, 773 83, 531 1.18 72, 555 82, 459 1.13

〈40-25-180-0.5〉
cpu 28.8 31.9 1.33 28.5 30.7 1.07
ccks 62M 67M 1.08 65M 68M 1.04

nodes 85, 187 98, 548 1.15 80, 017 91, 464 1.14

〈40-40-135-0.65〉
cpu 21.4 28.6 1.33 19.8 19.6 0.98
ccks 68M 89M 1.30 65M 64M 0.98

nodes 52, 569 74, 544 1.41 44, 120 46, 573 1.05

〈40-80-103-0.8〉
cpu 20.4 42.3 2.07 12.6 18.6 1.47
ccks 98M 193M 1.96 64M 89M 1.39

nodes 29, 931 72, 747 1.41 16, 168 28, 087 1.73

〈40-180-84-0.9〉
cpu 85.0 92.0 1.08 26.4 27.1 1.02
ccks 553M 587M 1.06 192M 193M 1.00

nodes 76, 489 85, 255 1.11 15, 835 16, 566 1.04

Table 2. MAC with 2-way branching, dom/ddeg and dom/wdeg

number of constraint checks (ccks) and the number of nodes of the explored search tree.
What is interesting to note is that while the performance ratio between max-conflicts
and min-conflicts usually lies between 1.1 and 1.3 when one uses d-way branching or
a classical heuristic (here, dom/ddeg), it falls around 1 when one uses binary branch-
ing and dom/wdeg. A noticeable exception is for the class 〈40,80,103,0.8〉. One can
also remark that the proportion of constraint checks per visited node is weaker when
max-conflicts is used. This is natural since by selecting in priority conflicting values,
the size of the search space is reduced faster. Finally, our observation suggests that an
analysis as the one performed in [16] deserves to be considered for 2-way branching.

Considering the results of our experience about random instances and the fact that,
for some types of constraints, good value ordering can significantly reduce the search
effort [26], we decided to further investigate value ordering heuristics (assuming, of
course, an underlying 2-way branching scheme). In particular, our attention was at-
tracted by the fact that 2-way branching is the basic scheme in SAT solvers. We thought
that this might be very helpful to map SAT heuristics to CSP ones. Indeed, considering
any SAT encoding of a CSP instance, selecting a pair composed of a variable and a
value corresponds to the selection of a literal in SAT.

In this paper, we propose a new value ordering heuristic that is derived from the well
known Jeroslow-Wang (JW) heuristic [18]. The obtained heuristic, called min-inverse,
exploits the bi-directionality of constraints to give a more comprehensive picture in
terms of domain reduction when a given value is assigned to a given variable and *also*
when a given value is removed from the domain of a given variable. Let us illustrate
this with the following example.

Example 1. Let C be the binary constraint depicted by Figure 1. Note that any value
in the domain of x1 occurs in two allowed tuples and is in conflict with two values in
the domain of x2. Consequently, applying a classical value ordering heuristics such as
min-conflicts (or max-conflicts) do not discriminate between the different values
of x1 since all the values of x1 have the same number of conflicts in x2.

Fig. 1. A constraint between x1 and x2. Edges correspond to allowed tuples.

This example shows that it is not always sufficient to only consider the number of
conflicts in order to choose the most (or least) promising value. However, considering a

binary branching scheme, when the value a is assigned to x1 (decision corresponding to
the first branch), two values are removed from dom(x2), and when a is removed from
dom(x1) (decision corresponding to the second branch) two values are also removed
from dom(x2). On the other hand, when the value b or c is assigned to x1, two values are
removed from dom(x2), and when b or c is removed from dom(x1) no value is removed
from dom(x2). So, the value a is more constrained than b or c. This illustration shows
that it can be important to consider the impact on both branches when evaluating values
to be selected by an heuristic.

Our heuristic is then related to max-conflicts, but this last one only gives the esti-
mation of the number of removed values when assigning a value to a given variable (the
assignment labelling the first branch of a binary search). In fact, the estimation of the
number of removed values when eliminating a given value from the domain of a given
variable (the refutation labelling the second branch of a binary search) has not been
(to our knowledge) considered so far when devising value ordering heuristics. Interest-
ingly enough, our approach can be used to derive in more general way a suitable value
ordering with respect to any type of constraint. We also show a direct correspondence
between min-conflicts (resp. max-conflicts) and the maximum number of literal
occurrences in the SAT formula obtained using support (resp. direct) encoding of CSP
instances.

