
STRUCTure: A parallel boolean satifibiality solver

Alexandru Mos,oi
ami650@few.vu.nl

VU University Amsterdam

March 2, 2011

Introduction

STRUCTure is a novel look-ahead parallel
boolean satisfiability solver running on the
Constellation parallel framework [6]. The
main goal of STRUCTure is scalability. Both
STRUCTure and Constellation are devel-
oped at VU University Amsterdam1 using
the DAS-4 super computer 2. STRUCTure
is available freely at https://github.com/

brtzsnr/structure

Constellation’s parallel programming
model is based on activity spawning. Com-
munication is done through message passing
among running activities. There is no shared
memory available, though activities running
on the same machine could make use of
the common address space. For the SAT
Competition 2011 STRUCTure uses a single
machine with up to number of cores specified
activities running simultaneously.

STRUCTure is divided in two parts: a se-
quential preprocessor and distributed solver.
In the preprocessing phase the instance is
minimized using expensive reasonings such as
XOR clauses extraction, dependent variable
removal [4] (removal of variables that appear
in a single XOR clause) and blocked clause

1http://www.cs.vu.nl/
2http://www.cs.vu.nl/das4/

Figure 1: Activities workflow

elimination [5].
The goal of an activity in STRUCTure is

to verify the satisfiability of an input SAT
formula F . There are three types of activities
listed below and pictured in figure 1.

• SplitActivity detects if F is composed of
several smaller formulas F1, . . . Fk and
solves the smaller formulas instead.

• BranchActivity picks a branching variable
b and spawns two activities to solve for-
mulas F− = F ∧{¬b} and F+ = F ∧{b}.

1



The solutions of F− and F+ are combined
to answer F . The branching decision is
similar to the one done in March eq [2],
with the observation that literals’ scores
are calculated based on the length of the
clauses in which they appear and the
graph of implications. Magic constants
were fine tuned for the easy instances
from SAT Competition 2009.

• SolveActivity tries to simplify the in-
put formula and find a solution for it
if it is simple enough (e.g. ∈ 2SAT).
The simplifications include unit propa-
gation, hyper-binary resolution [1], sub-
summing, pure literals propagation and
binary reasoning. Binary reasoning is
performed using the graph of implica-
tions and is composed of equality reduc-
tion, necessary assignment (u is a neces-
sary assignment if ¬u → v ∧ ¬u → ¬v),
hidden tautology elimination [3] and bi-
nary (self-)subsuming ((self-)subsuming
when one clause has only two literals).

Scalability comes at a huge time and mem-
ory penalty of spawning new activities due to
serialization and deserialization of SAT for-
mulas therefore branching should be avoided
whenever possible. The simplifications per-
formed by SolveActivity are important and
must be cheap. STRUCTure comes with a
new fast algorithm for hyper-binary resolu-
tion which is the most expensive reasoning
performed.

Future work includes 1. finding new
branching decision heuristics 2. cheaper
branching methods to reduce marshaling
3. back jumping 4. new preprocessing algo-
rithms (e.g. Gaussian elimination on XOR
clauses) 5. clause learning when unsatisfiable
formula are identified.

References

[1] F. Bacchus and J. Winter. Effective
preprocessing with hyper-resolution and
equality reduction.

[2] Marijn Heule, Mark Dufour, Joris
van Zwieten, and Hans van Maaren.
March eq: Implementing additional rea-
soning into an efficient look-ahead sat
solver. pages 345–359. 2005.

[3] Marijn Heule, Matti Järvisalo, and Armin
Biere. Clause elimination procedures for
cnf formulas. In Proceedings of the 17th
international conference on Logic for pro-
gramming, artificial intelligence, and rea-
soning, LPAR’10, pages 357–371, Berlin,
Heidelberg, 2010. Springer-Verlag.

[4] Marijn J.H. Heule. SmArT solving: Tools
and techniques for satisfiability solvers.
PhD thesis, TU Delft, 2008.

[5] Matti Järvisalo, Armin Biere, and Mar-
ijn Heule. Blocked clause elimination. In
TACAS, 2010.

[6] Jason Maassen, Frank J. Seinstra, and
Henri E. Bal. Context aware many-task
computing with ibis/constellation. 2011.

2


