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Solver name BinMiniSat

Authors Kiyonori Taniguchi, Miyuki Koshimura, Hiroshi Fujita, and

Ryuzo Hasegawa

Track Minisat hack track

Description BinMiniSat is a SAT solver which prefers to select literals

in binary clauses as decision variables so as to produce unit propa-

gation. We introduce a method to detect binary clauses by adding

an operation to the 2-literal watching function.
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CirCUs 2.0 - SAT Competition 2009 Edition⋆

Hyojung Han1, HoonSang Jin2, Hyondeuk Kim1, and Fabio Somenzi1

1 University of Colorado at Boulder
2 Cadence Design Systems

{Hyojung.Han,Hyondeuk.Kim,Fabio}@colorado.edu
{hsjin}@cadence.com

CirCUs is a SAT solver based on the DPLL procedure and conflict clause recording

[7, 5, 2]. CirCUs includes most current popular techniques such as two-watched literals

scheme for Boolean Constraint Propagation (BCP), activity-based decision heuristics,

clause deletion strategies, restarting heuristics, and first UIP-based clause learning. In

this submission we focus on the search for a balance between the ability of a technique

to detect implications (the deductive power of [3]) and its cost.

This version of CirCUs adopts strong conflict analysis [4], one that often learns

better clauses than those of the first Unique Implication Point (UIP). Just as different

clauses may be derived from the same implication graph, different implication graphs

may be obtained from the same sequence of decisions, depending on the order in which

implications are propagated. Strong conflict analysis is a method to get more compact

conflict clauses by scrutinizing the implication graph. It attempts to make future im-

plication graphs simpler without expending effort on reshaping the current implication

graph. The clauses generated by strong conflict analysis tend to be effective particularly

in escaping hot spots, which are regions of the search space where the solver lingers

for a long time. A new restarting heuristics added in this version can also help the SAT

solver to handle hot spots. This new scheme is an ongoing work.

Detecting whether the resolvent of two clauses subsumes either operand is easy and

inexpensive. Therefore, checking on-the-fly for subsumption can be added with almost

no penalty to those operations of SAT solvers that are based on resolution. This detec-

tion is used to improve three stages of CirCUs: variable elimination, clause distillation,

and conflict analysis. The idea and applications of the on-the-fly subsumption check is

proposed in our full paper submitted to SAT 2009.

Conflict analysis in CirCUs is extended to keep checking the subsumption condition

whenever a new resolvent is produced. In conflict analysis, if the new resolvent contains

fewer literals than one of its operands, and the operand exists in the clause database,

the operand is strengthened by removing the pivot variable. Then, the strengthened

operand is established as the new resolvent. When both operands are subsumed, only

one of them is selected to survive, and the other is deleted. Only direct antecedents

can be strengthened in resolution steps. At the end of the resolution step, if the final

resolvent containing the UIP is identified as an existing clause, the conflict analysis

algorithm refrains from adding a new conflict clause to the clause database. Whether a

new conflict clause is added or not, the DPLL procedure backtracks to the level returned

by conflict analysis, and asserts the clause finally learned from the latest conflict. On-

⋆ Supported by SRC contract 2008-TJ-1365.
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the-fly subsumption check can be applied to strong conflict analysis as well as regular

conflict analysis.

Simplifying the CNF clauses leads to fast BCP and to earlier detection of conflicts

in practice. CirCUs is incremented with preprocessing based on subsumption, variable

elimination [1, 6], and distillation [3]. Resolution is the main operation in preprocess-

ing. Therefore, on-the-fly susbsumption is also applied to the preprocessors for variable

elimination and clause distillation. During eliminating variables, at each resolution op-

eration, we can check if one of the operands is subsumed by the resolvent, like the on-

the-fly subsumption check in conflict analysis. A clause can be simplified by on-the-fly

subsumption, regardless of whether the variable is eventually eliminated. Conflict anal-

ysis in clause distillation also performs resolutions steps as conflict analysis in DPLL.

Therefore we can increase efficiency in the distillation procedure by using on-the-fly

simplification.

CirCUs is written in C. An ANSI C compiler and GNU make are required to build

it. It is supposed to be compiled for 32-bit machines.
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clasp: A Conflict-Driven Answer Set Solver

Martin Gebser, Benjamin Kaufmann, and Torsten Schaub⋆

Institut für Informatik, Universität Potsdam, August-Bebel-Str. 89, D-14482
Potsdam, Germany

clasp combines the high-level modeling capacities of Answer Set Program-
ming (ASP; [1]) with state-of-the-art techniques from the area of Boolean con-
straint solving. Hence, it is originally designed and optimized for conflict-driven
ASP solving [2–4]. However, given the proximity of ASP to SAT, clasp can also
deal with formulas in CNF via an additional DIMACS frontend. As such, it can
be viewed as a chaff-type Boolean constraint solver [5].

From a technical perspective, clasp is implemented in C++ and was sub-
mitted in its source code, which is publicly available at [6]. Formulas in CNF
are pre-processed internally relying on concepts borrowed from SatElite [7] as
used in MiniSat 2.0 but implemented in a rather different way. Most innovative
algorithms and data structures aim at ASP solving and are thus outside the
scope of SAT solving. Among them, clasp supports further ASP-oriented pre-
processing techniques and native support of aggregates, such as cardinality and
weight constraints [8].
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GLUCOSE: a solver that predicts learnt clauses quality∗.

Gilles Audemard

Univ. Lille-Nord de France

CRIL/CNRS UMR8188

Lens, F-62307

audemard@cril.fr

Laurent Simon
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Abstract

GLUCOSE is based on a new scoring scheme for
the clause learning mechanism, based on the paper
[Audemard and Simon, 2009]. This short competi-
tion report summarizes the techniques embedded in
the competition 09 version of GLUCOSE. Solver’s
name comes from glue clauses, a particular kind of
clauses that GLUCOSE detects and preserves during
search. The web page for GLUCOSE is
http://www.lri.fr/˜simon/glucose.

1 Introduction

Since the breakthrough of Chaff [Moskewicz et al., 2001], a
lot of effort has been made in the design of efficient Boolean
Constraint Propagation (BCP), the heart of all modern SAT
solvers. The global idea is to reach conflicts as soon as possi-
ble, but with no direct guarantees on the new learnt clause
usefulness. Following the successful idea of the Variable
State Independent Decaying Sum (VSIDS) heuristics, which
favours variables that were often – and recently – used in con-
flict analysis, future learnt clause usefulness is supposed to be
related to its activity in recent conflicts analyses.

In this context, detecting what is a good learnt clause in
advance was still considered as a challenge, and from first
importance: deleting useful clauses can be dramatic in prac-
tice. To prevent this, solvers have to let the maximum number
of learnt clauses grow exponentially. On very hard bench-
marks, CDCL solvers hangs-up for memory problems and,
even if they don’t, their greedy learning scheme deteriorates
their heart: BCP performances.

If a lot of effort has been put in designing smart restart poli-
cies, only a few work targetted smart clause database manage-
ment. In [Audemard and Simon, 2009], we show that a very
simple static measure on clauses can dramatically improves
the performances of MINISAT [Eén and Sörensson, 2003], the
solver on which GLUCOSE is based. GLUCOSE is based on
the last plubicly available version of MINISAT.

∗supported by ANR UNLOC project n◦ ANR-08-BLAN-0289-
01

2 Identifying good clauses in advance

During search, each decision is often followed by a large
number of unit propagations. All literals from the same level
are what we call “blocks” of literals in the later. Intuitively,
at the semantic level, there is a chance that they are linked
with each other by direct dependencies. Our idea is that a
good learning schema should add explicit links between in-
dependent blocks of propagated (or decision) literals. If the
solver stays in the same search space, such a clause will prob-
ably help reducing the number of next decision levels in the
remaining computation. Staying in the same search space is
one of the recents behaviors of CDCL solvers, due to phase-
saving [Pipatsrisawat and Darwiche, 2007] and rapid restarts.

Definition 1 (Literals Blocks Distance (LBD)) Given a
clause C, and a partition of its literals into n subsets accord-
ing to the current assignment, s.t. literals are partitioned
w.r.t their decision level. The LBD of C is exactly n.

From a practical point of view, we compute and store the
LBD score of each learnt clause when it is produced. This
measure is thus static, even if update it during search (LBD
score of a clause can be re-computed when the clause is used
in unit-propagation). Intuitively, it is easy to understand the
importance of learnt clauses of LBD 2: they only contain one
variable of the last decision level (they are FUIP), and, later,
this variable will be “glued” with the block of literals propa-
gated above, no matter the size of the clause. We suspect all
those clauses to be very important during search, and we give
them a special name: “Glue Clauses”.

From a theoretical point of view, it is interesting to no-
tice that LBD of FUIP learnt clauses is optimal over all other
possible UIP learning schemas [Jabbour and Sais, 2008]. If
GLUCOSE efficiency in the 2009 competition clearly demon-
strates our scoring accuracy, this theoretical result will cast a
good explanation of the efficiency of First UIP over all other
UIP mechanisms: FUIP efficiency would then be partly ex-
plained by its ability to produce clauses of small LBD (in
addition to its optimality in the size of the backjump [Jabbour
and Sais, 2008]).

Property 1 (Optimality of LBD for FUIP Clauses) Given
a conflict graph, any First UIP asserting clause has the
smallest LBD value over all other UIPs.
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3 Agressive clauses deletion

Despite its crucial importance, only a few works focus on
the learnt clause database management. However, keeping
too many clauses may decrease solver BCP performances, but
deleting too many clauses may decrease the overall learning
benefit. Nowadays, the state of the art is to let the clause
database size follow a geometric progression (with a small
common ratio of 1.1 for instance in MINISAT). Each time the
limit is reached, the solver deletes at most half of the clauses,
depending on their score (however, binary clauses are never
deleted).

Because we wanted to really emphasize our learning
schema, we propose to reduce drastically the number of learnt
clauses in the database. We chose the following strategy: ev-
ery 20000 + 500 ∗ x conflicts, we remove at most half of the
learnt clause database where x is the number of times this
action was already performed before. It can be noticed that
this strategy does not take the initial size of the formula into
account (as opposite of most current solvers). Our first hope
was only to demonstrate that even a static measure on clause
usefulness could be as efficient as the past-activity one. How-
ever, our results were far beyond our initial hope.

4 Other embedded techniques

The GLUCOSE version submitted to the contest differs from
the one used in [Audemard and Simon, 2009] on some very
particular points that we review here.

First of all, we upgraded MINISAT for a special handling
of binary clauses. We also used a phase-caching schema for
variable polarity [Pipatsrisawat and Darwiche, 2007].

4.1 Restarts

One of the best restart strategy in CDCL solver is based on the
Luby series, which exactly means that “we don’t know when
to restart”. Recently, first steps have been done to find a dy-
namic (computed during the search) restart strategy [Biere,
2008; Ryvchin and Strichman, 2008]. Our restart strategy
is based on the decreasing of the number of decisions levels
during search. If the decreasing is stalling, then a restart is
triggered. This is done by a moving average over the last 100

conflicts. If 0.7 times this value is greater than the global av-
erage of the number of decision levels, then a restart is forced
(at least 100 conflicts are needed before any restart). This
strategy should encourage the solver to keep searching at the
right place, and to escape from wrong places.

4.2 Reward good variables

The state-of-the-art VSIDS [Moskewicz et al., 2001] heuris-
tic bumps all variables which participated to the resolution
steps conducting to the assertive clause. This heuristic favors
variables that are often and recently used in conflict analy-
sis. Since we want to help the solver to generate clauses with
small LBD values, we propose to reward a second time vari-
ables that help to obtain such clauses.

We bump once again all variables from the last decision
level, which were used in conflict analysis, but which were
propagated by a clause of small LBD (smaller than the new
learnt clause).

5 Conclusion

GLUCOSE is based on a relatively old version of MINISAT,
which is very well known, and well established. Only a rel-
ativaly small amount of changes has been made in MINISAT:
we tried to reduce the modifications as much as possible in
order to identify what are the crucial techniques to add to a
2006 winning code to win the UNSAT category of the 2009
SAT competition. A lot of improvements can be awaited by
more up-to-date datastructures (like the use of blocked liter-
als).
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1 Preface

We describe an enhanced version of gNovelty+ [Pham et al.,
2008], a stochastic local search (SLS) procedure for finding
satisfying models of satisfiable propositional CNF formulae.
Version 1 of gNovelty+ was a Gold Medal winner in the ran-
dom category of the 2007 SAT competition. In this version
2, we implemented an explicit mechanism to handle implica-
tions derived from binary clauses. We also made this version
of gNovelty+ multithreaded.

This abstract is organised as follows: we provide an
overview of gNovelty+ and then describe the new enhance-
ments added to this new version. Finally, we describe the
technical settings of its contest implementation.

2 gNovelty+

The original version of gNovelty+ draws on the features of
two other WalkSAT family algorithms: R+AdaptNovelty+

[Anbulagan et al., 2005] and G2WSAT [Li and Huang, 2005],
while also successfully employing a hybrid clause weight-
ing heuristic based on the features of two dynamic local
search (DLS) algorithms: PAWS [Thornton et al., 2004] and
(R)SAPS [Hutter et al., 2002]. This version is sketched out
in Algorithm 1 and depicted diagrammatically in Figure 2.

Algorithm 1 gNovelty+(F)

1: for try = 1 to maxTries do

2: initialise the weight of each clause to 1;

3: randomly generate an assignment A;

4: for step = 1 to maxSteps do

5: if A satisfies F then

6: return A as the solution;

7: else

8: if within a walking probability wp then

9: randomly select a variable x that appears in a false clause;

10: else if there exist promising variables then

11: greedily select a promising variable x, breaking tie by selecting the

least recently flipped one;

12: else

13: select a variablex according to theweighted AdaptNovelty heuristic;

14: update the weights of false clauses;

15: with probability sp smooth the weights of all clauses;

16: end if

17: update A with the flipped value of x;

18: end if

19: end for

20: end for

21: return ‘no solution found’;

At every search step, gNovelty+ selects the most promis-
ing variable that is also the least recently flipped, based on
our weighted objective function. Our objective is to minimise
the sum of weights of all false clauses. If no such promising
variable exists, the next variable is selected using a heuris-
tic based on AdaptNovelty that utilises the weighted objec-
tive function. After the Novelty step, gNovelty+ increase
the weights of all current false clauses by 1.1 In order to
keep the control of the level of greediness of the search flex-
ible, we also incorporates into gNovelty+ a new linear ver-
sion of the probabilistic weight smoothing from SAPS [Hut-
ter et al., 2002]. Every time gNovelty+ updates its clause
weights, with a smoothing probability sp the weights of all
weighted clauses (a clause is weighted if its weight is greater
than one) are subject to a reduction of 1. Finally, we also
added a probabilistic walk heuristic (i.e. the plus heuristic
from Hoos [1999]) to gNovelty+ to further improve the bal-
ance between the level of randomness (resp. greediness) of
the search.