The rest of the paper is organized as follows. After some technical background
about CSP and SAT, SAT encodings of CSP instances are recalled. Our approach is
then presented. Experimental results conducted on a wide range of CSP instances are
described and discussed before concluding.

2 Technical Background

2.1 Constraint Satisfaction Problem

A (finite) Constraint Network (CN) P is a pair (X , C) where X is a finite set of vari-
ables and C a finite set of constraints. Each variable x ∈ X has an associated domain,
denoted dom(x), which contains the set of values allowed for x. Each constraint C ∈ C

involves a subset of variables of X , called the scope and denoted vars(C), and has an
associated relation, denoted rel(C), which contains the set of tuples allowed for the
variables of its scope. From now on, to simplify and without any loss of generality, we
will only consider binary networks, i.e. networks involving binary constraints.

A solution to a constraint network is an assignment of values to all the variables
such that all the constraints are satisfied. A constraint network is said to be satisfiable
iff it admits at least one solution. The Constraint Satisfaction Problem (CSP) is the NP-
complete task of determining whether a given constraint network is satisfiable. A CSP
instance is then defined by a constraint network, and solving it involves either finding
one (or more) solution or determining its unsatisfiability. To solve a CSP instance, one
can modify the constraint network by using inference or search methods. Usually, do-
mains of variables are reduced by removing inconsistent values, i.e. values that can not
occur in any solution. Indeed, it is possible to filter domains by considering some prop-
erties of constraint networks. Arc Consistency (AC), which remains the central one,
guarantees the existence of a support for each value in each constraint.

Algorithm 1 MAC(P = (X , C) : Constraint Network) : Boolean
1: if X = ∅ then return true
2: P ′ ← AC(P)
3: if P ′ = ⊥ then return false
4: select a pair (x,a) such that x ∈ X and a ∈ dom(x)
5: if MAC(P ′|x=a\x) then return true
6: if MAC(P ′|x6=a) then return true
7: return false

Definition 1. Let P = (X , C) be a CN, C ∈ C such that vars(C) = {x, y} and
a ∈ dom(x).

– The set of supports of (x, a) in C, denoted supports(C, x, a), corresponds to the
set {b ∈ dom(y) | (a, b) ∈ rel(C)}.

– The set of conflicts of (x, a) in C, denoted conflicts(C, x, a), corresponds to the
the set {b ∈ dom(y) | (a, b) /∈ rel(C)}.

Definition 2. Let P = (X , C) be a CN. A pair (x,a), with x ∈ X and a ∈ dom(x),
is arc consistent (AC) iff ∀C ∈ C |x ∈ vars(C), supports(C, x, a) 6= ∅. P is AC iff
∀x ∈ X , dom(x) 6= ∅ and ∀a ∈ dom(x), (x, a) is AC.

Let us now, briefly describe the well known MAC algorithm [25]. This algorithm
aims at solving a CSP instance and performs a depth-first search with backtracking
while maintaining arc consistency. More precisely, at each step of the search, a variable
assignment is performed followed by a filtering process called constraint propagation
which corresponds to enforcing arc-consistency. Algorithm 1 corresponds to a recursive
version of the MAC algorithm (using binary branching). It returns true iff the given
constraint network P is satisfiable. More precisely, if P can be made arc consistent (i.e.
AC(P) 6= ⊥) then the search for a solution begins. It involves selecting a pair (x,a) and
trying first x = a and then x 6= a (if no solution has been found with x = a). After any
consistent assignment, the assigned variable is eliminated from the network and search
is continued (line 5)2. When the current constraint network has no more variables (line
1), it means that a solution has been found.

2.2 Encoding CSP into SAT

Propositional satisfiability (SAT) is the problem of deciding whether a Boolean formula
in conjunctive normal form (CNF) is satisfiable. A CNF formula Σ is a set (interpreted
as a conjunction) of clauses, where a clause is a set (interpreted as a disjunction) of
literals. A literal is a positive or negated propositional variable. A truth assignment
of a Boolean formula is an assignment of truth values {true, false} to its variables.

2 P |x=a denotes the constraint network obtained from P by restricting the domain of x to the
singleton {a} whereas P |x6=a denotes the constraint network obtained from P by removing
the value a from the domain of x. P\x denotes the constraint network obtained from P by
removing the variable x.

