
Solver description: orsat

Olivier Roussel
CRIL - CNRS FRE 2499 – rue de l’Université – SP 16 – 62307 Lens Cedex, France

1 Introduction

The submitted solver orsat version 0.1 al-
pha is an early and unachieved release of a
experimental solver with temporary codename
orsat::qbf1. This solver has been developed
in a few weeks to experiment with a new SAT li-
brary as well as with a new QBF algorithm. By
lack of time, many features are missing in the
submitted version or are poorly implemented.
No good performance can be expected from this
version of the solver but, at this point, this
doesn’t allow us to draw any conclusion on the
library or the new algorithm.

2 The orsat Library

The orsat library is yet another SAT library
which is currently in the early phase of its devel-
opment. It aims at facilitating the experimen-
tation of algorithms for problems around SAT.
Therefore, its primary goal is to be very flexible
in order to suit any algorithm requirements. At
the same time, this flexibility shouldn’t impact
performances too much (but we know we have
to pay a price for this flexibility). This implies
that, when we write an algorithm, we want to
to be able to pick up from a list the sole features
we need to develop that algorithm. One solution
would be to develop an implementation with all
features controlled by #ifdef structures. Un-
fortunately, this is quickly unmanageable.

The solution adopted in the orsat library is
to use objects, inheritance and templates. Each
object implements one feature and templates let
us compose these features with a maximum of
liberty. The library is implemented in C++ be-
cause this language give us more control on the
program. Java for example looks unadapted to
efficient generic programming. It is well-known
that C++ doesn’t check anything because this
is considered a waste of time. This is a serious
concern but not a major drawback because a
number of tools help us detect errors.

The basic idea of the library is to build ob-
jects gradually from small pieces. For example,
the class BasicLiteral contains nothing but
the identifier of the literal and the opposite of
the literal. When there’s a need to give values
to the literals and to use watched literals, we’d
like to write something like WatchedLiterals<
SemanticLiteral<BasicLiteral> > which
must generate an inheritance tree rooted at
BasicLiteral. C++ templates let us write
this but to avoid cumbersome casts we have to
use one more trick : the Curiously Recurring
Template Pattern (CRTP) where the base class
is passed as a template parameter the most
derived class (leaf type). Basically, to define
the exact kind of literal to use, one just writes
something like

class Literal : public

WatchedLiterals<

SemanticLiteral<

BasicLiteral<Literal> > >

{};

The orsat library also defines a generic
search algorithm which mainly handles back-
tracking (intelligent or chronological). This
generic search will give the ability to

• use non standard algorithms with non binary
choice points

• save and restore the search (checkpointing)

• distribute the search over several hosts

• get a graphical representation of the search
tree

For example, all that was needed to write
the submitted QBF algorithm was to define the
classes QBFAlgorithm and Branch and write the
three lines below.

QBFAlgorithm<Formula> algo(formula);

GenericSearch<QBFAlgorithm<Formula>,

BranchList<Branch> > search(algo);

search.explore();

More information on the orsat library can
be found in [1]. The first stable public release is
expected during the summer 2004.

1



QBF Evaluation 2004 - solver description

3 The orsat::qbf1 Algo-
rithm

The principle of the algorithm used in the sub-
mitted version of the solver is to consider a
QBF formula f as an extended SAT formula.
In fact each QBF clause can be seen as a SAT
clause containing the existential literals aug-
mented with the remaining universal literals. In
a sense, this algorithm changes the quantifier
order of the formula since it first consider exis-
tential variables (for practical reasons, they are
considered in the order defined by the prefix)
and only after universal variables (in any order).

The solver tries to satisfy each clause by first
assigning values to the existential literals. If
this succeeds, the QBF formula is trivially true.
When an interpretation Ik of existential literals
can no more be extended with some other exis-
tential literal, this means that fIk

(the simplifi-
cation of f by interpretation Ik) contains only
universal literals. Basically, the algorithm just
tries to prove that for any assignation of the uni-
versal variables, there exist an assignation of ex-
istential variables satisfying the matrix (policy).
The implicants of fIk

define for which assigna-
tions of universal variables the policy Ik can be
selected to satisfy the matrix. When there is
only one universal quantifier, this simply means
checking that

∨
k fIk

is a tautology.
Things are just a little bit more compli-

cated when there’s an alternation of univer-
sal and existential quantifiers. Let’s take for-
mula ∀a1∃e1∀a2∃e2Φ as an example. When e1

changes of value (let’s say it becomes true), we
must check that for this new value and for all
valuation of a2, there exist a value of e2 which
satisfy the matrix Φ. The values of (a2, e2)
which satisfied the matrix and that we had col-
lected when e1 was false are no more of inter-
est. In other words, during the search, when an
existential literal e changes of value, implicants
of an fIk

containing a universal literal a which
come after e in the prefix (noted e � a) must be
forgotten. At the same time, we must combine
implicants from different fIk

to generate implied
implicants by eliminating the least universal lit-
erals according to order �. This simply means
that when we have policies for each value of a2

(for a given a1 and e1), we can affirm that we
have a policy for a1.

To sum up, we must combine implicants of
the different fIk

to eliminate as much as we can

the least universal literals and check if we can
obtain a tautology. Each time an existential lit-
eral e changes of value, we must forget the impli-
cants containing a universal literal a s.t. e � a.
To detect a tautology, we actually work on the
negation of the formula and try to generate in-
consistency.

To each group of universally quantified lit-
eral, we associate a bucket which contains the
negation of the implicants of fIk

(this is a set
of clauses). Each time a clause is added to a
bucket, we generate implicates by eliminating
variables of this group of universally quantified
literal. If this succeeds in generating a clause
with no literal of this group, we send it to the
upper bucket. Whenever an existential literal
changes of value, we clear all buckets below this
existential literal (this is why we assign value
to existential literal in the order of the prefix).
The QBF formula is true if and only if the upper
bucket produces the empty clause.

The submitted solver name comes from the
fact that basically this algorithm is an extension
of a SAT algorithm and with little programming
effort it is able to solve both SAT and QBF for-
mulas.

The current implementation is unfortunately
missing a number of important features and can-
not be actually competitive with other solvers.

4 Conclusion

The solver orsat experiments with new ideas,
both at the implementation level by providing
a new SAT library, and at the algorithm level
by considering the QBF formula as an extended
SAT formula. The orsat library is still in the
early phase of its development but already has
some interesting characteristics that may prove
quite useful. The orsat::qbf1 algorithm must
be further refined and evaluated beyond this
first and very basic implementation.

References

[1] The orsat web page http://www.cril.univ-
artois.fr/∼roussel/orsat

2