3 gNovelty+ version 2

DPLL-based SAT procedures have for some time exploited
the presence of binary clauses – Both present in the problem
at hand, and derived during search [Gelder and Tsuji, 1995;
Zheng and Stuckey, 2002]. In particular, they incorporate lin-
ear time algorithms based on graph theory or unit propagation
into the DPLL search. In developing gNovelty+ V.2, one of
our objectives was to exploit 2SAT procedures in the setting
of local search. In particular, gNovelty+ V2 cannot make lo-
cal moves that violate constraints implied by the 2SAT frag-
ment of the problem at hand. Moreover, we maintain consis-
tency of the current valuation with the 2SAT fragment. Fi-
nally, we heuristically punish the local search – via the DLS
clause weighting scheme – for failing to satisfy clauses that
contain literals occurring in the 2SAT fragment.

4 Contest Implementation

For the 2009 SAT competition, the parameter sp of
gNovelty+ is fixed at .4 for the 3-SAT problems and at 1 for
other problems. Also, wp was always set to 0.01.

1We decided to use the additive weight increase at each local
minimum as it is cheaper to maintain than its counterpart multiplica-
tive weighting [Thornton et al., 2004].
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Figure 1: Flow-chart comparison between the two procedures G2WSAT and gNovelty+.

We submitted 6 variants of gNovelty+ to the competi-
tion. These differ in whether they: (1) exploit the presence
of binary clauses, (2) support multithreading, and (3) incor-
porate a hash-based tabu. The details of our submission is
summarised in Table 1. Threaded versions of the respective
solvers run multiple concurrent and independent searches.
The number of threads is an algorithm parameter, thus is not
dynamically decided. The tabu is a simple mechanism we
have implemented to escape local minima quickly in struc-
tured problems.

2SAT Multithreaded Tabu

gNovelty+ no no no

gNovelty+-T no yes no

gNovelty+-V.2 yes no no

gNovelty+-V.2-T yes yes no

gNovelty+-V.2-H yes no yes

gNovelty+-V.2-T-H yes yes yes

Table 1: Versions of gNovelty+ submitted at the 2009 SAT
competition.
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1 Review of Algorithms adaptG2WSATP , V W , Hybrid, and

adaptG2WSAT+

The local search algorithm adaptG2WSATP [2, 3] flips the promising decreasing variable with the largest

computed promising score if there are promising decreasing variables. It selects a variable to flip from a

randomly chosen unsatisfied clause using heuristic Novelty++P [2, 3] otherwise.

The local search algorithm V W [5] introduces variable weighting. This algorithm initializes the weight

of a variable x, variable weight[x], to 0 and updates and smoothes variable weight[x] each time x is

flipped, using the following equation:

variable weight[x] = (1 − s)(variable weight[x] + 1) + s × t (1)

where s is a parameter and 0 ≤ s ≤ 1, and t denotes the time when x is flipped. This algorithm uses

a unique variable selection rule. We call this rule the low variable weight favoring rule. If a randomly

selected unsatisfied clause c contains freebie variables,3 V W randomly flips one of them. Otherwise, with

probability p, it flips a variable chosen randomly from c, and with probability 1− p, it flips a variable in c

according to the low variable weight favoring rule.

A switching criterion, namely the evenness or unevenness of the distribution of variable weights, was

proposed in [6, 7]. It is defined in [6, 7] as follows. Assume that γ is a number. If the maximum variable

weight is at least γ times as high as the average variable weight, the distribution of variable weights is

considered uneven, and the step is called an uneven step in terms of variable weights. Otherwise, the

distribution of variable weights is considered even, and the step is called an even step in terms of variable

weights. An uneven or an even distribution of variable weights is used as a means to determine whether a

search is undiversified in a step in terms of variable weights.

Hybrid [6, 7] switches between heuristic adaptG2WSATP and heuristic V W according to the above

switching criterion.4 More precisely, in each search step, Hybrid chooses a variable to flip according to

heuristic V W if the distribution of variable weights is uneven, and selects a variable to flip according

to heuristic adaptG2WSATP otherwise. In Hybrid, the default value of parameter γ is 10.0. Hybrid

updates variable weights using Formula 1, and parameter s in this formula is fixed to 0.0.

The local search algorithm adaptG2WSAT+ was improved from adaptG2WSAT [2–4]. This

new algorithm is different from adaptG2WSAT in two respects. First, when there is no promising

decreasing variable, adaptG2WSAT+ uses Novelty+ instead of Novelty++ [1], to select a vari-

able to flip from a randomly chosen unsatisfied clause c. Second, when promising decreasing vari-

ables exist, adaptG2WSAT+ no longer flips the promising deceasing variable with the highest score

3 A freebie variable is a variable with a break of 0.
4 The ways in which algorithms adaptG2WSATP [3] and V W [5] select a variable to flip, are referred to as

heuristic adaptG2WSATP and heuristic V W , respectively [6, 7].
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among all promising decreasing variables, but chooses the least recently flipped promising decreas-

ing variable among all promising decreasing variables to flip. We refer to the way in which algorithm

adaptG2WSAT+ selects a variable to flip, as heuristic adaptG2WSAT+.

2 Local Search Algorithm Hybrid2

Hybrid can solve a broad range of instances. In this algorithm, parameters γ is fixed for a broad range of

instances and is not optimized for specific types of instance. We improve Hybrid for random instances

and obtain algorithm Hybrid2, which switches between heuristic adaptG2WSAT+ and heuristic V W .

This algorithm is described in Fig. 1. In Hybrid2, γ is set to 1.025. In this algorithm, variable weights are

updated using Formula 1, and parameter s in this formula is adjusted during the search in the same way as

in V W (s > 0.0). That is, unlike Hybrid, Hybrid2 smoothes variable weights.

Algorithm: Hybrid2(SAT-formula F )

1: A← randomly generated truth assignment;

2: for each variable x do initialize flip time[x] and variable weight[x] to 0;

3: initialize p, wp, max weight, and ave weight to 0; initialize s to 0.1;

4: store promising decreasing variables in stack DecVar;

5: for flip=1 to Maxsteps do

6: if A satisfies F then return A;

7: if max weight ≥ γ × ave weight

8: then y←heuristic V W (p);

9: else y←heuristic adaptG2WSAT+(p, wp)

10: A←A with y flipped; adapt p and wp; adjust s;

11: update flip time[y], variable weight[y], max weight, ave weight, and DecVar;

12: return Solution not found;

Fig. 1. Algorithm Hybrid2
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hybridGM is a hybrid SAT solver based on the SLS solver gNovelty+ and
the DPLL Solver march ks which are combined with the help of search space
partitions. First we give a brief description of the components of hybridGM.

1. gNovelty+:
gNovelty+ is itself a hybrid SLS solver [2], combining the solvers G2WSAT,
PAWS and AdaptNovelty+. The basis of the solver is G2WSAT, which com-
putes the scores for all variables in the unsatisfied clauses before each flip and
selects the most promising one. gNovelty+ uses an additive clause weighting
scheme like PAWS to better guide the search within G2WSAT. If the solver
gets stuck in a local minimum (i.e: there are no promising variables) it uses
AdaptNovelty+ [3], which selects a random unsatisfied clause and flips the
best or second best variable in this clause.

2. march ks:
march ks is a look-ahead DPLL solver, that utilizes equivalency reasoning,
adaptive double look-ahead and distribution jumping [4, 5]. It was chosen for
the hybridization, because it is currently the fastest solver for unsatisfiable
formulas.

3. Search space partition:
Given a SLS solver S and a complete assignment α reached at step k by the
SLS solver during its search, then a search space partition (SSP ) of size r is
defined as a partial assignment αp built in the following way: First αp = α,
then the variables that are flipped by the SLS solver at step k + i and k − i
get unassigned in αp for i = 1, 2, .. until the number of unassigned variables
is ≥ r.

hybridGM uses gNovelty+ as its basis. When a good local minimum is
reached (number of unsatisfied clauses ≤ barrier), it starts to build up a search
space partition. When the size of the search space partition reaches half the
number of variables, march ks is called to solve the problem, starting with the
partial assignment αp. A solution is found if march ks can extend the partial
assignment to a complete assignment. Otherwise, the search of gNovelty+ con-
tinues. If the unassigned variables in αp result in unary conflicts detected by
march ks with unit propagation, the size of a search space partition is increased
by n/20 where n is the number of variables.
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The intuition behind this concept is based on the observations made in [6].
Zhang showed that there is a correlation between the hamming distance of lo-
cal minimum and their nearest solution and the quality of the local minimum.
So, if gNovelty+ finds a good local minimum, there will be a solution in the
near hamming neighborhood of the local minimum very likely. But because this
neighborhood is far too large to be completely searched we looked for a way to
find another neighborhood relation. So we came up with the concept of search
space partitions. Preliminary tests showed that this approach is promising. hy-

bridGM was able to solve more 3-SAT instances in less time than the original
gNovelty+.

gNovelty+ was modified slightly compared to the SAT 2007 version [1]. The
smoothing probability for the PAWS component was set to sp = 0.33. When
solving large 5-SAT or 7-SAT instances the G2WSAT component and clause
weighting is completely turned off and only the AdaptNovelty+ part is active.
Smaller 5-SAT and 7-SAT instances are still solved by the G2WSAT component.
The number of unsatisfied clauses barrier is always one.

We propose 3 solvers for the competition:

1. hybridGM : calls march ks only for 3-SAT. For 5-SAT and 7-SAT it uses
AdaptG2WSAT.

2. hybridGM3: calls march ks only for 3-SAT. For 5-SAT and 7-SAT it uses
AdaptNovelty+ if the number of clauses is larger than 10000.

3. hybridGM7: always tries to build search space partitions and then to call
march ks. For 5-SAT and 7-SAT it acts like hybridGM3.
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1 Introduction

HydraSAT is a CDCL SAT solver which can be applied to satisfiable as well
as unsatisfiable formulas. The original motivation for writing the system was to
learn about techniques of advanced DPLL-based SAT systems. So it started out
basically as a re-implementation of MiniSat [3] that was done from scratch, with
emphasis on a component-based design which facilitates extension by further
techniques.

2 Features

Component-Based Architecture. HydraSAT includes alternate implementations
of core components such as unit propagation, decision heuristics or maintenance
of learned clauses, which are related internally through common interfaces and
a notification mechanism. Which components get activated is controlled at run-
time by configuration parameters. Alternate implementations of low-level data
structures such as representations of clauses or assignments can be selected with
compilation flags.

Detection of Multiple Conflicts. Optionally, unit propagation can be continued
after a conflict has been found, such that multiple conflicts and thus multiple
candidate lemma clauses can be derived. Depending on the solver configuration,
some of these are asserted as learned clauses. For example, a single lemma clause
which effects backjumping to the lowermost decision level.

Context Lemmas. HydraSAT includes a deletion scheme for learned clauses,
where deletion is triggered by backjumping: A learned clause is deleted, if the
backjumping step effects that the number of its unasserted literals becomes larger
than a certain threshold.

Representation of Low-Level Data Structures. The solver uses techniques from [1]
such as packed assignment representation, storage of the first literal of a clause
within the watched list, and split clause data structures to improve locality of
memory accesses. The exact choice and parametrization of these data structures
can be controlled with configuration options.
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Preprocessing. The preprocessor of HydraSAT implements a portion of the sim-
plifications employed in the 2007 contest version of MiniSat (see also [2]) in
combination with probing techniques [4].

Competition Versions. Different variants of HydraSAT will be submitted to the
SAT 2009 competition: The standard version, a “fixed” version that is hand
optimized for a specific hard-coded component and parameter selection, and
a “multi” version that invokes the standard version with different parameter
settings, each with a timeout that is the fraction of the contest time limit.

Availability. The system is written in C++. The source code of the 2009 SAT
competition version is publicly available for research purposes, in accord with the
competition rules. We plan to release a revised and more extensively documented
version for a wider public under the GPL license in Summer 2009.
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1. Introduction 

The IUT_BMB_SIM is a Preprocessor which converts a CNF formula to an 

equivalent but simpler CNF formula. It performs a simplification task using unary and 

binary clauses of the formula. The simplification task consists of three parts which are 

described next. 

 

2. Resolution on binary Clauses 

The first part of the simplification is to use the resolution rule on binary clauses to 

extract unary ones. If two binary clauses exist in the CNF formula in the forms 

)( ji ll � and )( ji ll � , a unary clause in the form )( il can be extracted from them. In 

this part of preprocessing, all binary clauses in the given formula are checked to find 

every pair from which a unary clause can be extracted. 

 

For speed up, this part is performed at the same time the CNF formula is being read 

and prepared into the data structures. 

 

3. Unit-propagation 

All the unary clauses are stored in a queue while the CNF formula is being read. This 

includes the new unary clauses extracted from the binary ones. Then, a unit-

propagation task is performed to further simplify the formula and also to eliminate all 

the unary clauses. 

 

4. Finding Strongly Connected Component 

After eliminating all unary and binary clauses in the forms )( ji ll � and )( ji ll � , an 

Implication Graph with all of the remaining binary clauses are constructed. As in 2-

SAT, each strongly-connected component can be used for the purpose of binary 

equivalence of some literals. For example, if a strongly-connected component with 

three nodes il , jl and kl exist in the implication graph, then there will be paths from il

to jl and from jl to kl and from il to kl , and vice versa. Recall that in an implication 

graph, if a literal il has a path to another literal  jl then il implies jl or if trueli = then 

truel j = either. So if a strongly-connected component with three nodes il , jl and 

kl exist in an implication graph, then all these literals will be equivalent. So jl and 

kl can be replaced with il , and also jl and kl can be replaced with il . Therefore, by 

finding strongly-connected components, some variables are eliminated and the CNF 

formula is simplified and is expected to be solved in less time than the original one. 
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1. Introduction 

The IUT_BMB_SAT is a two-phase SAT solver. The first phase is a simplification 

phase which converts a CNF formula to an equivalent but simpler CNF formula, and 

the second phase is to call a SAT solver to solve the simplified CNF formula. The 

emphasis is on the first phase; any sat solver may be used as for the second phase. 

This solver uses the latest available version of Minisat [1] which can be downloaded 

from [2]. Actually, the first phase is a preprocessing phase and tries to simplify the 

CNF formula using unary and binary clauses of the formula. This phase has three 

parts which are described next. 

 

2. Resolution on binary Clauses 

The first part of the simplification is to use the resolution rule on binary clauses to 

extract unary ones. If two binary clauses exist in the CNF formula in the forms 

)( ji ll � and )( ji ll � , a unary clause in the form )( il can be extracted from them. In 

this part of preprocessing, all binary clauses in the given formula are checked to find 

every pair from which a unary clause can be extracted. 

 

For speed up, this part is performed at the same time the CNF formula is being read 

and prepared into the data structures. 

 

3. Unit-propagation 

All the unary clauses are stored in a queue while the CNF formula is being read. This 

includes the new unary clauses extracted from the binary ones. Then, a unit-

propagation task is performed to further simplify the formula and also to eliminate all 

the unary clauses. 

 

4. Finding Strongly Connected Component 

After eliminating all unary and binary clauses in the forms )( ji ll � and )( ji ll � , an 

Implication Graph with all of the remaining binary clauses are constructed. As in 2-

SAT, each strongly-connected component can be used for the purpose of binary 

equivalence of some literals. For example, if a strongly-connected component with 

three nodes il , jl and kl exist in the implication graph, then there will be paths from il

to jl and from jl to kl and from il to kl , and vice versa. Recall that in an implication 

graph, if a literal il has a path to another literal  jl then il implies jl or if trueli = then 

truel j = either. So if a strongly-connected component with three nodes il , jl and 
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kl exist in an implication graph, then all these literals will be equivalent. So jl and 

kl can be replaced with il , and also jl and kl can be replaced with il . Therefore, by 

finding strongly-connected components, some variables are eliminated and the CNF 

formula is simplified and is expected to be solved in less time than would otherwise 

be the case. 