A model of a formula is a truth assignment that satisfies the formula. SAT is one of
the most studied NP-Complete problems because of its theoretical and practical im-
portance. Encouraged by the impressive progress in practical solving of SAT, various
applications ranging from formal verification to planning are encoded and solved using
SAT. CSP instances can also be reformulated as SAT instances.

In this paper, we consider the most commonly used encodings of CSP into SAT,
namely, the direct encoding [7] and the support encoding [14]. In both SAT encodings
of a constraint network P = (X , C), a propositional variable xi,v is associated to each
pair (xi,v) of P with xi ∈ X and v ∈ dom(xi). The correspondence is the following:
xi,v is true if xi is assigned the value v (i.e. xi = v) and xi,v is false if v is removed
from dom(xi) (i.e. xi 6= v).

Direct Encoding The direct encoding [7] of a constraint network P = (X , C) in-
volves two kinds of clauses:

– At least one: for each variable xi ∈ X with dom(xi) = {v1, v2, . . . , vd}, a clause
of the form xi,v1

∨ xi,v2
· · · ∨ xi,vd

expresses the fact that the variable xi must be
assigned at least one value from its domain.

– Conflict: for each triplet (C,xi,v) such that C ∈ C , xi ∈ vars(C) and v ∈
dom(xi), we have, assuming that vars(C) = {xi, xj} a clause ¬xi,v ∨ ¬xj,w

for each value w ∈ conflicts(C, xi, v).

Support Encoding The idea of encoding support has been first introduced by Kasif
in [19] and expanded on by Gent [14]. In support encoding, two kinds of clauses are
introduced:

– At most one: for each variable xi ∈ X and for any pair {v, w} ⊆ dom(xi), the
following clause encodes the fact that the variable xi must be assigned at most one
value in {v, w}: ¬xi,v ∨ ¬xi,w .

– Support: for each triplet (C,xi,v) such that C ∈ C , xi ∈ vars(C) and v ∈
dom(xi), we have, assuming that vars(C) = {xi, xj} a clause ¬xi,v ∨ xj,w1

∨
xj,w2

∨ · · · ∨ xj,wk
where supports(C, xi, v) = {w1, w2, . . . , wk}.

Note that the following set of clauses ΣD(C) is obtained from the constraint C of
Example 1 using the direct encoding:

– At least: (x1,a ∨ x1,b ∨ x1,c) ∧ (x2,a ∨ x2,b ∨ x2,c ∨ x2,d)
– Conflict: (¬x1,a ∨¬x2,c)∧ (¬x1,a ∨¬x2,d)∧ (¬x1,b ∨¬x2,a)∧ (¬x1,b ∨¬x2,b)∧

(¬x1,c ∨ ¬x2,a) ∧ (¬x1,c ∨ ¬x2,b)

The following set of clauses ΣS(C) is obtained from C using the support encoding:

– At most: (¬x1,a ∨¬x1,b)∧ (¬x1,a ∨¬x1,c)∧ (¬x1,b ∨¬x1,c)∧ (¬x2,a ∨¬x2,b)∧
(¬x2,a ∨¬x2,c)∧ (¬x2,a ∨¬x2,d)∧ (¬x2,b ∨¬x2,c)∧ (¬x2,b ∨¬x2,d)∧ (¬x2,c ∨
¬x2,d)

– Support: (¬x1,a ∨ x2,a ∨ x2,b) ∧ (¬x1,b ∨ x2,c ∨ x2,d) ∧ (¬x1,c ∨ x2,c ∨ x2,d) ∧
(¬x2,a ∨ x1,a) ∧ (¬x2,b ∨ x1,a) ∧ (¬x2,c ∨ x1,b ∨ x1,c) ∧ (¬x2,d ∨ x1,b ∨ x1,c)

Remark 1. Let us note that the at most (resp. at least) clauses are not required in direct
(resp. support) encoding for checking satisfiability [30, 14]. One must add such clauses
only if a mapping between SAT and CSP solutions is needed.

