QBF function problems: preliminary results Sylvie Coste-Marquis^{*}, Hélène Fargier[†], Jérôme Lang[†], Daniel Le Berre^{*} and Pierre Marquis^{*} CRIL, Université d'Artois, Lens^{*} and IRIT, UPS, Toulouse[†]

Friday, November 21^{th} , 2003

Layout of the talk

- Motivations
- Total policies and the first function problem FQBF
- Partial policies and the second function problem SFQBF
- Policy representation
- Two approaches for a case study: $SFQBF_{2,\forall}$
- Conclusion and perspectives

Motivations

- Existing work on QBF focus on
 - Solving QBFs (Cadoli et al., 1998; Rintanen 1999, 2001, Giunchiglia et al., 2001; Letz, 2001; Zhang and Malik, 2002)
 - Taking advantage of QBF solvers in AI (Egly et al., 2000, 2002; Rintanen, 1999)
- But some problems require more than a **boolean output**!

Example: sequential games against nature

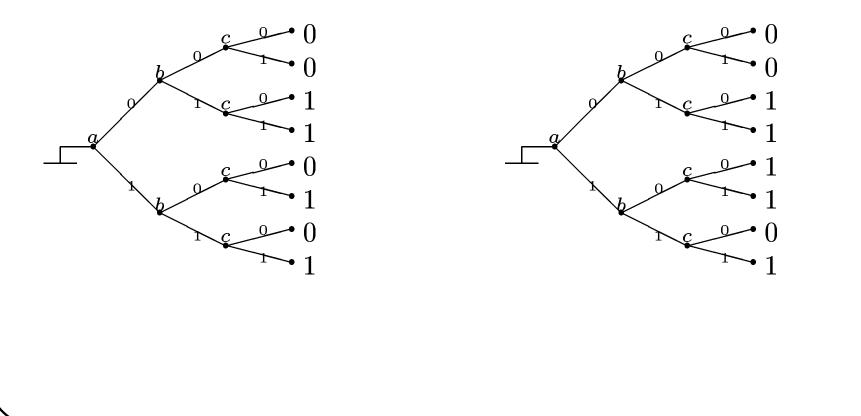
- The game is given by a QBF
- Two players: the \exists one, and the \forall one (nature)
- Players play alternatively by assigning a truth value to a propositional symbol
- The ∃ player has a winning strategy for the game iff the QBF is valid

Example (cont'd)

- Two games
 - $P = \forall a \exists b \forall c \ (\neg a \lor c) \land (a \lor b)$
 - $PI = \forall a \exists b \forall c (\neg a \lor \neg b \lor c) \land (a \lor b)$
- There is no winning strategy for P, but a winning strategy for P'
- Knowing that a winning strategy exists is not sufficient: given a move of the ∀ player, the ∃ player must know a move she has to play in order to win
- Such an output is called a (decision) policy

Example (cont'd)

- $P = \forall a \exists b \forall c (\neg a \lor c) \land (a \lor b)$
- $P' = \forall a \exists b \forall c (\neg a \lor \neg b \lor c) \land (a \lor b)$



QBF

- Let k be a positive integer and q ∈ {∀,∃}. A Quantified Boolean
 Formula (QBF) (in prenex normal form) is a (k + 3)-uple
 P = ⟨k,q,X_k,...,X_1,Φ⟩ where {X₁,...,X_k} is a partition of the set
 Var(Φ) of propositional symbols occurring in Φ ∈ PROP_{PS}
- $QBF_{k,q}$ is the set of all QBFs of rank k and first quantifier q
- $P = \forall a \exists b \forall c (\neg a \lor c) \land (a \lor b)$ is represented as $\langle 3, \forall, \{a\}, \{b\}, \{c\}, (\neg a \lor c) \land (a \lor b) \rangle$ and belongs to $QBF_{3,\forall}$

QBF (cont'd)