Having this accomplished, the simplification phase is completed, and a sat solver, 

Minisat in this version of IUT_BMB_SAT, must be invoked to solve the simplified 

formula. 
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The SAT Solver kw – 2009 version
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Introduction

kw is a logic reasoning machinery. It includes a satisfiability solver described in [1] (which is
also called kw). It also includes a bounded model checker, an SMT solver, native support for
more elaborate constraints than clauses; it supports circuit-based reasoning etc. The aim when
creating it has been to build a flexible framework that can easily be extended in several direc-
tions. Therefore, the architecture is extremely modular and it is easy to create new logic rea-
soning components.

The SAT solver kw is based upon a number of strateies together with a strategy selection mech-
anism that time-slices different strategies to simplify and solve the problem instances. kw sup-
ports solving incremental SAT problems and proof generation.

kw is written in C++, Scheme and Python. The version of kw entering the SAT competition
2009 was submitted as a 64 bit binary.

Changes versus the SAT race 2008 version

Development during 2008 has mainly been centered around non-SAT functionality. Instead, kw
has been developed in a tangential direction, for instance by extending it to an SMT solver and
building a BMC engine on top of the SAT functionality. However, some core SAT-specific
improvements have also been made which are described below.

Variable instantiation

kw now includes a variable instantiation strategy [2], [3]. It can be viewed as an extension to
the pure literal rule and may transform a SAT instance to an equisatisfiable instance with fewer
models and less unknown variables.

Elimination improvements

The elimination strategy [1] has been reworked to be stronger and more efficient, and is now
able to eliminate more variables than before.

Polarity caching

kw now uses polarity caching initially described in [4].

Blocking literals

The blocking literals technique introduced in MiniSat 2.1 [5] has been added.

Automatic strategy improvements

The automatic strategy selection strategy is now smarter, resulting in shorter runtimes for most
instances. It heuristically avoids scheduling strategies which are unlikely to be beneficial at the
current stage of the solution process.
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Optimized code

Several parts of the code has been improved performance-wise for competition-like conditions.
For instance, the proof-logging code doesn’t impact runs where logging is turned off any more,
and some callback-heavy parts have been refactored.

Future work

More work is planned on several fronts. Continued development in SMT-related areas and more
higher-level constraints are items high on the todo list. Regarding the SAT specific parts, two
separate development tracks are intended: improving the circuit-based capabilities and adding
more strategies. Development during 2008 produced several new strategies most of which, how-
ever, are not ready for prime-time. The potential in those strategies needs to be harvested.

References

[1] Johan Alfredsson – The SAT Solver kw, in The SAT race 2008: Solver descriptions, 2008

[2] Johan Alfredsson – The SAT Solver Oepir, in The SAT competition 2004: Solver descrip-

tions , 2004

[3] Gunnar Andersson, Per Bjesse, Byron Cook and Ziyad Hanna – A Proof Engine Approach to
Solving Combinatorial Design Automation Problems, in Proceedings of the Design Automation

Conference, 2002

[4] Knot Pipatrisawat and Adnan Darwiche – A Lightweight Component Caching Scheme for
Satisfiability Solvers, in Proceedings of the International Conference on the Theory and Applica-

tions of Satisfiability Testing, 2007

[5] Niklas Sörensson and Niklas Eén – MiniSat 2.1 and MiniSat++ 1.0 — SAT Race 2008 Edi-
tions, in The SAT race 2008: Solver descriptions, 2008

22



LySAT: solver description

Youssef Hamadi1, Said Jabbour2, and Lakhdar Sais2,3

1 Microsoft Research
7 J J Thomson Avenue, Cambridge, United Kingdom

youssefh@microsoft.com
2 CRIL-CNRS, Université d’Artois
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Overview

LySAT is a DPLL-based satisfiability solver which includes all the classical fea-
tures like lazy data-structures and activity-based decision heuristics. It differs
from well known satisfiability solvers such as Rsat [6] and MiniSAT [3] on many
important components such as restart strategies and clause learning. In addition
to the classical first-UIP scheme, it incorporates a new technique which extends
the classical implication graph used during conflict-analysis to exploit the satis-
fied clauses of a formula [1]. It also includes a dynamic restart strategy, where
the cut-off value of the next restart is computed using information gathered in
the two previous runs. Finally, a new phase-learning [4, 6] policy based on the
computed occurrences of literals in the learnt clauses is used.

Additionally, LySAT exploits a new dynamic subsumption technique for
Boolean CNF formulae[5]. It detects during conflict analysis, clauses that can be
reduced by subsumption. During the learnt clause derivation, and at each step
of the resolution process, the solver checks for backward subsumption between
the current resolvent and clauses represented in the implication graph. This dy-
namic subsumption approach gives rise to a strong and dynamic simplification
technique which exploits learning to eliminate literals from the original clauses.

Code

The system is written in C++ and has about 2000 lines of code. It was submitted
to the race as a 32 bit binary. It is written on top of minisat 2.02 [3]. SatElite
was also applied systematically as a pre-processor [2].
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Overview

ManySAT is a parallel DPLL-engine which includes all the classical features like
two-watched-literal, unit propagation, activity-based decision heuristics, lemma
deletion strategies, and clause learning [4, 6]. In addition to the classical first-UIP
scheme, it incorporates a new technique which extends the classical implication
graph used during conflict-analysis to exploit the satisfied clauses of a formula
[1].

When designing ManySat we decided to take advantage of the main weakness
of modern DPLLs: their sensitivity to parameter tuning. For instance, changing
parameters related to the restart strategy or to the variable selection heuristic
can completely change the performance of a solver on a particular problem. In a
multi-threading context, we can easily take advantage of this lack of robustness
by designing a system which will run different incarnation of a core DPLL-engine
on a particular problem. Each incarnation would exploit a particular parameter
set and their combination should represent a set of orthogonal strategies.

To allow ManySAT to perform better than any of the selected strategy,
conflict-clause sharing was added. Technically, this is implemented through lock-
less shared data structures. The version 1.1 implements innovative dynamic
clause sharing policies [5].

Code

The system is written in C++ and has about 4000 lines of code. It is written on
top of minisat 2.02 [3], which was extended to accommodate the new learning
scheme, the various strategies, and our multi-threading clause sharing policy.
SatElite was also applied systematically by the treads as a pre-processor [2].
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1 introduction

The march hi Sat solver is an upgraded ver-
sion of the successful march ks , march dl and
march eq Sat solvers, which won several awards
at the Sat 2004, 2005 and 2007 competitions.
For the latest detailed description, we refer
to [3, 2]. Like its predecessors, march hi inte-
grates equivalence reasoning into a DPLL ar-
chitecture and uses look-ahead heuristics to de-
termine the branch variable in all nodes of the
DPLL search-tree. The main improvements in
march hi are:

• an improved guided jumping strategy:
instead of the conventional depth-first
search, march hi uses a jumping strategy
based on the distribution of solutions mea-
sured on random 3-Sat instances. It jumps
more aggressively then the march ks im-
plementation [1].

• a more accurate look-ahead evaluation
function for 3-Sat formulae.

2 pre-processing

The pre-processor of march dl , reduces the for-
mula at hand prior to calling the main solv-
ing (DPLL) procedure. Earlier versions already
contained unit-clause and binary equivalence
propagation, as well as equivalence reasoning,
a 3-Sat translator, and finally a full - using all
free variables - iterative root look-ahead. How-
ever, march hi (as well as march ks ) does not use
a 3-Sat translator by default (although it is still
optional). The motivation for its removal is to
examine the effect of (not) using a 3-Sat transla-
tor on the performance. Because the addition of
resolvents was only based on the ternary clauses
in the formula (after the translation) we devel-
oped a new algorithm for this addition which
uses all clauses with at least three literals.

3 partial lookahead

The most important aspect of march eq is the
PartialLookahead procedure. The pseudo-
code of this procedure is shown in Algorithm 1.

Algorithm 1 PartialLookahead( )

1: Let F ′ and F ′′ be two copies of F
2: for each variable xi in P do

3: F ′ := IterativeUnitPropagation(F ∪ {xi})
4: F ′′ := IterativeUnitPropagation(F ∪ {¬xi})
5: if empty clause ∈ F ′ and empty clause ∈ F ′′

then

6: return “unsatisfiable”
7: else if empty clause ∈ F ′

then

8: F := F ′′

9: else if empty clause ∈ F ′′ then

10: F := F ′

11: else

12: H(xi) = 1024 × Diff(F , F ′) × Diff(F , F ′′)
+ Diff(F , F ′) + Diff(F , F ′′)

13: end if

14: end for

15: return xi with greatest H(xi) to branch on

4 additional features

• Prohibit equivalent variables from both
occurring in P : Equivalent variables will
have the same Diff, so only one of them
is required in P .

• Timestamps: A timestamp structure in
the lookahead phase makes it possible
to perform PartialLookahead without
backtracking.

• Cache optimisations: Two alternative
data-structures are used for storing the bi-
nary and ternary clauses. Both are de-
signed to decrease the number of cache
misses in the PartialLookahead proce-
dure.

• Tree-based lookahead: Before the actual
lookahead operations are performed, var-
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ious implication trees are built of the bi-
nary clauses of which both literals occur
in P . These implications trees are used to
decrease the number of unit propagations.

• Necessary assignments: If both xi → xj

and ¬xi → xj are detected during the
lookahead on xi and ¬xi, xj is assigned to
true because it is a necessary assignment.

• Resolvents: Several binary resolvents are
added during the solving phase. Those re-
solvents that are added have the property
that they are easily detected during the
lookahead phase and that they could in-
crease the number of detected failed liter-
als.

• Restructuring: Before calling procedure
PartialLookahead, all satisfied ternary
clauses of the prior node are removed from
the active data-structure to speed-up the
lookahead.
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1 Introduction

The submitted version of MiniSAT is the result of a student research project
that I did at the Research Group Verification Meets Algorithm Engineering
at the KIT (Karlsruhe Institute of Technology). Part of the project was to
experiment with problem sensitive restart strategies. Since I used the provided
version of MiniSAT [3] to do my experiments, I decided to take part at the SAT
Competition 2009, MiniSAT Hack Track.

2 A Problem Sensitive Restart Heuristic

MiniSAT 09z applies a Problem Sensitive Restart Heuristic called Avoidance of
Plateaux. When the local minimum of backtracking levels stays equal during
the watched interval of backtracking levels we call this a Plateau. As soon as
the number of equal minima exceeds a constant threshold the algorithm triggers
a restart. This Restart Strategy had a good effect on the solvers runtime and
the number of conflicts on unstatisfiable SAT-Instances. A brief description of
our experiments on Problem Sensitive Restart Heuristics can be found in [1].

3 Side Effects

Since the Restart Strategy and the Strategy that reduces the number of learnt
clauses were closely linked in the provided MiniSAT version I picked another
Strategy to decide when to reduce the number of learnt clauses. I chose the
initial Learntsize-Limit to be

300000/cvr (1)

where cvr is the initial Clause-Variable-Ratio.
Increment of Learntsize-Limit takes place on every call to ReduceDB. Originally
this was done on every Restart. Since the Avoidance of Plateux Restart Strategy
often produces many more Restarts this was not applicable any more.

4 Value Caching

Since it was not implemented yet in the provided version of MiniSAT, I did
some kind of Value Caching [2] on Variables to enhance the performance of our
competition version even more.
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[3] Niklas Een and Niklas Sörensson, An Extensible SAT-solver, (SAT, 2003)

30



MINISAT 2.1 and MINISAT++ 1.0 — SAT Race 2008 Editions

Niklas Sörensson
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1 Introduction

MINISAT is a SAT solver designed to be easy to use,
understand, and modify while still being efficient.
Originally inspired by ZCHAFF [10] and LIMMAT [1],
MINISAT features the now commonplace two-literal
watcher scheme for BCP, first-UIP conflict clause
learning, and the VSIDS variable heuristic (see [5] for
a detailed description). Additionally, it has support
for incremental SAT solving, and it exists in varia-
tions that support user defined Boolean constraints
and proof-logging. Since it’s inception, the most
important improvements have been the heap-based
VSIDS implementation, conflict clause minimization
[4], and variable elimination based pre-processing [2].

2 MINISAT 2.1

This version is largely an incremental update that
brings MINISAT more in line with the current most
popular heuristics, but also introduces a number of
data structure improvements. Most are rather well
known and of lesser academic interest but mentioned
in Section 4 for completeness.

Heuristics During the last couple of years it has
been made clear that using a more aggressive restart
strategy [7] is beneficial overall, in particular if it is
used in combination with a polarity heuristic based
on caching the last values of variables [12]. MINISAT

uses the Luby-sequence [9] for restarts, multiplied by
a factor of 100. For polarity caching it stores the last
polarity of variables during backtracking, except for
variables from the last decision level.

Blocking Literals It can be observed that when
visiting a watched clause during unit propagation, it
is most commonly the case that the clause is satisfied
in the current context. Detecting this without actu-
ally having to read from the clause’s memory turns
out to be a big win as indicated by [13], [8].

However, these techniques require an extra level of
indirection which makes the win less clear cut. In-
stead, one can pair each clause in the watcher lists
with one copy of a literal from the clause, and when-
ever this literal is true, the corresponding clause can
be skipped. This is very similar to the approach used
in the implementation of the SAT solver from Barce-
logic Tools [11], but differs crucially in the sense that
the auxiliary blocking literal does not have to be equal
to the other watched literal of the clause, and thus
there is no extra cost for updating it.

3 MINISAT++ 1.0

This tool is envisioned as a rewrite of MINISAT+ [6],
but contains so far only the circuit framework nec-
essary to participate in the AIG track. As an AIG
solver it is currently rather simple: the circuit is first
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simplified with DAG-aware rewriting (inspired by [3],
but far less powerful at the moment), then clausified
using the improved Tseitin transformation (see [3] for
an overview), and finally MINISAT 2.1 is run on the
result, including CNF based pre-processing.

4 SAT-RACE Hacks

The versions submitted to the SAT-RACE contains
two data structure improvements designed to improve
memory behaviour of the solvers: Firstly, binary
clauses are treated specially as in MINISAT 1.14 [4].
In combination with blocking literals this is slightly
more natural to implement, but on the other hand,
there is some overlap in their beneficial effects and
the difference thus becomes smaller. Secondly, a spe-
cialized memory manager is used for storing clauses.
This was introduced to allow 32-bit references to
clauses even on 64-bit architectures, but it also gives
a small to modest performance benefit on 32-bit ar-
chitectures depending on the quality of the system’s
malloc implementation.