Support encoding admits interesting features. In [14], it is shown that encoding
supports enables arc consistency in the original CSP instance to be established by unit
propagation in the translated SAT instances. Last but not least, applying the well known
DPLL algorithm to the obtained SAT instance behaves exactly like the MAC algorithm
on the original CSP instance. We can also mention that support encoding has been ex-
tended to encode non binary constraints in SAT [3]. Interestingly enough, it has been
proved in [9] that support clauses can be inferred from direct encoding using HyperBin
resolution introduced by Bacchus [1]. These nice results open new interesting perspec-
tives for establishing strong connections between SAT and CSP. The results that we
present below on value ordering can be seen as a step in this direction.

3 Value Ordering Heuristics from SAT to CSP

3.1 SAT Branching Heuristics

Many branching heuristics has been proposed in SAT. One can cite the most recent
ones, namely the VSIDS and UP heuristics used in Zchaff [31] and Satz solvers [22].
The first one uses literal occurrences in the set of learned no-goods whereas the second
one measures the effect of unit propagation on the formula when a literal is assigned a
truth value. Previously, CSAT [10] and POSIT [11], among other solvers, used simpler
heuristics. Most of them are variants of the well-known Jeroslow-Wang (JW) heuristic
[18], and evaluate a given literal according to syntactical properties (e.g. occurrence
number of literals, clause length).

In SAT branching heuristics, the score, denoted H(Σ, x), of a variable x of a CNF
Σ is generally defined as a function f of the weight w associated with its positive and
negative literals, i.e. H(Σ, x) = f(w(x), w(¬x)). The next variable to assign is then
chosen among variables with the greatest score. For example, the two sided Jeroslow-
Wang rule is defined as : HJW (Σ, x) = w(x) + w(¬x) where w(x) =

∑

x∈c w(c),
with c ∈ Σ and w(c) = 2−|c|. JW can be seen as a refinement of the MOMS (Maximum
Occurrences in clauses of Minimal Size) heuristic [10]. Another basic heuristic that we
consider in this paper is HOCC(Σ, x) that can be obtained from FJW by instantiating
w(c) to 1. With HOCC , we select in priority a variable with the greatest number of
occurrences in the formula.

3.2 Mapping SAT Heuristics to CSP

Using direct and support encodings, we present now the CSP value ordering heuristics
respectively corresponding to HOCC and HJW SAT branching heuristics. We have to
emphasize that, when a CSP solver is based on a 2-way branching scheme, in order
to simulate SAT branching heuristics, one needs to evaluate the score of n ∗ d pairs
composed of a variable and a value. This can be very time consuming, especially if
such evaluation is done at each node of the search tree. Hence, in the following, we

investigate the mapping of SAT branching heuristics to CSP, under the hypothesis that
the CSP solver performs at each step of the search, a vertical selection (the choice of
a variable) followed by a horizontal selection (the choice of a value for the selected
variable). As a consequence, the at least and at most clauses can be omitted in our
analysis since all literals occur the same number of times in such clauses. It is important
to remark that this hypothesis corresponds to the current practice of CSP solvers.

Mapping HOCC Let us show how the basic HOCC SAT branching heuristic on di-
rect (resp. support) encoding corresponds to the CSP value ordering heuristic max-
conflicts (resp. min-conflicts).

Property 1. Let P = (X , C) be a constraint network, ΣD (resp. ΣS) the CNF formula
obtained from P using direct (resp. support) encoding. For a given variable xi ∈ X

and value v ∈ dom(xi), we have,

– HOCC(ΣD, xi,v) = 1 +
∑

C∈C |xi∈vars(C) |conflicts(C, xi, v)|

– HOCC(ΣS , xi,v) =

(

2
|dom(xi)|

)

+
∑

C∈C |xi∈vars(C)(1+|supports(C, xi, v)|)

Proof. Indeed, for ΣD, the positive literal xi,v occurs exactly one time positively (at
least clause) and the negative literal ¬xi,v occurs the same number of times as the
number of forbidden tuples with v in all constraints involving xi (conflict clauses).

For ΣS , the negative literal ¬xi,v occurs

(

2
|dom(xi)|

)

times in at most clauses and

exactly one time in each constraint involving xi. The number of positive occurrences of
xi,v corresponds to the number of tuples supporting the value v of xi for each constraint
involving xi. �

We can remark that, if the choice is restricted to the values of a given variable (i.e.
if we adopt the current model based on a vertical selection followed by an horizon-
tal one), then HOCC on direct (resp. support) encoding delivers the same ordering as
max-conflicts (resp. min-conflicts). If it is not the case (i.e. if we perform a global
selection among all pairs of the form (x,v)), then, whereas HOCC and max-conflicts
always correspond with respect to direct encoding, HOCC and min-conflicts may
deliver, with respect to support encoding, different orderings since the number of oc-
currences of a literal in the at most clauses depends on the size of the domains.

