
SOLVING WCSP
BY EXTRACTION OF M INIMAL UNSATISFIABLE CORES

CHRISTOPHELECOUTRE, NICOLAS PARIS, OLIVIER ROUSSEL ANDSÉBASTIEN TABARY

{lecoutre,paris,roussel,tabary}@cril.univ-artois.fr

Introduction

Context:

•CSP and Weighted CSP frameworks

•WCSP algorithms are often more complex than their CSP counterparts (due to management of costs)

Goal:

•Benefit from efficient CSP algorithms developped for more than two decades

Principle:

•Solve WCSP by iteratively generating and solving classicalCSPs (greedy approach)

• The sequence of CSPs is enumerated according to an increasing cost order related to the WCSP

•Minimal Unsatisfiable Cores (MUC) identify the soft constraints whose costs must be increased

Background

CSP framework:

•A CSP is satisfiable iff it admits at least one solution

•An Unsatisfiable Core is an unsatisfiable subset of constraints

•A core is aMinimal Unsatisfiable Core (MUC) iff each strict subset is satisfiable

WCSP framework:

•Extension of CSP

• (X, C, k): C is a set of soft constraints (cost functions),k > 0 is either a natural integer or+∞

• ∀a, b ∈ {0, . . . , k}, a⊕ b = min(k, a + b)

•Goal: find a complete instantiation with minimal cost (optimisation problem)

• The current methods to solve WCSPs: branch and bound tree search combined with the use of soft local
consistencies (EDAC, etc. by cost tranfer) for estimating minimal costs of sub-problems during search

Layers and fronts

• Focus on soft table constraints (explicit and implicit tuples), but the method can be easily extended to
other kinds of constraints

•A layer contains all tuples having the same cost

•A front (represented by an array f) maps each constraint of a WCSP to one of its layers

1 0

τ2, τ3

∅

c
o
s
t
0

<
<

.
.
.

<
c
o
s
t
j

∅

d
e

f
a

u
l
t

C
o

s
t

c
o
s
t
0

<
c
o
s
t
1

<
.
.
.

<
d

e
f

a
u

l
t

C
o

s
t

w1w0

layers layers

layer
front

layer
τ1, τ4τ1, τ5, τ7

τ2, τ3

•Cost of a front: sum of costs associated with the selected layers

General principle of the greedy approach

SATSOLUTION
&

P: CSP
W : original WCSP, F : initial frontTRANSLATEW into CSP a

ording to F

SOLVE P UNSAT GENERATE su

essors of F based
EXTRACT a MUCon the 
onstraints in the MUC

UB (
ost of F)

SELECT the new front F with minimal
ost whi
h brakes the MUC (greedy)

Algorithm

GMR (W : WCSP)
foreachw ∈ constraints(W ) do

f [w]← 0 ;

repeat
P ← toCSP≤(W, f ) ;
sol← solveCSP(P ) ;
if sol 6= ⊥ then

return sol ;
else

M ← extractMUC (P ) ;
W ′← restrict(W,M ) ;
f ← relax (W ′, f ) ;

until sol 6= ⊥;

• toCSP≤(W, f )

– Translates WCSP into CSP: converting soft constraints intohard constraints according to a frontf

– Considering a soft constraintw and the frontf : a hard constraint is obtained by selecting as allowed
tuples inw the tuples of the layers whose index isless than or equalto f [w]

– Representation: extension, positive table (supports) / negative table (conflicts)

– Default cost Layer forbidden (resp. allowed)⇒ hard positive (resp. negative) constraint

• extractMUC (P )

– A dichotomic approach is used to extract MUCs of unsatisfiable CSPs

• relax (W ′, f )

– MUCs are broken by generatingsuccessorsof the front considering only the constraints of MUCs

0

∅

C
o

s
t

w1

0

τ2, τ3τ2, τ3

d
e

f
a

u
l
t

d
e

f
a

u
l
t

C
o

s
t

d
e

f
a

u
l
t

C
o

s
t

w1w0

τ2, τ3

c
o
s
t
0

<
c
o
s
t
1

<
.
.
.

<

d
e

f
a

u
l
t

C
o

s
t

∅

c
o
s
t
0

<
<

.
.
.

<
c
o
s
t
j

w0

c
o
s
t
0

<
c
o
s
t
1

<
.
.
.

<

C
o

s
t

w1w0

c
o
s
t
0

<
<

.
.
.

<
c
o
s
t
j

c
o
s
t
0

<
<

.
.
.

<
c
o
s
t
j

d
e

f
a

u
l
t

C
o

s
t

d
e

f
a

u
l
t

c
o
s
t
0

<
c
o
s
t
1

<
.
.
.

<

∅

∅∅ ∅

layers layers layers layers layers layersfront Fsu

essor front F' su

essor front F�1 0 0 1

τ1, τ4τ1, τ5, τ7τ1, τ4

τ2, τ3

τ1, τ5, τ7 τ1, τ4

τ2, τ3

τ1, τ5, τ7

τ2, τ3

– A successorof a front differs only by the incrementation of the allowed layers for one constraint

Experiments

AbsCon ToulBar2
Instances GMR EDAC INCOP EDAC

spot5/spot5-404 CPU 4.99 ⊥ ⊥ 217
UB 118 114 114 114

spot5/spot5-412 CPU 18.8 ⊥ ⊥ ⊥
UB 33, 403 43, 390 32398 37, 399

spot5/spot5-505 CPU 12 ⊥ ⊥ ⊥
UB 22, 266 28, 258 21266 25, 268

spot5/spot5-509 CPU 32.2 ⊥ ⊥ ⊥
UB 37469 48, 475 37462 46, 477

spot5/spot5-1403 CPU 142.5 ⊥ ⊥ ⊥
UB 481,266 517, 260 482267 507, 265

celar/graph-05 CPU 16.6 ⊥ ⊥ 0.62
UB 221 4, 645 243 221

celar/scen-06-20 CPU 68.5 ⊥ ⊥ 67.9
UB 3, 402 8, 594 3166 3,163

celar/scen-07 CPU 209.9 ⊥ ⊥ ⊥
UB 426, 423 31, 230K 394006 505, 731

CPU time (in seconds) to prove optimality on various selected instances
(time-out of 600 seconds set per instance,⊥: time-out reached)

Conclusion and future work

•Conclusion

– Original greedy approach: solve WCSP through successive resolutions of CSPs

– Focus the cost increase on the sole constraints in the Minimal Unsatisfiable Cores extracted

– Promising results when compared to other state-of-the-artapproaches

• Future work

– Complete approach based on the same principles (work in progress)