Finally, even though the pre-processing of
MINISAT scales relatively well, there are still cases
were it takes too much time or memory. As a sim-
ple safe-guard measure, pre-processing is inactivated
if the problem has more than 4 million clauses.
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1 Introduction

minisat cumr is hacked version of MiniSat[2]. this employs frequently restart
such as RSat[4] or PicoSAT[1], process saving technique[3] and new learned
clause amount control heuristic. minisat cumr r version, the restart algorithm
is almost same as RSat 2.02. minisat cumr p version, the restart algorithm is
almost same as PicoSat 846.

Conflict driven learning is one of the most effective speeding-up technique for
DPLL solver, but a huge amount of learned clauses slows down BCP (boolean
constraint propagation) terribly. Existing implementation set an upper limit
of learned clauses, and increase it gradually. But when there are few effective
clauses, also increase the limit. minisat cumr’s new heuristic control a learned
clause amount by a amount of effective clauses.

2 Learned Clause Amount Control

To control a learned clause amount, minisat cumr compute CUMR, clauses
utilization mean ratio 1 in BCP. Counters of CUMR is periodically scaled down
for time locality.

CUMR =
number of clause utilized

number of clause checked

minisat cumr check CUMR periodically, and if CUMR is higher than the thresh-
old then it reduce the amount, otherwise it increase the amount. This will keep
CUMR around the threshold, because learned clauses are deleted from the low
activity one (leads low CUMR) sequentially.

The threshold is computed from the early value of CUMR, it intend to
adjusts to the characteristic of individual instance. And to avoid an extreme
value, the threshold doesn’t exceed 0.1.

threshold = min( (early CUMR ∗ 0.5), 0.1 )

1If a clause is conflict or propagatable, consider it is utilzable.
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Overview 
MoRsat is a new hybrid SAT solver. The framework of the solver is based on a look-ahead technique, and 

its core is a conflict-driven search. A look-ahead technique is used to split the original problem to sub-

problems, each of which is either solved or aborted by a conflict-driven DPLL. The aborted sub-problems 

are solved recursively. We present new properties of XOR clauses, by which we incorporate XOR 

reasoning into our conflict-driven DPLL so that MoRsat can solve also some well-structured instances. In 

many places where the sub-problems are solved, the conflict-driven technique used in our solver is the 

same as Rsat. For example, the conflict resolution scheme (clause learning scheme) and decision heuristic 

used in our solver are firstUIP (unique implication points) + conflict clause minimization and VSIDS 

(Variable State Independent Decaying Sum), which are the same as those used in Rsat 2.01. However, in 

some places, our solver is different from Rsat. We made a slight modification and optimization on some 

strategies such as restart strategies, clause learning database maintenance etc. 

 

Performance evaluation 
Based on our empirical results, the performance of MoRsat is significantly better than Rsat and March, 

which won Gold Medals in the industrial and handmade SAT category at the SAT 2007 competition, 

respectively. On the handmade category, MoRsat can outperform March. On the industrial category, 

MoRsat is superior to Rsat, and can solve some industrial instances that were not solved in the SAT 2007 

competition. On the random category, MoRsat outperformed Rsat, and was slightly slower than March. 

However, the number of instances solved by MoRsat was almost the same as that solved by March within 

5000s. 
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1. Introduction

MXC is a complete, clause-learning SAT+Cardinality solver, written in C++. MXC is open source, and
may be obtained at http://www.cs.sfu.ca/research/groups/mxp/MXC/. MXC accepts an extended version
of the DIMACS CNF format which contains cardinality constraints interleaved with regular clauses. Unit
propagation on cardinality constraints is implemented using a simple counting based method. When a
cardinality constraint is used as an antecedent or a conflict, some heuristics are applied to extract a weaker
clausal version, which is then used in the standard learning process. The SAT part of the solver is relatively
standard, using the two watched literals scheme (with occurrence stacks [5]) for unit propagation, 1-UIP
cuts for clause learning, conflict clause minimization [2], activity based variable ordering and clause deletion,
progress caching [4], and aggressive nested restarts [5]. When functioning in pure SAT mode (i.e. if no
cardinality constraints are present) then the SatELite algorithm [3] is used for preprocessing. The high-level
search algorithm itself is implemented as “repeated probing” [6].

2. History

Development of MXC began in 2006, to support the MX project (see: http://www.cs.sfu.ca/research/groups/mxp/).
The first version, MXC 0.1, received the “best student solver” award at Sat Race ’06. The second version,
MXC 0.5, received a bronze medal in the “handmade” category at Sat Competition ’07, and the third ver-
sion, MXC 0.75, placed 5th in Sat Race ’08, the highest ranking by an open-source solver (as of the date of
writing, the top 4 entries remain unavailable for download).

Solver Solved (out of 100) Total time (min.)
MXC 0.1 (sat race ’06) 49 976.8
MXC 0.5 (sat comp ’07) 66 709.0
MXC 0.75 (sat race ’08) 82 444.3
MXC 0.99 (sat comp ’09) 85 380.3
Minisat 2.0 Beta 71 668.5

Figure 1: performance comparison of MXC 0.99 and previous versions of MXC on the Sat Race ’06 benchmark
set, with a 15 minute time limit. Instances that time out count the full 15 minutes towards the total time.
Minisat 2.0 Beta is included as a point of reference. All tests were run on a 2.4 GHz Opteron 250 with 1MB
L2 cache.
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3. New in MXC 0.99

Adaptive restart control.

In MXC 0.75 [1], a classification heuristic was introduced to control restart frequency. The classifier was
learnt using the Weka machine learning suite on a training set of 300 instances. In MXC 0.99, this is replaced
by Biere’s ANRFA heuristic [7], which achieves roughly the same result using less computational resources
and requiring no training.

Blocking literals.

It has been noticed (independently?) by several authors (e.g. [8,9]) that on typical industrial instances, when
scanning a clause for a new watch, the clause is already satisfied by the first literal with high probability - as
often as 50-90% of the time. Because visiting the clause requires following a pointer, there will often be an
expensive cache miss involved. If a copy of the first literal is stored with the watch, then it can be checked
without dereferencing the clause. If it is true, then no additional work needs to be done. This extra literal
stored with the watch is called a blocking literal. There is no requirement that it be the same as the first
literal in the clause, and it is also possible to have more than one blocking literal. (MXC 0.99 uses a single
blocking literal.)

Implementation details.

The source release of MXC 0.99 includes a visual studio project file, and implementation of the getopt()
function for windows, allowing native compilation on that platform. Version 0.99 is intended to be the last
“monolithic” version of MXC. Versions 1.0 and up will be modularized, allowing easy use as an API for
interactive solving. Some refactoring towards that end has already been done.
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1 Review of Algorithms adaptG2WSAT+, RSAPS, and V W

The local search algorithm adaptG2WSAT+ [5] combines the use of promising decreasing variables [3]

and the adaptive noise mechanism [1]. SAPS [2] scales the weights of unsatisfied clauses and smoothes

the weights of all clauses probabilistically. It performs a greedy descent search in which a variable is se-

lected at random to flip, from the variables that appear in unsatisfied clauses and that lead to the maximum

reduction in the total weight of unsatisfied clauses when flipped. RSAPS [2] is a reactive version of

SAPS that adaptively tunes smoothing parameter Psmooth during the search. In V W [4], the weight of a

variable reflects both the number of flips of this variable and the times when this variable is flipped. This

algorithm initializes the weight of a variable x, vw[x], to 0 and updates and smoothes vw[x] each time x

is flipped, using the following formula:

vw[x] = (1 − s)(vw[x] + 1) + s × t (1)

where s is a parameter and 0 ≤ s ≤ 1, and t denotes the time when x is flipped, i.e., t is the number of

search steps since the start of the search. V W always flips a variable from a randomly selected unsatisfied

clause c. If c contains freebie variables,3 V W randomly flips one of them. Otherwise, with probability p

(noise p), it flips a variable chosen randomly from c, and with probability 1 − p, it flips a variable in c

according to a unique variable selection rule.

2 Local Search Algorithm NCV W

A switching criterion, namely the evenness or unevenness of the distribution of variable weights, is defined

in [7] as follows. If the maximum variable weight is at least γ times as high as the average variable weight,

the distribution of variable weights is considered uneven, and the step is called an uneven step in terms of

variable weights. Otherwise, the distribution of variable weights is considered even, and the step is called

an even step in terms of variable weights.

Another switching criterion, namely the evenness or unevenness of the distribution of variable weights,

was proposed in [6]. This criterion is defined in [6] as follows. Assume that δ is a number and δ > 1. If the

maximum clause weight is at least δ times as high as the average clause weight, the distribution of clause

weights is considered uneven, and the step is called an uneven step in terms of clause weights. Otherwise,

the distribution of clause weights is considered even, and the step is called an even step in terms of clause

weights. An uneven distribution and an even distribution of clause weights correspond to the situations in

which clause weights are unbalanced and balanced, respectively.

The ways in which algorithms adaptG2WSAT+, RSAPS, and V W select a variable to flip, are

referred to as heuristic adaptG2WSAT+, heuristic RSAPS, and heuristic V W , respectively [6]. Lo-

cal search algorithm NCV W [6] adaptively switches among heuristic adaptG2WSAT+, heuristic

RSAPS, and heuristic V W in every search step according to the distributions of variable and clause

weights, to intensify or diversify the search when necessary. This algorithm is described in Fig. 1.

3 Flipping a freebie variable will not falsify any clause.
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Algorithm: NCV W (SAT-formula F )

1: A← randomly generated truth assignment;

2: for each variable i do initialize flip time[i] and vw[i] to 0;

3: initialize max vw and ave vw to 0;

4: for each clause j do initialize cw[j] to 1; initialize max cw and ave cw to 1;

5: for flip←1 to Maxsteps do

6: if A satisfies F then return A;

7: if (max vw ≥ γ × ave vw)

8: then heuristic←“V W”;

9: else

10: if ((ave cw ≤ π) or (max cw ≥ δ × ave cw))

11: then heuristic←“RSAPS”;

12: else heuristic←“adaptG2WSAT + ”;

13: y← use heuristic to choose a variable;

14: if (y 6= −1)

15: then A←A with y flipped; update flip time[y], vw[y], max vw, and ave vw;

16: if (heuristic = “RSAPS”)

17: then if (y = −1) then update clause weights, max cw, and ave cw;

18: return Solution not found;

Fig. 1. Algorithm NCV W

In NCV W , parameter γ determines whether the distribution of variable weights is uneven, δ deter-

mines whether the distribution of clause weights is uneven, and π represents a threshold for average clause

weight. Like V W , NCV W updates variable weights using Formula 1. In NCV W , the default values of

γ, δ, π, s, and wp are (γ, δ, π, s, wp) = (7.5, 3.0, 15.0, 0.0, 0.05).

3 A Specific Version of NCV W

In NCV W , parameters γ and δ are fixed for a broad range of instances and are not optimized for specific

types of instance. NCV Wr is a specific version of NCV W that uses optimized γ and δ for random

instances. In NCV Wr, γ and δ are set to 1.0122 and 2.75, respectively. In NCV Wr, variable weights are

updated using Formula 1, and parameter s in this formula is adjusted during the search (s > 0.0) in the

same way as in V W . That is, unlike NCV W , NCV Wr smoothes variable weights.
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Abstract. In this note we describe the new features of PicoSAT version
913 as it was submitted to the SAT competition 2009. It also contains a
description of our new solver PrecoSAT version 236, which tightly inte-
grates various preprocessing techniques into a PicoSAT like core engine.

PicoSAT 193

The results of the SAT Race 2008 [15] showed that the old version of PicoSAT
which is mostly covered in [7] was actually doing very well up to a certain point
where its ability to solve more instances stagnated. This is particularly apparent
in the cactus plots [15]. Our analysis revealed that the garbage collection sched-
ule to reduce the number of learned clauses was much more aggressive than in
earlier versions which did not use rapid restarts. In essence, PicoSAT in the last
SAT Race did not keep enough learned clauses around. In order to use the orig-
inal reduce policy of PicoSAT, which is similar to the one in MiniSAT [9], we
separated the reduce scheduler from the restart scheduler.

To simplify comparison with other solvers, we also use Luby [13] style restart
scheduling [11] instead of our inner/outer scheme [7]. Beside this clean-up work,
we added two new features, which we have not seen described in the literature
before. First, we employed a new literal watching scheme, that uses a literal
move-to-front strategy for the literals in visited clauses instead of just swapping
the new watched literal with the head respectively tail literal. In our experi-
ments this reduces the average number of traversed literals in visited clauses
considerably.

While minimizing learned clauses [17], it seems to be counter-productive, as
also explained in [17], to resolve with binary clauses extensively. Learned clauses
can be shortened this way, even without decreasing backjumping (backward
pruning). But using these learned clauses shortened by extensive binary clause
reasoning in a conflict driven assignment loop [14] results in less propagation
(forward pruning). This argument can be turned around as follows. Maybe it
is better to continue propagating along binary clauses and not stop at the first
conflict, but at the last. We experimented with some variations of this idea. It
turns out that a conflict that occurs while visiting a longer clause should stop
BCP immediately. But for binary clause we run propagation until completion
and only record the last conflict that occurred, which is then subsequently used
for conflict analysis.
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PrecoSAT 236

In the last SAT Race it became apparent, that in order to be successful in these
competitions, the integration of a preprocessor, such as SATeLite [8] is manda-
tory. Last year we experimented, with an external simplifier, called PicoPrep
[4], which shares many ideas with SATeLite [8] and Quantor [6]. As in Quantor
we used signatures heavily and also functional substitution whenever possible
instead of clause distribution. A new feature was to use signatures in forward
subsumption as well. Our new solver PrecoSAT is a prototype that allows us
to experiment with tight integration of these ideas into a more or less stan-
dard PicoSAT/MiniSAT like core engine. This year in PrecoSAT with respect
to SATeLite-like preprocessing, we additionally support, functional substitution
of XOR and ITE gates. XOR gates with an arbitrary number of inputs are
extracted. Gate extraction uses signatures as in Quantor.

We also implemented all the old and new features of PicoSAT discussed before
and in addition revived and old idea from PicoSAT 2006 [5], which learns binary
clauses during BCP, whenever a forcing clause can be replaced by a new learned
binary clause. This can be checked and implemented with negligible overhead
in the procedure that assigns a forced variable, by maintaining and computing
a dominator tree for the binary part of the implication graph. As a new feature
of PrecoSAT during simplification of the clause data base, we decompose the
binary clause graph into strongly connected components and merge equivalent
literals. We conjecture that the combination of these two techniques allows to
simulate equivalence reasoning with hyper-binary resolution [2] and structural
hashing.

Most of the binary clauses in PrecoSAT are learned during failed literal pre-
processing, which is the only preprocessing technique currently available in plain
PicoSAT. Equivalent literals are also detected during failed literal preprocessing
and in addition with the help of a hash table. The hash table also allows fast
self-subsuming resolution for binary clauses.

The reduce scheduler was simplified and in addition to enlarge the reduce
limit on learned clauses in a geometric way, as in PicoSAT/MiniSAT, we also
shrink it proportionally to the number of removed original clauses eliminated
during simplification and preprocessing phases. We maintain a doubly linked list
of all learned clauses, which together with a move-to-front policy [10] allows us
to remove the least active learned clause during conflict analysis. Full reduction
as in PicoSAT/MiniSAT is only needed if too many inactive clauses are used as
reasons.