Mapping HJW First, for the direct encoding, as the conflict clauses are all binary,
HJW admits the same behavior as HOCC when the choice is restricted to the values
of a given variable. On the other hand, when considering the support encoding, the
length of the clauses, which depends on the number of supports of a value with respect
to a given constraint, becomes important. Consequently, considering HJW on support
encoding, we derive a new interesting value ordering that corresponds to maximize the
function SI defined as follows.

Definition 3. Let P = (X , C) be a constraint network. For any pair (xi,a), with
xi ∈ X and a ∈ dom(xi), we define:

SI(P, xi, vi) =
∑

c∈C |vars(c)={xi,xj}

[W↓(C, xi, vi) + W↑(C, xi, vi)]

where,

W↓(C, xi, vi) = w(1 + |supports(C, xi, vi)|) and
W↑(C, xi, vi) =

∑

vj∈supports(C,xi,vi))

w(1 + |supports(C, xj , vj)|)

Here, w denotes any weighting function.

The following property establishes the connection between the SAT JW heuristic
and the new derived CSP value ordering heuristic. Note that the factor α which is in-
troduced below is such that for any variable xi ∈ X and any pair {a, b} ⊆ dom(xi),
we have αxi,a = αxi,b. It simply means that this factor can be discarded when a value
must be selected in the domain of a variable (and this is what is done by SI).

Property 2. Let P = (X , C) be a constraint network and ΣS the CNF formula ob-
tained from P using the support encoding. For any pair (xi,a), with xi ∈ X and
a ∈ dom(xi), we have:

HJW (ΣS , xi,v) = SI(P, xi, v) + αxi,v

where αxi,v corresponds to the score of HJW applied on at most clauses of ΣS involv-
ing ¬xi,v .

Proof. We have to show that HJW (ΣS , xi,v) − αxi,v = SI(P, xi, v). It simply means
that we do not have to take into consideration the at most binary clauses involving¬xi,v .
Consequently, we only need to consider the support clauses. The proof is a direct conse-
quence of the following fact: for each constraint C ∈ C |vars(C) = {xi, xj}, the nega-
tive literal ¬xi,v occurs exactly in one support clause of size 1 + |supports(C, xi, vi)|,
and the positive literal xi,v occurs in |supports(C, xi, vi))| support clauses of dif-
ferent length (i.e. for each vj ∈ supports(C, xi, vi) the length of the clause is 1 +
|supports(C, xj , vj)|). Under the same weighting function w(c) = 2−|c|, the two
heuristics are equivalent, i.e. compute the same value for a given literal. �

As a summary, while the direct encoding naturally leads to max-conflicts that
adheres to the fail-first policy, the support encoding also leads to adhere to this
policy. Indeed, we have a correspondence between HJW and SI (maximizing the
score of HJW is equivalent to maximizing SI). In practice (for our experimentation),
we will use a simplified version of SI , denoted SIs, obtained by substituting w(1 +
|supports(C, xi, vi)|) (resp. w(1 + |supports(C, xj , vj)|)) by |supports(C, xi, vi)|
(resp. |supports(C, xj , vj)|) in Definition 3. As a result, the new heuristic that we pro-
pose, called min-inverse, corresponds to minimize the value of SIs since instead of
using w(c) = 2−|c|, we use w(c) = |c|.

To illustrate this, let us consider again Example 1. Applying the SIs function on the
variable x1, we obtain SIs(C, x1, a) = 4, SIs(C, x1, b) = 6 and SIs(C, x1, c) = 6.

The best value according min-inverse is then a. It is justified as follows. All values in
dom(x1), when assigned to x1, lead to the removal of 2 (arc inconsistent) values from
the domain of x2. The main difference is that, while removing a from the domain of x1

leads to the removal of 2 values from the domain of x2, removing b or c from the domain
of x1 does not lead to any inconsistent value in the domain of x2. More generally,
given a constraint C such that vars(C) = {xi, xj} and vi ∈ dom(xi), minimizing
W↓(C, xi, vi) (resp. W↑(C, xi, vi)) increases the potential number of values of dom(xj)
that can be made arc inconsistent when considering xi = vi (resp. xi 6= vi).