- $P = \langle k, q, X_k, ..., X_1, \Phi \rangle$ is a **positive** instance of $QBF_{k,q}$ iff one of the following conditions is true:
 - k = 0 and $\Phi = \top$;
 - $k \ge 1$ and $q = \exists$ and there exists an X_k -instantiation $\vec{x_k} \in 2^{X_k}$ such that $\langle k - 1, \forall, X_{k-1}, ..., X_1, \Phi_{\vec{x_k}} \rangle$ is a positive instance of $QBF_{k-1,\forall}$;
 - $k \ge 1$ and $q = \forall$ and for each X_k -instantiation $\vec{x_k} \in 2^{X_k}$, $\langle k-1, \exists, X_{k-1}, \dots, X_1, \Phi_{\vec{x_k}} \rangle$ is a positive instance of $QBF_{k-1,\exists}$
- $P = \langle 3, \forall, \{a\}, \{b\}, \{c\}, (\neg a \lor c) \land (a \lor b) \rangle$ is not a positive instance of $QBF_{3,\forall}$

Total policies

The set *TP*(k, q, X_k, ..., X₁) of **total policies** for QBFs from QBF_{k,q} is defined inductively by (λ means "success"):

-
$$TP(0,q) = \{\lambda\};$$

-
$$TP(k, \exists, X_k, ..., X_1) = \{ \vec{x_k} ; \pi_{k-1} \mid \pi_{k-1} \in TP(k-1, \forall, X_{k-1}, ..., X_1) \};$$

-
$$TP(k, \forall, X_k, ..., X_1) = 2^{X_k} \to TP(k-1, \exists, X_{k-1}, ..., X_1)$$

•
$$\pi = \begin{bmatrix} (a), & \mapsto (\neg b); (\lambda_c) \\ (\neg a) & \mapsto (b); (\lambda_c) \end{bmatrix}$$
 is a total policy for $P' = \langle 3, \forall, \{a\}, \{b\}, \{c\}, (\neg a \lor \neg b \lor c) \land (a \lor b) \rangle$

Total policies (cont'd)

A policy π of *TP*(k, q, X_k, ..., X₁) satisfies P = ⟨k, q, X_k, ..., X₁, Φ⟩ of QBF_{k,q} (denoted π ⊨ P) iff one of these conditions is verified:

-
$$k = 0$$
 and $\pi = \lambda$, and $\Phi \equiv \top$;

-
$$k \ge 1$$
 and $q = \exists$ and $\pi = (\vec{x_k}; \pi')$ with
 $\pi' \models \langle k - 1, \forall, X_{k-1}, ..., X_1, \Phi_{\vec{x_k}} \rangle;$

-
$$k \ge 1$$
 and $q = \forall$ and for all $\vec{x_k} \in 2^{X_k}$ we have
 $\pi(\vec{x_k}) \models \langle k - 1, \exists, X_{k-1}, ..., X_1, \Phi_{\vec{x_k}} \rangle$

•
$$\pi = \begin{bmatrix} (a) & \mapsto (\neg b); \lambda_c \\ (\neg a) & \mapsto (b); \lambda_c \end{bmatrix}$$
 satisfies
 $P\prime = \langle 3, \forall, \{a\}, \{b\}, \{c\}, (\neg a \lor \neg b \lor c) \land (a \lor b) \rangle$

FQBF

- Let P = ⟨k,q,X_k,...,X₁,Φ⟩ be a QBF. Solving the function problem FQBF_{k,q} for P consists in **generating a total policy** π such that π ⊨ P, if there exists any
- Policies are the expected outputs for the function problem associated to QBF: P = ⟨k,q,X_k,...,X₁,Φ⟩ is a positive instance of QBF_{k,q} iff there exists a solution policy, i.e., a total policy π ∈ TP(k,q,X_k,...,X₁) such that π ⊨ P

Partial policies

- A solution policy is often **too much demanding**
- $P = \forall a \exists b \forall c (\neg a \lor c) \land (a \lor b)$ has no solution policy
- Nevertheless, if the ∀ player assigns 0 to *a*, then the ∃ player can win (just assign 1 to *b*)
- This calls for a notion of partial policy: The set PP(k, q, X_k, ..., X₁) of **partial policies** for the QBF P = ⟨k, q, X_k, ..., X₁⟩ is defined inductively as follows (× means "failure"):

-
$$PP(1, \exists, X_1) = 2^{X_1} \cup \{\times\}$$
;

- $PP(1, \forall, X_1) = 2^{X_1} \rightarrow \{\lambda, \times\}$;
- $PP(k, \exists, X_k, ..., X_1) =$ $\{\vec{x_k}; \pi_{k-1} | \pi_{k-1} \in PP(k-1, \forall, X_{k-1}, ..., X_1)\} \cup \{\times\};$
- $PP(k, \forall, X_k, ..., X_1) = 2^{X_k} \to PP(k-1, \exists, X_{k-1}, ..., X_1)$