For the decision heuristic we use a low-pass filter on the number of times a
variable is involved in producing a conflict, implemented as an infinite impulse
response filter of order 3. This order is configurable at run-time. An order of 1
gives similar characteristics as the exponential VSIDS scheme described in [3].

The most important aspect of PrecoSAT is however, that all three prepro-
cessing techniques, using strongly connected components, failed literals, and
SATeLite style preprocessing are tightly integrated in the main loop of the solver,
and can be run after new top level units or new binary clauses are derived. The
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scheduling of these preprocessors during the search is rather complex and leaves
place for further optimizations.

We also integrated blocking literals [16] to reduce the number of visited
clauses during BCP and also experimented with more general implication graph
analysis [1]. Finally, we flush the phase-saving-cache in regular intervals, also
controlled by a Luby strategy, and “rebias” the search by recomputing new phase
scores from scratch taking also learned clauses into account. This in contrast to
PicoSAT, where we compute a static two-sided Jeroslow-Wang [12] score as phase
bias once using the original clauses only.

The tight integration of all these optimizations was very difficult to imple-
ment. We spent considerable time in debugging very subtle bugs, also because
PrecoSAT can not produce proof traces yet. Accordingly, PrecoSAT is still con-
sidered to be in an early stage of development. Moreover, there is only a partial
understanding how these optimizations interact.
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1 Introduction

This version of Rsat is based on the version of Rsat that participated in the SAT Com-

petition 2007 [2].1 This version of Rsat still utilizes the SatELite preprocessor [1]. The

solver is written in C/C++ and is compiled as a 64-bit binary. The following sections

describe changes from the 2007 version.

2 Bi-asserting clause Learning

This version of Rsat tries to learn 1–empowering bi-asserting clauses [3] whenever

possible. A conflict clause is 1–empowering if it allows (empowers) unit resolution to

derive a new implication, while a bi-asserting clause is a conflict clause with exactly two

literals falsified at the conflict level (as opposed to exactly one in the case of asserting

clause). The standard algorithm for deriving conflict clauses can be easily modified to

detect any occurrence of a 1–empowering bi-asserting clause. Once a 1–empowering

bi-asserting clause is found, Rsat will learn it instead of the normal (FUIP) asserting

clause if it induces an assertion level that is smaller than the one induced by the asserting

clause.2 Empirically, this new learning scheme tends to improve the performance of our

solver on unsatisfiable problems. See [3] for more details.

3 Decision Heuristic

The decision heuristic used is a slight variation of the VSIDS heuristic commonly used

by leading solvers such as MiniSat and Picosat. Normally, each variable’s score is incre-

mented at most once during conflict analysis. This version of Rsat increments variables’

scores based on the variables’ involvement in conflict analysis. If a variable appears

more during the derivation of the conflict clause, its score is incremented more. More-

over, this version of Rsat also increment the scores of variables and clauses participating

in conflict clause minimization.

1 See http://reasoning.cs.ucla.edu/rsat for information on previous versions.
2 The assertion level of a bi-asserting clause is defined to be the second highest level of any

literal in it.
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4 Restart Policy

This version of Rsat still employs the restart policy based on Luby’s series (unit=512).

Moreover, it tries to detect periods of slow progress. This is indicated by consecutive

small backtracks and roughly stationary levels of conflicts. Whenever this situation

arises, Rsat also restarts.

5 Clause Deletion Policy

This version of Rsat deletes conflict clauses more aggressively than the previous ver-

sion. In particular, it uses a smaller factor to increment the maximum number of conflict

clauses. This results in more frequent clause deletions.

6 Data Structure

A new data structure is used to organize information about variables. For each variable,

Rsat (like some other solvers) keeps track of its current status, level of assignment, and

reason. In the past, this information is usually stored in a number of arrays (or vectors).

In this version of Rsat, we group these properties of each variable together, because

they are accessed at the same time in most cases. As a result, we only need to maintain

one array of variable information. This optimization appears to decrease the running

time of Rsat by 10-20%, depending on the access pattern.
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1. EÉN, N., AND BIERE, A. Effective preprocessing in sat through variable and clause elimina-

tion. In SAT (2005), pp. 61–75.

2. LE BERRE, D., SIMON, L., AND ROUSSEL, O. SAT’07 Competition Homepage,

http://www.satcompetition.org/2007/.

3. PIPATSRISAWAT, K., AND DARWICHE, A. A new learning scheme for efficient unsatisfiabil-

ity proofs. In Proceedings of 23rd National Conference on Artificial Intelligence (AAAI) (to

appear) (2008).

46



SApperloT
Description of two solver versions submitted for the SAT-competition 2009

Stephan Kottler
Eberhard Karls Universität Tübingen, Germany
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Abstract

In this paper we briefly describe the approaches realised in the two versions of SApperloT.
The first version SApperloT-base primarily implements the state-of-the-art techniques
of conflict-driven Sat-solvers with some extensions. SApperloT-hrp enhances the base
version to a new hybrid three-phase approach that uses reference points for decision
making.

1 The main issues of SApperloT

This chapter sketches the main ideas that are implemented in SApperloT-base and are also
contained in SApperloT-hrp for the most parts. Both versions are complete Sat-solvers written
in C++ using the functionality offered by the standard template library.

Solver basics SApperloT-base is a conflict-driven solver that implements state-of-the-art
techniques like clause learning, non chronological backtracking and the two watched literal
scheme that were originally introduced by GRASP [10] and CHAFF [11]. For the first version
of SApperloT-base Minisat 2.0 [14, 4] was used as a guideline for efficient implementation.
Most decisions are made according to the previous assignment as in RSAT [12]. Moreover, we
implemented the extension to the watched literal data-structure as described in [3]. Hence,
instead of pointing directly from literals to clauses an indirection object is used. Binary and
ternary clauses (both original and learnt clauses) are stored within this object. This has
an impact (among other things) on the garbage collection of inactive learnt clauses since
binary and ternary learnt clauses cannot be deleted using an activity value (which is applied
for clauses with size > 3). To avoid the deletion of valuable long learnt clauses the garbage
collection reduces the size of the learnts database by only one quarter and is therefore invoked
more frequently. During the garbage collection the learnts database is split in two pieces by
applying a variant of the linear median algorithm1 not to waste time with sorting the learnts
database at each call.

Activity values Many decisions in SApperloT are based on activity values like the VSIDS
heuristic [11] and the garbage collection of learnt clauses. Also during the minimisation of
learnt clauses [1, 14, 13] literals are ordered regarding their activity values. SApperloT-hrp
uses the activity of clauses and variables even more extensive. To get the same results on
different machines and with different optimization levels of the compiler we implemented a
representation of activity values, as it is also done in PicoSAT [2].
Activity values are implemented as (restricted) fractions where the denominator is always a
power of some predefined constant. Let v = n/d be any activity value with d = ck. The main
operations done with activity related values are addition and multiplication. Since the results

1It is implemented in the function nth element of the standard template library
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of both operations will have a denominator ck
′

with some value k′ the constant c can be
omitted and just kept implicitly. For the above value v our data structure will just store the
values n and k. This allows for storing very small numbers within a few bits. Since activity
values are only used for relative comparison with each other small values are completely
sufficient.
We use 16 bits for the nominator and 16 bits for the denominator for the activity values of
variables and clauses. c is set to 128. Choosing, for instance, the reciprocal of the decaying
factor as r := 135/128 and an initial activity addend as a := 1/12865530 guarantees more than
6 million decay and add operations (s+=a; a*=r;) without having to perform an expensive
decay of all activity values (worst case). Using the double size for activity values reduces
expensive decay operations practically completely.

Preprocessing SApperloT does not perform any preprocessing on the input formula. In-
stead the solver has two features to simplify an instance during the solving process. At the
first decision level always both polarities of a decision variable d are propagated. If there is
a variable u that is assigned by unit propagation in both cases then either a unit clause is
learnt (if u was assigned the same value twice) or two binary clauses can be learnt if they are
not already contained in the formula [9, 8].
Moreover, after each period of 15 restarts asymmetric branching is applied for all clauses
below average length. This helps to further shrink short clauses in order to prune the search
space.

2 SApperloT-hrp – a hybrid version with reference points

Our motivation behind SApperloT-hrp is to develop a solver that utilises more information
during the solving process and we intend to extend the solver by incorporating more structural
information. The three-phase approach realised by the submitted version of SApperloT-hrp
can be sketched as follows:

|base| Within this phase usual conflict-driven Sat-solving is applied. The solver gathers infor-
mation about which clauses occur most frequently in conflicting assignments. Thus, we
hold activity values for all clauses. If the solver cannot find a solution within a certain
number of conflicts a subset P ⊆ C of clauses is initialised holding the most active
clauses.

|pcl| If P is a proper subset of C the solver aims to compute a model that satisfies all clauses
in P . If a model is found the solver continues with the third phase. If P contains all
clauses of C or if no model can be found within a certain number of conflicts the solver
restarts (after simplification of the formula) with the first phase again. Obviously, if
the clauses in P are unsatisfiable we conclude unsatisfiability of the entire formula.

|rp| If the solver enters this phase a model M is known that satisfies all clauses in P . This
model is taken as a reference point for a variant of the DMRP approach [6, 7]. Thus,
the solver tries to modify M so that all clauses in C are satisfied. If there are still some
unsatisfied clauses U ⊂ C after a certain number of conflicts a new set P is initialised:
The new set P contains all clauses of U and the most active clauses of C. Also the size
of P is remarkably increased and the solver continues with the second phase.
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As already shown in [5] hybrid approaches can improve the performance of Sat-solvers. In
SApperloT-hrp it seems that alternating the two phases |pcl| and |rp| gives the solver a quite
good direction to find a solution for satisfiable instances or to resolve an empty clause if a for-
mula is unsatisfiable. We first implemented an approximation of the break-count of variables
as a basis for decisions in the DMRP approach. However, experiments showed that a fast
and lazy implementation of the make-count of variables clearly outperforms the break-count
approximation. We also achieved good speed-ups by optimising the data-structures to realise
delta as defined in [7].
The current version of SApperloT-hrp already performs quite well on many families of in-
stances. However, there are many parameters and magic constants that still have to be figured
out by experiments.
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1 Overview

We introduce our SAT solver satake implemented using Pthread to parallelize
MiniSat v1.14. This solver is designed to operate efficiently on workstations with
8 or more CPU cores.

Satake has a standard master-worker structure consisting of a single master
and multiple workers. Each worker has its own clause database and the master
has a database of learned clauses. Each worker has most of the mechanisms that
MiniSat employs, including the DPLL algorithm, non-chronological backtrack-
ing, conflict-driven learning, restart, 2-literal watching and decision heuristics,
to search for solutions efficiently. Workers communicate with the master to share
learned clauses used for pruning branches of search trees. The master controls the
number of learned clauses by deleting duplicative clauses and some of redundant
learned clauses. These schemes achieve the following benefits:

– Each worker can use and modify its own clause database freely without any
lock or synchronization because the database is not shared.

– Each worker can concentrate on search for solutions because the master
manages shared learned clauses.

– The communication overhead is reduced by controlling the sharing of learned
clauses.

We introduce the key ideas of data sharing of satake in the next section.

2 Effective Data Exchanging

The key issue of satake is to reduce communication overhead to achieve
parallel speedup. To decrease latency in data exchange, we have added some
mechanisms to the solver.

One is the qualified communication of learned clauses. Although sharing
learned clauses is effective in the reduction of the search space, exchanging too
many learned clauses will result in increasing the cost of operations such as unit
propagation. Satake has reduced the communication overhead that may cause
the bottleneck of parallel computation by sharing only shorter learned clauses.
The upper bound of the length of learned clauses exchanged is determined by
dynamic profiling and the number of threads.
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Another point is the tuning of the transmission of learned clauses. To access
shared objects frequently might increase synchronization overhead even when
the communication bandwidth between the master and worker is high enough.
To decrease the idle time for synchronization, workers send learned clauses to
the master after a certain number of learned clauses are accumulated.

Moreover, each worker has a different decision heuristic and a different ran-
dom seed. This can reduce the duplication of search space and still benefits
from the sharing of effective learned clauses. We have confirmed that our imple-
mentation achieves parallel speedup with up to 8 threads on a shared-memory
workstation with four Intel Xeon 7350 quad-core processors. Unfortunately, we
have also experienced that using 16 threads does not improve parallel speedup.
This phenomenon is due to the limited memory bandwidth; it is not specific to
satake but is common to many parallel applications we have evaluated.

3 Code

Satake is written in the C language and is about 3000 lines long. Satake uses
Pthread and the IPC (InterProcess Communication) system call. Satake cannot
use more than 16 threads due to the specification of IPC at the moment.
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1 Introduction

Empirical studies often observe that the performance of

algorithms across problem domains can be quite uncorre-

lated. When this occurs, it seems practical to investigate

the use of algorithm portfolios that draw on the strengths

of multiple algorithms. SATzilla is such an algorithm

portfolio for SAT problems; it was first deployed in the

2004 SAT competition [12], and recently an updated ver-

sion, SATzilla2007, won a number of prizes in the 2007

SAT competition [21], including the gold medals for the

SAT+UNSAT categories of both the random and hand-

made categories. SATzilla2008, submitted to the 2008

SAT Race, did not perform as well. We attribute this

mainly to the lack of publicly available high-performance

component solvers as well as to overheads in computing

instance features for huge industrial instances; we ad-

dressed this latter point in SATzilla2009.

SATzilla is based on empirical hardness models [10,

13], learned predictors that estimate each algorithm’s

performance on a given SAT instance. Over the years, we

have added several features to SATzilla. We integrated

regression methods based on partly censored data, proba-

bilistic prediction of instance satisfiability, and hierarchi-

cal hardness models [21, 22]. We also almost entirely au-

tomated the portfolio construction process based on auto-

matic procedures for selecting pre-solvers and candidate

component solvers [23].

The new features in SATzilla2009 are as follows:

• New instance features

• Prediction of feature computation time

• New component algorithms

Due to the automatic procedures we used since

SATzilla2008, after obtaining candidate solvers and mea-

suring their runtime for our training and validation in-

stances, the construction of our SATzilla2009 solvers

took very little time after we knew the scoring function.

SATzilla2009’s methodology can be outlined as follows:

Offline, as part of algorithm development:

1. Identify a target distribution of problem instances.

2. Select a set of candidate solvers that are known or

expected to perform well on at least a subset of the

instances in the target distribution.

3. Use domain knowledge to identify features that

characterize problem instances. To be usable effec-

tively for automated algorithm selection, these fea-

tures must be related to instance hardness and rela-

tively cheap to compute.

4. On a training set of problem instances, compute

these features and run each algorithm to determine

its running times. We use the term performance

score to refer to the quantity we aim to optimize.

5. Automatically determine the best-scoring combina-

tion of pre-solvers and their corresponding perfor-

mance scored. Pre-solvers will later be run for a

short amount of time before features are computed

(step 1 below), in order to ensure good performance

on very easy instances and to allow the predictive

models to focus exclusively on harder instances.

6. Using a validation data set, determine which solver

achieves the best performance for all instances that

are not solved by the pre-solvers and on which the

feature computation times out. We refer to this

solver as the backup solver.

7. New: Construct a predictive model for feature com-

putation time, given the number of variables and

clauses in an instance.