4 Experiments

To prove the practical interest of adhering to the fail-first policy for value order-
ing, we have implemented the different heuristics described in the previous sections in
our platform Abscon and conducted an experimentation with respect to some schedul-
ing instances and the full set of 1064 instances used as benchmarks of the first CSP
Competition [28]. The search algorithm that has been employed is MAC equipped with
dom/wdeg. All value ordering heuristics are implemented statically: an ordering is es-
tablished prior to search and remains unchanged during the whole search process[23].

First, we searched to establish a comparison between all heuristics with respect
to series of 100 open-shop scheduling instances randomly generated using Taillard’s
model [27] by fixing 5 jobs and 5 machines. For each instance, the optimal makespan
OPT have been computed. We have considered different sets of instances by setting
different time windows around the optimal makespan. For x < OPT , instances are
unsatisfiable whereas for x ≥ OPT , instances are satisfiable. Note that the hardest
instances are those that are unsatisfiable and such that x is close to OPT .

Figure 2 shows the proportion of instances that have been solved (the higher, the
better) in a limited amount of time (300 seconds). One can observe that min-inverse is
the most efficient heuristic on the hardest unsatisfiable instances, whereas the classical
min-conflicts is only able to solve a small number of these instances. Note that this
statement is true even on hard satisfiable instances (for 1 ≤ x ≤ 1.01). On easier
satisfiable instances, following the promise policy seems better.

Then, we tested the different heuristics on the 1064 instances of the first CSP Com-
petition. Figure 3 shows the percentage of unsolved instances (the lower, the better)
against search time. Although min-inverse seems better than the other heuristics (in
particular, between 200 and 350 allowed seconds), the difference is quite small.

So, let us zoom on the results obtained for a limited set of hard representative in-
stances (Table 3). Here, the time-out was set to 1, 000 seconds. On random instances,
there is no clear winner. In fact, on these instances, there is no structure concerning sup-
ports, and so, heuristics based on these are not very relevant. On academic instances,
results are more spectacular, although sometimes chaotic. On allIntervalSeries, pigeons
and queen-knights instances, min-inverse is clearly better while min-conflicts badly
behaves. However, on GolombRuler or BQWH instances, min-conflicts is more effi-
cient (note that these are mainly satisfiable instances, so, the promise strategy may be
more of practical interest in this case). On some real world instances such as FAPP
and RLFAP problems, the impact of value ordering heuristics seems negligible. Finally,

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.85 0.9 0.95 1 1.05

%
 s

ol
ve

d
in

st
an

ce
s

w
ith

in
 3

00
s

C
PU

 ti
m

e

Variation x of the Time Window set to x.OPT

min-conflicts
max-conflicts

min-inverse

Fig. 2. Performance of value heuristics on 5x5 open-shop instances

 16

 17

 18

 19

 20

 21

 22

 23

 100000 150000 200000 250000 300000 350000 400000 450000 500000

%
 u

ns
ol

ve
d

in
st

an
ce

s

CPU time (in ms)

min-conflicts
max-conflicts

min-inverse

Fig. 3. Performance of value heuristics on competition’s instances

Instances min-conflicts max-conflicts min-inverse

Random Instances
frb45-21-3
(sat)

cpu 665 timeout 389
nodes 896, 278 511, 101

frb45-21-5
(sat)

cpu timeout 243 258
nodes 313, 356 321, 895

frb50-23-4
(sat)

cpu 244 timeout timeout
nodes 276, 441

random-2-40-19-443-230-9
(unsat)

cpu 641 441 438
nodes 904, 470 704, 712 706, 123

random-3-24-24-76-632-8
(sat)

cpu timeout 884 931
nodes 1, 537, 568 1, 558, 190

Academic Instances
series-15
(sat)

cpu 849 59 3
nodes 2, 970, 402 213, 266 13, 972

series-16
(sat)

cpu timeout 356 15
nodes 1, 074, 057 59, 314

bqwh-18-141-73
(sat)

cpu 29 32 26
nodes 115, 916 136, 821 106, 254

bqwh-18-141-84
(sat)

