Sat4j-CSP

XCSP3 Competition — 2018

Daniel Le Berre and Emmanuel Lonca

CRIL — Univ. Artois and CNRS

lastname@cril.fr

1 Solver Description

Sat4j[1] is a constraint satisfaction and optimization library developed in Java.
It is a mature project (Sat4j was born in 2004) included since June 2008 in the
Eclipse IDE as part of its plugin dependency management engine. As indicated
by its name, the original library design was built on top of a SAT solver. Taking
advantage of the this initial solver, several new kinds of solvers were added to
the library (pseudo-Boolean solver, MAXSAT solver, ...) including a CSP solver.

Sat4J-CSP3, the version submitted to the 2018 XCSP3 Competition!, is far
more than an improvement to Sat4j-CSP2[4] giving it the ability to read XCSP3
input files. While Sat4j-CSP2 was intended to handle the most common con-
straints (extension, intension, allDifferent), the current version was built with
the idea to handle the whole set of constraints proposed by the specifications of
the XCSP3-core instance format[2]. Since, for most constraints, we had to start
from scratch, we just translated most of the constraints into intension ones,
taking advantage of the instance parser provided by Christophe Lecoutre[2].

The intension constraints encoder developed for Sat4j-CSP2 was simply eval-
uating each constraint using javascript (Rhino library) and generated the whole
set of nogoods for each of them. Although it was sufficient for instances with
intension constraints considering few variables with small domains, the encod-
ing of global constraints into intension constraints made the encoder absolutely
unefficient. We thus developed a new intension constraint encoder, based on the
principle of the Tseitin encoding:

1. from a constraint, we build a tree where the nodes are labeled with operators,
and leaves with variables or constants;

2. each node is associated with a new integer variable giving its value (0 or 1
for nodes labeled with Boolean operators);

3. considering the nodes from the leaves to the root, the mapping between the
values of its children and its own value is encoded using Boolean constraints;

4. the value of the root is enforced to a non-zero value. Concerning the opti-
mization of objectives in functional forms, the same algorithm is used except
for the last step: instead of enforcing the tree root value, the variable it is
associated with is set as the objective function.

! http://xcsp.org/competition


http://xcsp.org/competition

2 Future Work

Sat4j-CSP3 was developed with the aim to handle the whole set of constraints
allowed in XCSP3-core. However, at this step, there is room for improvements.
First, the encoding of integer variables uses one binary variable for each value
in its range. For arrays of integer variables taking their values in large domains,
this results in the declaration of a huge amount of Boolean variables, making the
solver running out of memory. A slight adaptation of some encodings used for At-
Most-1 constraints (like the binary encoding or the Two-Product encoding|3])
may help in terms of efficiency to keep the memory consumption under the
system limits.

At this time, we did not develop any specific constraint encodings. We trans-
lated most of the global constraints into intension ones, so we do not take advan-
tage of known encodings of these constraints. In addition, new integer variable
encodings (as described in the beginning of this section) may bring some effi-
ciency tracks to intension constraints encoding.

Finally, we plan to support several multicriteria optimization processes. This
is possible because Sat4j has such capabilities for some families of Boolean func-
tions.

3 Acknowledgments

This work has been supported by the project CPER DATA from the “Hauts-de-
France” Region.

References

1. Berre, D.L., Parrain, A.: The sat4j library, release 2.2. JSAT 7(2-3), 59-6 (2010),
https://satassociation.org/jsat/index.php/jsat/article/view/82

2. Boussemart, F., Lecoutre, C., Piette, C.: XCSP3: an integrated format for bench-
marking combinatorial constrained problems. CoRR abs/1611.03398 (2016),
http://arxiv.org/abs/1611.03398

3. Chen, J.: A new sat encoding of the at-most-one constraint. Proc. Constraint Mod-
elling and Reformulation (2010)

4. Le Berre, D., Lynce, I.: Csp2sat4j: a simple csp to sat translator. Proceedings of the
2nd International CSP Solver Competition pp. 43-54 (2008)


https://satassociation.org/jsat/index.php/jsat/article/view/82
http://arxiv.org/abs/1611.03398

	Sat4j-CSP XCSP3 Competition – 2018