8. Construct a model for each algorithm in the portfo-

lio, predicting the algorithm’s performance score on

a given instance based on instance features.

9. Automatically choose the best-scoring subset of

solvers to use in the final portfolio.

Then, online, to solve a given problem instance, the

following steps are performed:

1. Run the presolvers in the predetermined order for

up to their predetermined fixed cutoff times.

2. New: Predict time required for feature computa-

tion. If that prediction exceeds two minutes, run the

backup solver identified in step 6 above; otherwise

continue with the following steps.

3. Compute feature values. If feature computation can-

not be completed due to an error, select the backup

solver identified in step 6 above; otherwise continue

with the following steps.

4. Predict each algorithm’s performance score using

the predictive models from step 8 above.
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5. Run the algorithm predicted to be the best. If a

solver fails to complete its run (e.g., it crashes), run

the algorithm predicted to be next best.

2 SATzilla2009 vs SATzilla2008

SATzilla2009 implements a number of improvements

over SATzilla2008.

New instance features. We introduced several new

classes of instance features: 18 features based on clause-

learning [11], 18 based on survey propagation [9], and

five based on graph diameter [8]. For the Industrial cat-

egory, we discarded 12 computationally expensive fea-

tures based on unit propagation, lobjois probing, and

graph diameter.

Prediction of feature computation time. In order

to predict the feature computation time for an instance

based on its number of variables and clauses, we built a

simple linear regression model with quadratic basis func-

tions. This was motivated by the fact that in the industrial

category of the 2007 SAT competition, as well as in the

SAT Race 2008, SATzilla’s feature computation timed

out on over 50% of the instances, forcing SATzilla to use

a default solver; we also discarded some expensive fea-

tures trading off cost vs benefit.

New component algorithms. We updated the com-

ponent solvers used in SATzilla2008 with the newest

publicly-available versions and included a number of

local search solvers based on the SATenstein solver

framework [1]. For the Industrial category, one limiting

factor is that many high-performance industrial solvers

are not publicly available, such that we cannot use them

as component solvers.

3 The SATzilla2009 solvers

SATzilla’s performance depends crucially on its compo-

nent solvers. We considered a number of state-of-the-art

SAT solvers as candidate solvers, in particular the

eleven complete solvers March dl04[8], March pl[7],

Minisat 2.0[6], Vallst[19], Zchaff Rand[11],

Kcnfs04[5], TTS 4.0[18], Picosat8.46[2],

MXC08[3], Minisat 2007[17] and Rsat 2.0[16].

We also considered the five local search solvers

gnovelty
+[15], Ranov[14], Ag2wsat0[4],

Ag2wsat
+[20] and SATenstein[1] (seven auto-

matically configured versions).

As training data, we used all available SAT instances

from previous SAT competitions (2002 until 2005, and

2007) and from the SAT Races 2006 and 2008. Based on

these instances, we built three data sets:

• Random: all 2,821 random instances;

• Crafted: all 1,686 handmade/crafted instances;

• Industrial: all 1,376 industrial instances.

For each training instance we ran each solver for one

hour and recorded its runtime. (Local search solvers were

only run on unsatisfiable instances.) Unlike in previ-

ous SATzilla versions, we did not use any preprocessing.

We computed 96 features for each instance in categories

Random and Crafted, and 84 features for category Indus-

trial. In each category, as a training set we used all pre-

viously mentioned instances, and as a validation set the

2007 SAT competition instances from that category (note

that this validation is a subset of the training; this was

motivated by the relative scarcity of available data and

our expectation that the 2009 SAT competition instances

resemble more closely those from the 2007 competition

than those from earlier competitions).

For presolving, we committed in advance to using a

maximum of two presolvers. We allowed a number of

possible cutoff times, namely 5, 10, and 30 CPU sec-

onds, as well as 0 seconds (i.e., the presolver is not run

at all) and considered all orders in which to run the three

presolvers. Automated presolver selection then chose the

following presolving strategies:

• Random: SATenstein(T7) for 30 seconds, then

MXC08 for 30 seconds;

• Crafted: March dl04 for 5 seconds, then MXC08

for 5 seconds;

• Industrial: MXC08 for 10 seconds, then

Picosat8.46 for 5 seconds.

Automated solver subset selection [23] chose the fol-

lowing component solvers:

• Random: Kcnfs04, March dl04, Picosat8.46,

Ag2wsat0, Ag2wsat
+, gnovelty

+,

SATenstein(QCP)

• Crafted: March dl04, Minisat 2.0, Minisat

2007, Vallst, Zchaff Rand, TTS 4.0, MXC08

• Industrial: March dl04, Minisat 2007,

Zchaff Rand, Picosat8.46, MXC08

The automatically-selected backup solvers were

Ag2wsat0, Minisat 2007, and MXC08 for Random,

Handmade, Industrial, respectively.

4 Expected Behaviour

We submit three different versions of SATzilla, specifi-

cally designed to perform well in each of the categories:

SATzilla2009 R (Random), SATzilla2009 C (Crafted),

and SATzilla2009 I (Industrial). In order to run properly,

subdirectory satzilla Solvers should contain all bi-

naries for SATzilla’s component solvers and its feature

computation.
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1 New Mechanism for Adaptively Adjusting Noise

The adaptive noise mechanism was introduced in [1] to automatically adjust noise during the search.

We refer to this mechanism as Hoos’s noise mechanism. This mechanism adjusts noise based on search

progress and applies the adjusted noise to variables in any clause in a search step.

We propose a new mechanism for adaptively adjusting noise during the search. This mechanism uses

the history of the most recent consecutive falsifications of a clause. During the search, for the variables

in each clause, we record both the variable that most recently falsifies this clause and the number of the

most recent consecutive falsifications of this clause due to the flipping of this variable. For a clause c, we

use var fals[c] to denote the variable that most recently falsifies c and use num fals[c] to denote the

number of the most recent consecutive falsifications of c due to the flipping of this variable. Assume that c

is falsified most recently by variable x in c and so far x has consecutively falsified clause c m times. So, for

c, var fals[c] = x and num fals[c] = m. If c is falsified again, there are two cases. One is that x falsifies

c again. In this case, var fals[c] is still x, and num fals[c] becomes (m + 1). The other is that another

variable y in c falsifies c. In this case, var fals[c] becomes y, and num fals[c] becomes 1. Assume that

clause c is the currently selected unsatisfied clause and that a variable in c will be chosen to flip. We use

best var to represent the best variable in clause c measured by the scores of all variables in c. If best var

is not var fals[c], this mechanism sets noise to its lowest value 0.00 in order to choose best var to flip.

If best var is var fals[c], this mechanism determines noise according to num fals[c]. Specifically, the

higher num fals[c] is, the higher the noise value is.

Our mechanism for adjusting noise is different from Hoos’s noise mechanism in two respects. First,

our mechanism uses the history of the most recent consecutive falsifications of a clause due to the flipping

of one variable in this clause, while Hoos’s noise mechanism observes the improvement in the objective

function value. Second, the noise adjusted by our mechanism is clause-specific, whereas the noise adjusted

by Hoos’s noise mechanism is not.

2 New Local Search Algorithm TNM

Variable weighting was introduced in [4]. The weight of a variable x, vw[x], is initialized to 0 and is

updated and smoothed each time x is flipped, using the following formula:

vw[x] = (1 − s)(vw[x] + 1) + s × t (1)

where s is a parameter and 0 ≤ s ≤ 1, and t denotes the time when x is flipped, i.e., t is the number of

search steps since the start of the search [4].

If all variables in all clauses have roughly equal chances of being flipped, all variables should have

approximately equal weights. In this case, the same noise can be applied to any variable in any clause at

a search step. Otherwise, our proposed mechanism can be used to adjust noise for the variables in each

specific clause in order to break stagnation.

⋆ The first author can be reached via e-mail at weiwanxia@gmail.com after graduation.
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A switching criterion, namely, the evenness or unevenness of the distribution of variable weights,

was introduced in [6]. We propose a new local search algorithm called TNM (Two Noise Mecha-

nism), which switches between Hoos’s noise mechanism and our proposed noise mechanism accord-

ing to this criterion. This algorithm is described in Fig. 1. Hoos’s noise mechanism was integrated in

G2WSAT [2], resulting in adaptG2WSAT [3]. The local search algorithm adaptG2WSAT+ [5] was

improved from adaptG2WSAT . We integrate our proposed noise mechanism to G2WSAT [2] and ob-

tain adaptG2WSAT ′. In Fig. 1, parameter γ (γ > 1) determines whether the distribution of variable

weights is uneven. TNM sets γ to its default value 10.0. Parameters p1 and p2 represent the noise val-

ues adjusted by Hoos’s noise mechanism and by our proposed mechanism, respectively. TNM updates

variable weights using Formula 1.

Algorithm: TNM (SAT-formula F )

1: A← randomly generated truth assignment;

2: for each clause j do initialize var fals[j] and num fals[j] to −1 and 0, respectively;

3: for each variable x do initialize flip time[x] and var weight[x] to 0;

4: initialize p1, wp, s, max weight, and ave weight to 0; initialize dp to 0.05;

5: store promising decreasing variables in stack DecVar;

6: for flip←1 to Maxsteps do

7: if A satisfies F then return A;

8: if max weight ≥ γ × ave weight

9: then

10: if there is no promising decreasing variable

11: then

12: randomly select an unsatisfied clause c;

13: adjust p2 for variables in c according to var fals[c] and num fals[c];

14: y←heuristic adaptG2WSAT ′(p2, dp);

15: else y←heuristic adaptG2WSAT+(p1, wp);

16: A←A with y flipped;

17: if flippin of y falsifies a clause j then update var fals[j] and num fals[j];

18: adjust p1 according to Hoos’s noise mechanism; wp = p1/10;

19: update flip time[y], var weight[y], max weight, ave weight, and DecVar;

20: return Solution not found;

Fig. 1. Algorithm TNM

Our first implementation of the proposed noise mechanism in algorithm TNM is simple. Assume that

the currently selected unsatisfied clause is falsified most recently by variable x and so far x has consecu-

tively falsified this clause m times. If the best variable measured by the scores of all variables in this clause

is not x, we set noise p2 to 0.00. Otherwise, we set p2 to a reasonable value according to m.
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1 Introduction

The Ternary Tree Solver (tts) algorithm is a
complete, deterministic solver for CNF satisfia-
bility. This note describes the operation of ver-
sion 5.x. Version 5.0 was entered into the SAT
2009 competition. The solver is very loosely
based on the well-known Davis-Putnam model
and has five phases, namely: Minimization;
Variable ordering; Tree building; Tree walking,
Rebuilding.

The solver cannot compete with the state-of-
the-art solution of large industrial and random
benchmarks but appears to have good worst-
case performance on hand-crafted benchmarks
(such as hgen8, holen, xor-chain etc.) that oth-
ers find difficult[1].

Brief descriptions of the five phases follow.

2 Minimization

Here, if possible, the problem is first partitioned
into disjoint sub-problems in which any variable
can be reached from any other. The rest of
the algorithm processes each sub-problem sepa-
rately.

Any clauses that are tautologies, i.e. con-
tain both v and v, are removed. If all occur-
rences of a particular variable are of the same
sign it is safe to assign the corresponding value
to the variable and hence remove any clauses
containing it. This is combined with unit clause
propagation.

3 Variable ordering

Unlike most Davis-Putnam solvers the variables
are processed according to a static ordering.
The overall performance depends critically on

this ordering, in which variables that occur in
the same clause should be processed near to each
other. If the variables are regarded as nodes
and the clauses as hyperedges, this corresponds
to the minimum linear arrangement problem for
hypergraphs. A perfect solution to this problem
is known to be NP-hard, and so an approxima-
tion algorithm is used. Note that this approxi-
mation affects the overall performance, but not
the correctness of the solver.

The approximation algorithm used for small
inputs (of the order of fewer than 3000 literals)
combines:

1. Simulated Annealing - this is generally re-
garded as providing the best approxima-
tions for MLA, but the execution time is
significant;

2. A local search to see whether the simu-
lated annealing result can be improved.

For larger inputs this algorithm is too slow
and a more direct algorithm is used in which
variables are chosen in turn according to weights
which are derived from the number of clauses in
common with variables already chosen. This is
much faster so at least the solver has a chance
of processing larger, easier inputs but does not
give such a good ordering.

It should be noted that the minimum linear
arrangement does not always lead to the small-
est overall execution time and it is an open ques-
tion whether there is a better metric.

4 Tree building

At the heart of the algorithm is a 3-tree which
represents the proposition to be solved. Each
node of this tree corresponds to a proposition
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and each level corresponds to a variable accord-
ing to the variable ordering which was deter-
mined in the previous phase. The tree is con-
structed as follows:

• The root of the tree corresponds to the
proposition to be solved.

• Each node of the tree has three children,
left, middle and right. The left child con-
sists of those clauses from the current
proposition that contain the literal v ex-
cept that the v is removed (where v is the
current level). The right child consists of
clauses that contain v except that the v

is removed. The middle child consists of
those clauses that don’t contain v or v.

• When the removal of a v or v leaves a
clause empty this generates the proposi-
tion false. When there are no clauses to
be included in a child this generates the
proposition true.

A hash table of derived propositions is main-
tained during the tree building process. This is
ensures that if different partial assignments lead
to the same proposition only one corresponding
node is created. The data structure thus con-
tains cycles and is no longer a tree, but can be
interpreted as a tree for the purposes of the next
stage.

5 Tree walking

This phase is where the bulk of the computation
occurs. Starting from the root, the walk has
in principle a false/true choice to make at each
level, representing an assignment to the corre-
sponding variable, which would by itself lead to
2n routes (where n is the number of variables).
Each node of the tree represents only a portion
of the proposition, and so a set of nodes is main-
tained to record progress. For the false branch
from a particular set of nodes, the new set of
nodes consists of the union of all left and middle
children of the current set. For the true branch,
the new set consists of all right and middle chil-
dren.

There are three outcomes which can result
in a path being pruned, i.e. abandoned before
the full depth of variables has been explored:

• When a set of nodes contains false, no
further computation is performed on that

branch because there can be no satisfying
assignment built from the choices up to
this point;

• If a set contains all true nodes a satisfy-
ing assignment has been found, regardless
of the choice of values for subsequent vari-
ables;

• When a set of nodes has been found to
correspond to an unsatisfiable proposition
a record of this is made. If a subsequent
request is made for the same set (or in-
deed a superset) it is known immediately
that this is unsatisfiable without having to
repeat the previous analysis. This corre-
sponds to clause memoization and in this
form is perhaps the main contribution of
this solver.

In the multi-threaded version of the solver
it is the tree walking which is done in parallel,
with different threads making different choices
about whether to assign false or true to a vari-
able first. Each thread writes to the database
the sets of nodes corresponding to unsatisfiable
propositions and thus benefits from the discov-
eries of other threads.

6 Rebuilding

If any of the sub-problems is found to be un-
satisfiable then the overall problem is unsatis-
fiable. Otherwise, if all the sub-problems have
been found to be satisfiable, some of the actions
of the initial minimization have to be undone to
construct the overall model. Variables removed
because they only occur with one sign are in-
serted with the appropriate value and the mod-
els for each of the sub-problems are renumbered
as required.