cpu 40 166 165
nodes 157, 398 685, 424 685, 424

gr-44-10
(unsat)

cpu 78 489 492
nodes 13, 213 93, 343 92, 454

gr-55-10
(sat)

cpu 25 timeout timeout
nodes 5, 334

pigeons-40
(unsat)

cpu 482 486 167
nodes 773, 274 773, 277 280, 490

pigeons-45
(unsat)

cpu 255 258 98
nodes 304, 584 304, 588 119, 820

qk-20-20-5-add
(unsat)

cpu timeout 149 40
nodes 85, 264 23, 698

qk-20-20-5-mul
(unsat)

cpu timeout 163 62
nodes 81, 393 31, 990

qa-5
(sat)

cpu 4 2 3
nodes 17, 998 4, 956 11, 778

qa-6
(sat)

cpu 245 61 197
nodes 503, 750 81, 764 331, 212

QCP-20-30
(sat)

cpu 119 120 timeout
nodes 237, 759 237, 759

QCPp-20-14
(sat)

cpu timeout timeout 6
nodes 13, 028

Real-world Instances
scen11-f6
(unsat)

cpu 299 545 354
nodes 216, 648 395, 008 262, 696

scen11-f7
(unsat)

cpu 163 344 220
nodes 112, 952 251, 098 164, 593

163-TSP-25
(sat)

cpu 282 530 280
nodes 121, 004 234, 098 110, 680

e0ddr1-10-by-5-10
(sat)

cpu 19 643 timeout
nodes 51, 715 1, 524, 492

e0ddr1-10-by-5-5
(sat)

cpu 304 0 13
nodes 1, 244, 563 50 36, 888

enddr1-10-by-5-3
(sat)

cpu timeout timeout 2
nodes 1, 757

Table 3. MAC with 2-way branching, using different value ordering heuristics

some job-shop instances from the competition show very chaotic results. In fact, we
expect these problems to present an heavy-tailed behaviour.

To summarize, although the results must be tempered, we think that our experi-
mentation allows to demonstrate that, with binary branching and an adaptive variable
heuristic such as dom/wdeg, using a value ordering heuristic such as max-conflict
or min-inverse that adheres to the fail-first policy, is not penalizing and can even
outperform the classical min-conflicts.

5 Conclusion

It is well known that the right approach to select values during search is to follow the
promise policy [2, 29] - the objective is to follow a path that maximizes the likelihood
of finding a solution. However, we noticed that most of the experimental studies sup-
porting this intuition have been based on d-way branching or/and non adaptive variable
ordering heuristics.

In this paper, we first show that, on random instances, the anti-promise heuristic
max-conflicts was often as efficient as the standard promise min-conflicts when
2-way branching and the heuristic dom/wdeg were used. Our understanding of this
phenomenon is that, as dom/wdeg is able to efficiently refute unsatisfiable sub-trees,
the overhead of refuting more unsatisfiable sub-trees (as, more often than not, we guide
search toward unsatisfiable sub-trees) is compensated by the benefit of rapidly reducing
the search space.

Then, after studying mappings from CSP to SAT, we devise a new heuristic, denoted
min-inverse, that adheres to the fail-first policy and that corresponds to the SAT
Jeroslow-Wang branching heuristic. This correspondence supports our intuition that
following the fail-first policy for value ordering, in addition to variable ordering, can
pay off. The results that we have obtained when experimenting a large sampling of prob-
lems indicate that min-inverse and max-conflicts can outperform min-conflicts.

As a perspective of this work, we project to study heuristics to perform global selec-
tion of pairs of the form (X ,a) during search as it corresponds to the basic mechanism
of 2-way branching. It means that we do not have anymore to distinguish between ver-
tical and horizontal selection. The challenge is then to make such selections both cheap
to realize and efficient in practice.

References

1. F. Bacchus. Enhancing Davis Putnam with extended binary clause reasoning. In Proceedings
of AAAI’02, pages 613–619, 2002.

2. J.C. Beck, P. Prosser, and R.J. Wallace. Variable ordering heuristics show promise. In
Proceedings of CP’04, pages 711–715, 2004.

3. C. Bessiere, E. Hebrard, and T. Walsh. Local consistencies in SAT. In Selected revised
papers from SAT’03, pages 299–314, 2003.