Example (cont'd)

•
$$P = \forall a \exists b \forall c (\neg a \lor c) \land (a \lor b)$$

• $\pi_1 = \begin{bmatrix} (a) & \mapsto b; \begin{bmatrix} (c) & \mapsto \lambda \\ (\neg c) & \mapsto \times \end{bmatrix}$
($\neg a$) $\mapsto (b); \lambda_c$
• $\pi_2 = \begin{bmatrix} (a) & \mapsto \times \\ (\neg a) & \mapsto (b); \lambda_c \end{bmatrix}$
• $\pi_3 = \begin{bmatrix} (a) & \mapsto \times \\ (\neg a) & \mapsto (\neg b); \lambda_c \end{bmatrix}$

Sound policies

- A partial policy $\pi \in PP(k, q, X_k, ..., X_1)$ is **sound** for $P = \langle k, q, X_k, ..., X_1, \Phi \rangle$ iff one of these conditions is satisfied: - $q = \exists$ and $\pi = \times$; - $(k,q) = (1,\exists), \pi = \vec{x_1} \text{ and } \vec{x_1} \models \Phi;$ - $(k,q) = (1,\forall)$ and for any $\vec{x_1} \in 2^{X_1}$ we have either $\pi(\vec{x_1}) = \times$, or $(\pi(\vec{x_1}) = \lambda \text{ and } \vec{x_1} \models \Phi);$ - k > 1, $q = \exists$, $\pi = \vec{x_k}; \pi_{k-1}$ and π_{k-1} is sound for $\langle k-1, \forall, X_{k-1}, \dots, X_1, \Phi_{x\vec{i}_k} \rangle;$ - k > 1, $q = \forall$, and for any $\vec{x_k} \in 2^{X_k}$, $\pi(\vec{x_k})$ is sound for $\langle k-1, \exists, X_{k-1}, \dots, X_1, \Phi_{\vec{x_k}} \rangle$
- π_1 and π_2 are sound for *P*, but π_3 is not

Maximal sound policies

- Let π and π' two partial policies of $PP(q, k, X_k, ..., X_1)$. π is **at least as covering as** π' , denoted by $\pi \supseteq \pi'$, iff one of the following conditions is satisfied:
 - $q = \exists$ and $\pi' = \times$;
 - $q = \forall$, k = 1 and for all $\vec{x_1} \in 2^{X_1}$, we have either $\pi'(\vec{x_1}) = \times$ or $\pi(\vec{x_1}) = \lambda$;
 - $q = \exists, \pi = [\vec{x_k}; \pi_{k-1}], \pi' = [\vec{x'_k}; \pi'_{k-1}], \text{ and } \pi_{k-1} \sqsupseteq \pi'_{k-1};$
 - $q = \forall$, k > 1 and for all $\vec{x_k} \in 2^{X_k}$, we have $\pi(\vec{x_k}) \sqsupseteq \pi'(\vec{x_k})$
- π is a **maximal sound** policy for a QBF *P* iff π is sound for *P* and there is no sound policy π' for *P* such that $\pi' \supseteq \pi$ and $\pi \not\supseteq \pi'$
- We have $\pi_1 \supseteq \pi_2$ and π_1 is a maximal sound policy for *P*

SFQBF

- Every QBF P has a maximal sound policy
- If a solution policy for P exists, then solution policies and maximal sound policies coincide
- Solving the second function problem $SFQBF_{k,q}$ for *P* consists in finding a maximal sound policy π for *P*

Policy representation

- Policy $\pi \neq$ representation σ of π
- A representation scheme S for policies is a set of data structures representing policies. Associated with any representation scheme S is an interpretation function I_S such that for any σ ∈ S, π = I_S(σ) is the policy represented by σ
- The simplest representation scheme is the **explicit** one: the representation of a policy is the policy itself
- Explicit representations of total policies are certificates for QBFs: there is a polytime algorithm whose input is the explicit representation of a policy π ∈ TP(k, q, X_k, ..., X₁) and a QBF P = ⟨k, q, X_k, ..., X₁, Φ⟩ and which returns 1 if π is a solution policy for P and 0 otherwise