7 Conclusions

Improving the results from the variable ordering
phase is expected to be the best way to improve
the overall algorithm.
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Abstract

Here we describe the VARSAT solver as entered in the 2009
SAT Competition. VARSAT integrates probabilistic methods
for estimating variable bias (the proportion of solutions in
which a variable appears positively or negatively) with a mod-
ern backtracking solver (MINISAT). There is one entry for
each of the three competition divisions: VARSAT-crafted, -
industrial, and -random, plus a -small version specialized for
problems in all three categories that have smaller numbers of
variables. The entries share a common overall design, but
differ in choice of estimator and in the settings of parameters
that govern the threshold for deactivating the bias estimators.
All versions are complete solvers, designed to handle satisfi-
able and unsatisfiable instances alike.

VARSAT uses probabilistic methods as variable- and
value-ordering heuristics within a full-featured backtracking
soler, MINISAT(Eén & Sörensson 2003). Each such method
computes a survey estimating the bias of each variable in a
problem or sub-problem. The bias represents the probability
of finding the variable set positively or negatively if we were
to somehow sample from the space of solutions to the prob-
lem. The most successful way of using such information,
to date, is to identify the most “strongly” biased variable
(i.e., the one with the most difference in probability of be-
ing positive and probability of being negative), and setting it
to the polarity of its stronger bias. The goal is to prefer the
more “constrained” variables in our variable-ordering, and
to avoid conflicts in our value-ordering.

We calculate one survey after every iteration of fixing a
variable and performing unit propagation. Because surveys
are expensive, though, we only want to identify the few most
important variables, ostensibly simplifying the problem to a
smaller subproblem that can be solved by traditional means.
Thus, when the maximum strength across variables in a sur-
vey drops below a certain threshold, we deactivate the en-
tire mechanism and revert to default heuristics until the next
restart. This threshold parameter is the main distinguishing
feature between the four entries. In addition, the entire sur-
vey apparatus is bypassed should the number of clauses in a
problem exceed 4, 000, 000.

At this point the solver is still subject to experimentation,
and a single overall description of the system has yet to be
published officially. However, the current design is detailed
in (Hsu et al. 2008), and the bias estimation techniques

are described in a technical report available at the VARSAT

homepage (Hsu 2008). Below we simply list the parameter
settings that distinguish the four entries:

• VARSAT-crafted: bias estimator is “EMBPG”, threshold
is 0.8.

• VARSAT-industrial: bias estimator is “EMBPG”, thresh-
old is 0.95.

• VARSAT-random: bias estimator is “EMSPG”, threshold
is 0.75.

• VARSAT-small: bias estimator is “EMSPG”, threshold is
0.6.
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Abstract. Recently, SAT solving has become the backbone for tackling
the search problems in automated termination analysis for term rewrite
systems and for programming languages. Indeed, even since the last SAT
competition in 2007, many new termination techniques have been pub-
lished where automation heavily relies on the efficiency of modern SAT
solvers. Here, a successful satisfiability proof of the SAT instance results
in a step in the modular termination proof and simplifies the termination
problem to be analyzed.
The present SAT benchmark submission was created using the auto-
mated termination prover AProVE. The CNFs stem from termination
proof steps using various recent termination techniques. All instances
of this submission are satisfiable, and any speed-up for SAT solvers on
these instances will directly lead to performance improvements also for
automated termination provers.

1 Introduction

Termination is one of the most important properties of programs. Therefore,
there is a need for suitable methods and tools to analyze the termination behav-
ior of programs automatically. In particular, there has been intensive research on
techniques for termination analysis of term rewrite systems (TRSs) [2]. Instead
of developing many separate termination techniques for different programming
languages, it is a promising approach to transform programs from different lan-
guages into TRSs instead. Then termination tools for TRSs can be used for ter-
mination analysis of many different programming languages, cf. e.g. [11,19,20].

The increasing interest in termination analysis for TRSs is also demonstrated
by the International Competition of Termination Tools,1 held annually since
2004. Here, each participating tool is applied to the examples from the Termi-
nation Problem Data Base (TPDB)2 and gets 60 seconds per termination prob-
lem to prove or disprove termination. Thus, in order for a termination prover
to be competitive, one needs efficient search techniques for finding termination
(dis)proofs automatically.

⋆ Description of benchmark instances submitted to the SAT Competition 2009.
1 See http://termination-portal.org/wiki/Termination_Competition.
2 The current version 5.0.2 of this standard database for termination problems is

available at http://dev.aspsimon.org/projects/termcomp/downloads/.
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However, many of the arising search problems in automated terminating
analysis for TRSs are NP-complete. Due to the impressive performance of mod-
ern SAT solvers, in recent years it has become common practice to tackle such
problems by encoding them to SAT and by then applying a SAT solver on the
resulting CNF. This way, performance improvements by orders of magnitude
over existing dedicated search algorithms have been achieved, and also for new
termination techniques, SAT solving is the method of choice for automation (cf.
e.g. [3,4,5,6,7,8,9,14,16,17,21,23]).

Nowadays, techniques like the Dependency Pair framework [1,12,13,15] allow
for modular termination proofs. This means that it is not necessary to show ter-
mination of a term rewriting system in a single proof step, but instead one can
show termination of the different functions of the system separately and incre-
mentally. In this setting, one can use SAT solving in such a way that a successful
satisfiability proof of the encoded SAT instance results in an incremental step in
the modular termination proof which allows to simplify the termination problem
to be analyzed.

On the other hand, also speed-ups on unsatisfiable instances are beneficial
for automated termination analysis. The faster one finds out that a particular
termination technique does not succeed on a given termination problem (e.g.,
by a SAT solver returning UNSAT for an encoding of this technique for the
termination problem), the more time is left to apply other techniques from the
plethora of available termination analysis methods.

Nevertheless, this benchmark submission only contains satisfiable instances
which contribute directly to successful termination proofs.

2 Benchmark Instances

The present SAT benchmark submission was created using the automated ter-
mination prover AProVE [10], which can be used to analyze the termination be-
havior of term rewriting systems, logic programs [20], and Haskell 98 programs
[11].

AProVE was the most powerful termination prover for TRSs in all the termi-
nation competitions from 2004 – 2008. In AProVE, SAT encodings are performed
in two stages:

1. First, the search problem is encoded into a propositional formula with arbi-
trary junctors. The formula is represented via a directed acyclic graph such
that identical subformulas are shared.

2. Afterwards, this propositional formula is converted into an equisatisfiable
formula in CNF. This is accomplished using SAT4J’s [18] implementation of
Tseitin’s algorithm [22].

The submitted CNFs are named AProVE09-n.dimacs. For the analyzed ter-
mination problems from the TPDB, Fig. 1 provides details on the encoded ter-
mination technique and on the termination problem for each n.

64



Fig. 1. Details on the submitted SAT instances from TPDB problems

n Encoded technique Termination problem

01 Recursive Path Order [3,4,21] TRS/Cime/mucrl1.trs

02 Recursive Path Order [3,4,21] TRS/TRCSR/inn/PALINDROME_complete_noand_C.trs

03 Recursive Path Order [3,4,21] TRS/TRCSR/PALINDROME_complete_iGM.trs

04 Matrix Order [5,16] SRS/secret06/matchbox/3.srs

05 Matrix Order [5,16] SRS/Trafo/hom01.srs

06 Matrix Order [5,16] SRS/Waldmann07b/size-12-alpha-3-num-535.srs

07 Matrix Order [5,16] SRS/Zantema/z049.srs

08 Matrix Order [5,16] SRS/Zantema/z053.srs

09 Matrix Order [5,16] TRS/secret05/cime5.trs

10 Polynomial Order [6] TRS/CSR_Maude/bool/RENAMED-BOOL_nokinds.trs

11 Max-Polynomial Order [7] TRS/secret05/cime1.trs

12 Max-Polynomial Order [7] TRS/Zantema/z09.trs

13 Non-Monotonic Max-Pol. Order [7] TRS/aprove08/log.trs

14 Rational Polynomial Order [9] SRS/Zantema/z117.srs

15 Rational Polynomial Order [9] TRS/endrullis08/morse.trs

16 Rational Polynomial Order [9] TRS/SchneiderKamp/trs/thiemann17.trs

17 Rational Polynomial Order [9] TRS/TRCSR/inn/Ex49_GM04_C.trs

18 Rational Polynomial Order [9] TRS/TRCSR/inn/Ex5_DLMMU04_C.trs

19 Bounded Increase [14] TRS/SchneiderKamp/trs/cade14.trs

20 Arctic Matrix Order [17] SRS/Endrullis/04.srs

21 Arctic Matrix Order [17], alt. enc. SRS/Endrullis/04.srs

For termination analysis, TRSs are a very suitable representation of algo-
rithms on user-defined data structures. However, another main challenge in ter-
mination analysis of programs are algorithms on pre-defined data types like
integers. Using standard representations of integers as terms leads to problems
in efficiency and power for termination analysis with termination tools for TRSs.

Therefore, very recently we extended TRSs by built-in integers [8]. This com-
bines the power of TRS techniques on user-defined data types with a powerful
treatment of pre-defined integers. To automate the corresponding constraint-
based termination techniques for this new formalism in AProVE, we again per-
form a reduction to SAT. For the empirical evaluation of these contributions,
we collected a set of integer termination problems from the literature and from
applications. This collection can be found on the web page of the evaluation at
http://aprove.informatik.rwth-aachen.de/eval/Integer/.

Fig. 2 again provides details on the technique and on the analyzed problems.

3 Conclusion

SAT solving has become a key technology for automated termination provers.
Thus, any improvements in efficiency of SAT solvers on the submitted SAT
instances will also have a direct impact on efficiency and power of the respective
termination tool.
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Fig. 2. Details on the SAT instances from Integer TRSs

n Encoded technique Termination problem

22 Integer Max-Polynomial Order [8] Beerendonk/19.itrs
23 Integer Max-Polynomial Order [8] CADE07/A14.itrs
24 Integer Max-Polynomial Order [8] patrs/pasta/a.10.itrs
25 Integer Max-Polynomial Order [8] VMCAI05/poly4.itrs
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Abstract. Programs that solve Boolean satisfiability (SAT) problems
have become powerful tools to tackle a wide range of applications. The
usefulness of these solvers does not only depend on their strength and the
properties of a certain problem, but also on how the problem is translated
into SAT. This paper offers additional evidence for this claim.

To show the impact of the translation on the performance, we studied
encodings of edge-matching problems. The popularity of these problems
was boosted by the release of Eternity II in July 2007: Whoever solves
this 256 piece puzzle first wins $ 2,000,000. There exists no straight-
forward translation into SAT for edge-matching problems. Therefore, a
variety of possible encodings arise.

The basic translation used in our experiments and described in this pa-
per, is the smallest one that comes to mind. This translation can be ex-
tended using redundant clauses representing additional knowledge about
the problem. The results show that these redundant clauses can guide
the search – both for complete and incomplete SAT solvers – yielding
significant performance gains.

1 Introduction

The Boolean satisfiability (SAT) problem deals with the question whether there
exists an assignment –a mapping of the Boolean values to the Boolean variables–
that satisfies a given formula. A formula, in Conjunctive Normal Form (CNF),
is a conjunction of clauses, each clause being a disjunction of literals. Literals
refer either to a Boolean variable x or to its negation x.

SAT solvers have become very powerful tools to solve a wide range of prob-
lems, such as Bounded Model Checking and Equivalence Checking of electronic
circuits. These problems are first translated into CNF, solved by a SAT solver,
and a possible solution is translated back to the original problem domain.

⋆ A slightly different version of this paper with the same title appeared in Proceedings
of the Second International Workshop on Logic and Search (LaSh 2008).

⋆⋆ Supported by the Dutch Organization for Scientific Research (NWO) under grant
617.023.611.
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Translating a problem into CNF in order to solve it does not seem optimal:
Problem specific information, which could be used to develop specialized solving
methods, may be lost in the translation. However, due to the strength of modern
SAT solvers, it could be very fruitful in practice: Problem specific methods to
beat the SAT approach may take years to develop.

SAT solvers have been successfully applied to various combinatorial problems
ranging form lower bounds to Van der Waerden numbers [3] to Latin Squares.
However, on many other combinatorial problems, such as Traveling Salesman
and Facility Allocation [8], SAT solvers cannot compete with alternative tech-
niques such as Linear Programming. A possible explanation is that the former
(successful) group can be naturally translated into CNF, while the latter, due
to arithmetic constraints cannot.

For most problems, there is no straight-forward translation into CNF. Whether
SAT solvers can efficiently solve such problems does not only depend on the
strength of the solvers, but also on the translation of the problem into CNF.
This paper offers an evaluation of the influence of a translation on the perfor-
mance of SAT solvers. The translation of edge-matching problems into CNF
serves as this papers experimental environment. The problem at hand appears
both challenging and promising; because 1) there is no ”natural” translation
into CNF, yielding many alternative translations, and 2) there are no arithmetic
constraints that seem hard for SAT solvers.

The focus of this paper will be on the influence of redundant clauses – those
clauses which removal / addition will not increase / decrease the number of
solutions. Notice that redundancy as stated above should be interpreted in the
neutral mathematical sense of the word and not in the negative connotation
of day-to-day talk. In fact, as we will see, redundant clauses can improve the
performance of SAT solvers. Furthermore, all presented encodings will use the
same set of Boolean variables.

After introducing edge-matching problems (Section 2), this paper presents
the smallest translation into CNF that comes to mind. First the choice of the
variables (Section 3), followed by the required clauses (Section 4). This transla-
tion can be extended with clauses representing additional knowledge about the
problem (Section 5). Then it reflects on the influence of the translation (with and
without extensions) on the performance (Section 6) and concludes that encoding
is crucial to solve the hardest instances (Section 7).

2 Edge-Matching Problems

Edge-matching problems [5] are popular puzzles, that appeared first in the
1890’s. Given a set of pieces and a grid, the goal is to place the pieces on the grid
such that the edges of the connected pieces match. Edge-matching problems are
proved to be NP-complete [2]. Most edge-matching problems have square pieces
and square grids. Yet, there exists a large variety of puzzles1 with triangle or 3D
pieces and irregular grids.

1 See for instance http://www.gamepuzzles.com/edgemtch.htm
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There are two main classes of edge-matching problems. First, the edges are
colored and connected edges much have the same color. These problems are called
unsigned. Second, instead of colors, edges can have a partial image. These edges
match if they have complementary parts of the same image. These problems are
called signed. A famous signed edge-matching problem is Rubik’s Tangle.

Edges on the border of the grid are not connected to pieces, so they cannot
match as the other edges. In case there are no constraints placed on these edges,
we call the problem unbounded. On the other hand, problems are bounded if
these edges are constraint. A common constraint is that these edges must have
the same color. Throughout this paper, when we refer to bounded edge-matching
problems, we assume this constraint and that their is a special color only for these
border edges.

The popularity of edge-matching problems was boosted by the release of the
Eternity II puzzle in July 2007: Whoever solves it first wins $2,000,000. Eternity
II is a 16×16 bounded unsigned edge-matching problem invented by Christopher
Monckton and published by Tomy. Apart from the large 256 piece puzzle, also
four smaller clue puzzles have been released.