4. C. Bessiere and J. Régin. MAC and combined heuristics: two reasons to forsake FC (and
CBJ?) on hard problems. In Proceedings of CP’96, pages 61–75, 1996.

5. F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search by weighting
constraints. In Proceedings of ECAI’04, pages 146–150, 2004.

6. D. Brelaz. New methods to color the vertices of a graph. Communications of the ACM,
22:251–256, 1979.

7. J. de Kleer. A comparison of ATMS and CSP techniques. In Proceedings of IJCAI’89, pages
290–296, 1989.

8. R. Dechter and J. Pearl. Network-based heuristics for constraint satisfaction problems. Arti-
ficial Intelligence, 34:1–38, 1988.

9. L. Drake, A. Frisch, I. Gent, and T. Walsh. Automatically reformulating SAT-encoded CSPs.
In Proceedings of the RCSP’02 workshop held with CP’02, 2002.

10. O. Dubois, P. Andre, Y. Boufkhad, and J. Carlier. Sat versus unsat. In Second DIMACS
Challenge, pages 299–314, 1993.

11. J.W. Freeman. Improvements to Propositional Satisfiability Search Algorithms. PhD thesis,
University of Pennsylvania, 1995.

12. D. Frost and R. Dechter. Look-ahead value ordering for constraint satisfaction problems. In
Proceedings of IJCAI’95, pages 572–578, 1995.

13. P.A. Geelen. Dual viewpoint heuristics for binary constraint satisfaction problems. In Pro-
ceedings of ECAI’92, pages 31–35, 1992.

14. I.P. Gent. Arc consistency in SAT. In Proceedings of ECAI’02, pages 121–125, 2002.
15. R.M. Haralick and G.L. Elliott. Increasing tree search efficiency for constraint satisfaction

problems. Artificial Intelligence, 14:263–313, 1980.
16. T. Hulubei and B. O’Sullivan. Search heuristics and heavy-tailed behaviour. In Proceedings

of CP’05, pages 328–342, 2005.
17. J. Hwang and D.G. Mitchell. 2-way vs d-way branching for CSP. In Proceedings of CP’05,

pages 343–357, 2005.
18. R.G. Jeroslow and J. Wang. Solving propositional satisfiability problems. Annals of Mathe-

matics and Artificial Intelligence, 1:167–187, 1990.
19. S. Kasif. On the parallel complexity of discrete relaxation in constraint satisfaction networks.

Artificial Intelligence, 45:275–286, 1990.
20. K. Kask, R. Dechter, and V. Gogate. Counting-based look-ahead schemes for constraint

satisfaction. In Proceedings of CP’04, pages 317–331, 2004.
21. C. Lecoutre, F. Boussemart, and F. Hemery. Backjump-based techniques versus conflict-

directed heuristics. In Proceedings of ICTAI’04, pages 549–557, 2004.
22. C.M. Li and Anbulagan. Heuristics based on unit propagation for satisfiability problems. In

Proceedings of IJCAI’97, pages 366–371, 1997.
23. D. Meetah and M.R.C. van Dongen. Static value ordering heuristics for constraint satisfac-

tion problems. In Proceedings of CPAI’05 workshop held with CP’05, pages 49–62, 2005.
24. N. Prcovic and B. Neveu. Progressive focusing search. In Proceedings of ECAI’02, pages

126–130, 2002.
25. D. Sabin and E. Freuder. Contradicting conventional wisdom in constraint satisfaction. In

Proceedings of CP’94, pages 10–20, 1994.
26. B.M. Smith and P. Sturdy. Value ordering for finding all solutions. In Proceedings of IJ-

CAI’05, pages 311–316, 2005.
27. E. Taillard. Benchmarks for basic scheduling problems. European journal of operations

research, 64:278–295, 1993.
28. M.R.C. van Dongen, editor. Proceedings of CPAI’05 workshop held with CP’05, volume II,

2005.
29. R.J. Wallace. Heuristic policy analysis and efficiency assessment in constraint satisfaction

search. In Proceedings of CPAI’05 workshop held with CP’05, pages 79–91, 2005.
30. T. Walsh. SAT v CSP. In Proceedings of CP’00, pages 441–456, 2000.
31. L. Zhang, C.F. Madigan, M.W. Moskewicz, and S. Malik. Efficient conflict driven learning

in a Boolean satisfiability solver. In Proceedings of ICCAD’01, pages 279–285, 2001.