Example

- The explicit representation of $\pi \in TP(1, \exists, X_1)$ is a world $\vec{x_1} \in 2^{X_1}$
- The explicit representation of $\pi \in TP(1, \forall, X_1)$ is the set of pairs $\{(\vec{x_1}, \lambda) \mid \vec{x_1} \in 2^{X_1}\}$
- It can be represented in the exponentially more succinct way as λ_{X_1} but this representation is not a certificate for $QBF_{1,\forall}$ unless P = NP
- The existence of a certificate of polynomial size for $QBF_{1,\forall}$ would imply NP = CONP

$SFQBF_{2,\forall}$

- The simplest problem for which the size of a representation of a policy is a significant problem
- In the case of SFQBF_{2, \forall}, a partial policy for $P = \langle 2, \forall, X, Y, \Phi \rangle$ is a function π from 2^X to $2^Y \cup \{\times\}$
- A policy representation scheme S for maximal sound policies for $QBF_{2,\forall}$ is said to be **polynomially compact** iff there is a polysize function R_S that associates each $P = \langle 2, \forall, X, Y, \Phi \rangle \in QBF_{2,\forall}$ to a representation $\sigma \in S$ of a maximal sound policy π for P
- A policy representation scheme S for maximal sound policies for QBF_{2,∀} is said to be **tractable** iff there exists a polytime algorithm D_S such that for any σ ∈ S, D_S computes π(*x*) = D_S(σ, *x*) for any *x* ∈ 2^X, where π = I_S(σ)

Representation schemes

• The explicit representation scheme is not polynomially compact:

$$\forall \{x_1, \dots, x_n\} \exists \{y_1, \dots, y_n\} \bigwedge_{i=1}^n (x_i \Leftrightarrow y_i)$$

- If a polynomially compact and tractable representation scheme S for maximal sound policies for $\text{QBF}_{2,\forall}$ exists, then the polynomial hierarchy collapses at the second level
- Relaxing the polynomial compacity requirement, we look for tractable representations of policy: a representation σ of a policy π for P = (2, ∀, X, Y, Φ) ∈ QBF_{2,∀} is said to be **tractable** if and only if there exists an algorithm D_σ such that for any x ∈ 2^X, D_σ computes π(x) = D_σ(x) in time polynomial in |σ| + |x|

The decomposition approach

Two ideas

- It is often needless looking for a specific *Y*-instantiation for each *X*-instantiation: some *Y*-instantiations may **cover** large sets of *X*-instantiations, which can be described **in a compact way**, for instance by a propositional formula.
- It may be the case that some sets of variables from *Y* are more or less **independent** given *X* w.r.t. Φ and therefore that their assigned values can be computed separately

Partial subpolicies

- A **partial subpolicy** is a function from $2^X \rightarrow 3^Y$ associating consistent *Y*-terms (**subdecisions**) to some *X*-worlds
- The **merging** of subdecisions is the commutative and associative internal operator on $3^Y \cup \{\times\}$ defined by:

-
$$\gamma_Y . \lambda = \lambda . \gamma_Y = \gamma_Y;$$

-
$$\gamma_Y . \times = \times . \gamma_Y = \times;$$

- if
$$\gamma_Y, \gamma'_Y$$
 are two Y-terms, then
 $\gamma_Y.\gamma'_Y = \begin{cases} \gamma_Y \wedge \gamma'_Y & \text{if } \gamma_Y \wedge \gamma'_Y \text{ is consistent} \\ \times & \text{otherwise} \end{cases}$

• The **merging** of two subpolicies π_1 , π_2 is defined by: $\forall \vec{x} \in 2^X$, $(\pi_1 \odot \pi_2)(\vec{x}) = \pi_1(\vec{x}).\pi_2(\vec{x})$

Example

- $\sigma_1 = ext{if } x_1 \Leftrightarrow x_2 ext{ then } y_1 ext{ else } \neg y_1$
- $\sigma_2 = ext{if } x_1 ext{ then } \neg y_2$
- $\sigma = \sigma_1 \odot \sigma_2$
- The corresponding policies are given by

	$I_{PD}(\sigma_1)$	$I_{PD}(\sigma_2)$	$I_{PD}(\sigma)$
(x_1,x_2)	y_1	$ eg y_2$	$(y_1, \neg y_2)$
$(x_1, \neg x_2)$	$ eg y_1$	$ eg y_2$	$(\neg y_1, \neg y_2)$
$(\neg x_1, x_2)$	$ eg y_1$	×	×
$(\neg x_1, \neg x_2)$	y_1	×	×

The PD scheme

- The policy description scheme *PD* is a representation scheme for maximal sound policies for QBF_{2,∀}, defined inductively as follows:
 - λ and \times are in *PD*;
 - any consistent *Y*-term γ_Y is in *PD*;
 - if φ_X is a propositional formula built on X and σ_1 , σ_2 are in PD, then if φ_X then σ_1 else σ_2 is in PD
- PD is a tractable representation scheme for maximal sound policies for $\textbf{QBF}_{2,\forall}$

Example (cont'd)

A tractable polysize representation in PD of the solution policy for

$$\forall \{x_1, \dots, x_n\} \exists \{y_1, \dots, y_n\} \bigwedge_{i=1}^n (x_i \Leftrightarrow y_i)$$

is

$$\sigma = \odot_{i=1}^n ((\text{if } x_i \text{ then } y_i) \odot (\text{if } \neg x_i \text{ then } \neg y_i))$$

Decomposition

• Let $P = \langle 2, \forall, X, Y, \Phi \rangle$ and let $\{\varphi_1^X, \varphi_1^Y, \dots, \varphi_p^X, \varphi_p^Y\}$ be 2p formulas such that

$$\Phi \equiv (\varphi_1^X \land \varphi_1^Y) \lor \ldots \lor (\varphi_p^X \land \varphi_p^Y)$$

Let $J = \{j \mid \varphi_j^Y \text{ is consistent}\} = \{j_1, \dots, j_q\}$ and for every $j \in J$, let $\vec{y}_j \models \varphi_j^Y$. Then the policy π represented by the description $\sigma = \text{Case } \varphi_{j_1}^X \text{ : } \vec{y}_{j_1} \text{ : } \dots \text{ : } \varphi_{j_q}^X \text{ : } \vec{y}_{j_q} \text{ End}$

is a maximal sound policy for \boldsymbol{P}

- When Φ has the required form, problem for *P* comes down to solving *p SAT* instances
- A decomposition of Φ always exist: $\Phi \equiv \bigvee_{\vec{x} \in 2^X} (\vec{x} \land \Phi_{\vec{x}})$
- When Φ is in DNF, the second function problem can be solved in polynomial time (while the decision problem is CONP-complete)

Decomposition (cont'd)

- Let $\{Y_1, Y_2\}$ be a partition of Y such that Y_1 and Y_2 are conditionally independent given X with respect to Φ , which means that there exist two formulas φ_{X,Y_1} and φ_{X,Y_2} of respectively $PROP_{X\cup Y_1}$ and $PROP_{X\cup Y_2}$ such that $\Phi \equiv \varphi_{X,Y_1} \land \varphi_{X,Y_2}$
- π is a maximal sound policy for P iff there exist two subpolicies π_1 , π_2 , which are maximal and sound for $\forall X \exists Y \varphi_{X,Y_1}$ and for $\forall X \exists Y \varphi_{X,Y_2}$ respectively, such that $\pi = \pi_1 \odot \pi_2$
- Find a $\{Y_1, Y_2\}$ which can be turned into such a partition through case analysis on the common variables (use a decomposition tree)

The compilation approach

- Let P = ∀X ∃Y Φ be a QBF and let σ be a propositional formula equivalent to Φ and which belongs to a propositional fragment F enabling polytime conditioning and polytime model finding. σ is a tractable representation of a maximal sound policy for P
- σ alone does not represent any policy for *P* but a specific maximal sound policy for *P* is fully characterized by the way a model of $\sigma_{\vec{x}}$ is computed for each \vec{x}
- Many \mathcal{F} are candidates: Krom, Horn CNF, renamable Horn CNF, DNF, OBDD, DNNF
- No guarantee that σ remains "small" in the worst case (but may work quite well in practice)

Conclusion and perspectives

- Function problems for QBF
- Theoretical limitations on representation schemes
- Two approaches for solving $SFQBF_{2,\forall}$
- Perspectives
 - Experimentations
 - Extension to other forms of maximality for policies (gradual satisfaction)