3 Choosing the Variables

The selection of Boolean variables for the translation is an important first step
to construct an efficient encoding. This section introduces the variables used in
the proposed translation of edge-matching problems into CNF. These consist of
two types: Variables representing a mapping from pieces to squares (Section 3.1)
and variables describing the colors of the diamonds (Section 3.2). Apart from
these variables, this section describes the clauses relating to variables of the same
type. Clauses that consist of both types will be discussed in Section 4.

Throughout this paper, no auxiliary variables are introduced. Using only
the variables in this section, one can already construct dozens of alternative
translations. Therefore, evaluating these translations seems a natural starting
point. That said, related work such as [7] shows that auxiliary variables can be
very helpful to reduce the computational costs of solving the problem at hand.

3.1 Mapping Pieces to Squares

Arguably the most intuitive way to translate edge-matching problems into CNF
would be a mapping of the pieces to the squares of the grid. A similar approach
has been proposed to translate edge-matching problems into a Constraint Sat-
isfaction Problem [9]. This requires the following Boolean variables:

xi,j

{

1 if piece pi is placed on square qj

0 otherwise

Notice that there is no rotation embedded in the variable encoding. As we
will see in Section 4, rotation does not require additional variables and can be
achieved by clauses.
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Fig. 1. Examples of an (a) unbounded unsigned edge-matching problem, (b) unbounded
signed edge-matching problem, (c) bounded unsigned edge-matching problem, and (d)
bounded signed edge-matching problem.
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For bounded edge-matching problems, zero edges refer to those edges that
should be placed along the boundary of the grid. Given a n × n grid, these
problems contain four corner pieces with two zero edges (denoted by set Pcorner)
and 4n−8 border pieces with one zero edge (denoted by set Pborder). The pieces
with no zero edges are denoted by set Pcenter. For unbounded edge-matching
problems, all pieces are in set Pcenter.

Likewise, corner pieces can only be placed in the corners of the grid (denoted
by set Qcorner), border pieces only along the border (denoted by set Qborder),
and the other pieces can only be placed in the center (denoted by set Qcenter).
So, the mapping variables are related as follows:

(
∨

pi∈Pcorner

xi,a) ∧ (
∨

pi∈Pborder

xi,b) ∧ (
∨

pi∈Pcenter

xi,c) for qa ∈ Qcorner, qb ∈ Qborder, qc ∈ Qcenter (1)

(
∨

qj∈Qcorner

xa,j)∧(
∨

qj∈Qborder

xb,j)∧(
∨

qj∈Qcenter

xc,j) for pa ∈ Pcorner, pb ∈ Pborder, pc ∈ Pcenter (2)

The above encoding requires |Pcorner|
2 + |Pborder|

2 + |Pcenter|
2 variables and

2|Pcorner| + 2|Pborder| + 2|Pcenter| clauses. Notice that the encoding only forces
each piece on at-least-one square and each square to hold at-least-one piece. In
fact, in any valid placement, this should be exactly-one. Forcing them exactly-
one explicitly – each mapping of one piece on two squares would violate a specific
(binary) clause – is very expensive (in terms of additional (binary) clauses), as
we will discuss in Section 5.2. Instead, the clauses presented in Section 4 force
the one-on-one mapping implicitly which makes the explicit encoding redundant.

q1 q2 q3 q4 q5 q6

q7 q8 q9 q10 q11 q12

q13 q14 q15 q16 q17 q18

q19 q20 q21 q22 q23 q24

q25 q26 q27 q28 q29 q30

q31 q32 q33 q34 q35 q36

d1 d2 d3 d4 d5

d6 d7 d8 d9 d10 d11

d12 d13 d14 d15 d16

d17 d18 d19 d20 d21 d22

d23 d24 d25 d26 d27

d28 d29 d30 d31 d32 d33

d34 d35 d36 d37 d38

d39 d40 d41 d42 d43 d44

d45 d46 d47 d48 d49

d50 d51 d52 d53 d54 d55

d56 d57 d58 d59 d60

Fig. 2. The numbering of squares qj (left) and diamonds dk (right) for a 6x6 edge-
matching problem. Gray squares are corner and border squares, gray diamonds are
border diamonds.
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Implicit encoding assumes that all pieces are unique. In case two pieces are
equivalent (modulo rotation), then a few additional clauses have to be added
to force equivalent pieces to be placed on different squares. To ensure a valid
mapping, we therefore need some additional clauses for each square qj :

(xi,j ∨ xl,j) for pi equivalent to pl and i < l (3)

3.2 Colored Diamonds

The only constraint forced on a placement is that colors of connecting edges must
match. Edges are represented as triangles and connected edges as diamonds.
Given a n × n grid, there are n2 − 2n diamonds. Diamonds are numbered from
left to right, from top to bottom, see Figure 2. This brings us to the second type
of variables.

yk,c

{

1 if diamond dk has color c

0 otherwise

The colored edges can be partitioned into border edges (those directly next
to zero edges) and center edges (those not directly next to zero edges). Set
Cborder consists of all colors of border edges and set Ccenter consists of all colors
of center edges. Likewise, diamonds are partitioned into two sets, one for the
border edges, called Dborder, and one for the center edges, called Dcenter. Figure 2
shows the partition for a 6 × 6 grid. The disjunction of Cborder and Ccenter

could be empty, but that is not as a rule. The number of variables yk,c equals
|Cborder| · |Dborder|+ |Ccenter| · |Dcenter|. In case either |Cborder| or |Ccenter| is large,
the number of required binary clauses will be enormous.

(
∨

c∈Cborder

yk,c) ∧ (
∨

c∈Ccenter

yl,c) ∧
∧

c,c′∈Cborder,c<c′

(yk,c∨yk,c′) ∧
∧

c,c′∈Cborder,c<c′

(yl,c∨yl,c′) for

{

dk ∈ Dborder

dl ∈ Dcenter
(4)

Example 1. Given an edge-matching problem with Cborder = {blue, green, red}
and Ccenter = {cyan, green, pink, yellow}. The following clauses will encode that
each diamond has exactly one color:

(yk,red ∨ yr,green ∨ yk,blue) ∧

(yk,red ∨ yk,green) ∧ (yk,red ∨ yk,blue) ∧ (yk,green ∨ yk,blue)

}

dk ∈ Dborder (5)

(yk,cyan ∨ yr,green ∨ yk,pink ∨ yk,yellow) ∧

(yk,cyan ∨ yk,green) ∧ (yk,cyan ∨ yk,pink) ∧ (yk,cyan ∨ yk,yellow) ∧

(yk,green ∨ yk,pink) ∧ (yk,green ∨ yk,yellow) ∧ (yk,pink ∨ yk,yellow)











dk ∈ Dcenter

(6)
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4 Essential Clauses

This section deals with the question of how to connect the mapping variables
xi,j with the colored diamond variables yk,c. The encoding presented here is one
of many alternatives. This one uses only a few clauses per mapping variable xi,j .
All constraints have the format “if pi is mapped on qj ..., then dk has color c”. Or
as clause (xi,j ∨ ...∨yk,c). The number of these clauses and their sizes depend on
the type of piece pi. Besides corner and border pieces (discussed in Section 4.1),
the center pieces are grouped in seven types (see Section 4.2).

4.1 Corner and Border Pieces

First the easy part. Recall that the zero edges are known. So, corner and border
pieces can only be placed on a square with a specific rotation. Therefore, only
one binary clause is required for each non-zero edge of the center and border
pieces.

Example 2. Given a corner piece pA with a red east edge and a blue south edge
which should be placed on a n × n grid (see Figure 2). Then the eight clauses
below should be added (per corner piece depending on the colors). Notice that
q1, qn, qn2−n+1, qn2 are the corresponding corner squares.

(xA,1 ∨ y1,red) ∧ (xA,1 ∨ yn,blue) ∧
(xA,n ∨ y2n−1,red) ∧ (xA,n ∨ yn−1,blue) ∧

(xA,n2−n+1 ∨ y2n2−4n+2,red) ∧ (xA,n2−n+1 ∨ y2n2−3n+2,blue) ∧
(xA,n2 ∨ y2n2−2n,red) ∧ (xA,n2 ∨ y2n2−3n+1,blue)

Similarly, given a border piece pB with a pink east edge, a yellow south edge and
a green west edge, that should be placed on the same grid, the following clauses
should be added for j ∈ {1, . . . , n − 2}:

(xB,j+1 ∨ yj,green) ∧ (xB,j+1 ∨ yj+n+1,yellow) ∧
(xB,j+1 ∨ yj+1,pink) ∧ (xB,nj+1 ∨ y(2n−1)j+n,green) ∧

(xB,nj+1 ∨ y(2n−1)j+1,yellow) ∧ (xB,nj+1 ∨ y(2n−1)j−n+1,pink) ∧
(xB,n(j+2)−1 ∨ y(2n−1)j,green) ∧ (xB,n(j+2)−1 ∨ y(2n−1)j+n−1,yellow) ∧
(xB,n(j+2)−1 ∨ y(2n−1)(j+1),pink) ∧ (xB,j+n2−n+1 ∨ yj+2n2−3n+2,green) ∧
(xB,n2−n+1 ∨ yj+2n2−4n+2,yellow) ∧ (xB,j+n2−n+1 ∨ yj+2n2−3n+2,pink)

Concluding, for each variable xi,j with pi ∈ Pcorner we only need two binary
clauses, while for each xi,j with pi ∈ Pborder, we need three binary clauses. The
next section will discuss which clauses to add for those xi,j with pi ∈ Pcenter.

4.2 Center Pieces

Given the choice of the variables presented in Section 3, the encoding of corner
and border pieces (as above) is quite straight-forward. However, encoding the
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center pieces efficiently is much more tricky. The crux is that if a certain mapping
variable xi,j of a center piece is true, we cannot directly color the corresponding
diamonds2. We need to know how pi is rotated (0◦, 90◦, 180◦, or 270◦).

Rotation can be encoded using two kinds of clauses: positive rotation clauses

and negative rotation clauses. First, positive rotation clauses consist of only
positive literals yk,c and the negative mapping literal xi,j . These clauses force a
subset of the corresponding diamonds to be colored in correspondence with one
of the edges. The number of these clauses and their sizes depend on how many
times a color occurs on a piece. If a color occurs only once then this is encoded
as a single clause of length five. If all edges have the same color then a binary
clause is required per edge. In the other cases, these clauses have length three
and the number depends on the relative location of the edges with the same
color. All positive rotation clauses are used in the proposed encoding.

Second, for negative rotation clauses, all literals are negated except for one
literal yk,c. The negated literals represent the conditions to force diamond dk to
color c. Most negative rotation clauses are ternary clauses. For instance, x1,5 ∨
y7,yellow ∨ y8,red, which could be read as “if p1 is mapped on q5 and d7 is yellow,
then d8 is red”. In case a piece contains three or four different colors, some
negative rotation clauses are required to make the encoding valid.

Center pieces can be partitioned into seven types: 1) All edges have the same
color; 2) three edges have the same color; 3) two neighbouring pairs of edges
have the same color; 4) both opposite pairs of edges have the same color; 5) one
neighbouring pair of edges has the same color; 6) one opposite pair of edges has
the same color; 7) all edges have a different color. The number of clauses that
should be added for each variable xi,j depends on the type of piece pi – ranging
from 4 (type 1) to 20 (type 7). Figure 3 lists the combination of clauses that
should be added per type of each piece.

Notice that the positive rotation clauses of length five are not listed in Fig-
ure 3 for types 5, 6, and 7. First, piece type 5 does not need the long positive
rotation clauses because the shown clauses are enough to force a valid encoding.
For piece types 6 and 7 it is required to add at least of these long clauses. We
omitted it in Figure 3, because there is a choice – anyone of them will make
the encoding valid. To make the encoding independent of the choice, as stated
before, all the positive rotation clauses will be used.

5 Redundant Clauses

Translation of edge-matching problems into CNF as presented in Sections 3
and 4 is the smallest one that came to mind. This translation is such that each
satisfying assignment corresponds with a unique valid positioning of the pieces.
Moreover, the translation is satisfiable if and only if there exists a valid placement
of the the original problem.

2 Expect for the special case in which all edges have the some color (and the same
sign, for signed problems).
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# Type Implications Clauses

1 (xi,15 ∨ y25,blue)
b

2

(xi,15 ∨ y24,blue ∨ y19,blue )b

(xi,15 ∨ y24,blue ∨ y25,blue )a

(xi,15 ∨ y19,red ∨ y24,red

∨ y25,red ∨ y30,red )

3
(xi,15 ∨ y24,blue ∨ y25,blue )a

(xi,15 ∨ y19,red ∨ y30,red )a

4
(xi,15 ∨ y19,blue ∨ y24,blue )b

(xi,15 ∨ y25,red ∨ y30,red )b

5

(xi,15 ∨ y24,yellow ∨ y30,red )b

(xi,15 ∨ y24,yellow ∨ y30,red )b

(xi,15 ∨ y24,blue ∨ y25,blue )a

(xi,15 ∨ y19,blue ∨ y25,blue

∨ y24,yellow)b

6

(xi,15 ∨ y24,yellow ∨ y25,red )b

(xi,15 ∨ y25,red ∨ y24,yellow)b

(xi,15 ∨ y19,blue ∨ y24,blue )b

7

(xi,15 ∨ y24,green ∨ y19,blue )b

(xi,15 ∨ y19,blue ∨ y25,red )b

(xi,15 ∨ y25,red ∨ y30,yellow)b

(xi,15 ∨ y30,yellow ∨ y24,green )b

a two clauses; apply permutation {(y19,c, y25,c), (y25,c, y30,c), (y30,c, y24,c), (y24,c, y19,c)}
to obtain the other one.

b four clauses; apply permutation {(y19,c, y25,c), (y25,c, y30,c), (y30,c, y24,c), (y24,c, y19,c)}
iteratively to obtain the other three.

Fig. 3. The translation of the seven types of center pieces to CNF. The most frequent
occurring color is represented by blue, followed by red, yellow and green. Each arrow
(implication) is encoded a (set of) clause(s). Black diamonds refer to the complement
of an edge. The last column shows one clause per arrow for a piece pi placed on q15 on
a 6 × 6 grid. The corresponding diamonds are d19 (north), d25 (east), d30 (south), d24

(west).
.
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Although the translation is sufficient, it may not be optimal in case one wants
to solve it with a SAT solver. With the addition of some (or even many) clauses
and variables, some SAT solvers may find a solution much faster. This section
discusses two extensions of the compact translation. Both represent additional
knowledge about the problem and require only some extra clauses.

5.1 Forbidden Color Clauses

Once a diamond is given a certain color, then several pieces are not allowed to
be placed on the corresponding squares. This knowledge can be added to the
formula with several binary clauses. For each diamond, if assigned to a color,
then all pieces without that color (on at least one of its edges) cannot be placed
on one of the two corresponding squares.

Example 3. Given a piece pC with one blue edge, two pink edges and a red
edge. Say we want to place it on square q15 and the d30 is one of the correspond-
ing diamonds and Ccenter = {blue, cyan, green, orange, pink, red}. The forbidden
color clauses would be:

(xC,15 ∨ y30,cyan) ∧ (xC,15 ∨ y30,green) ∧ (xC,15 ∨ y30,orange) (7)

Notice that, provided the encoding of corner and border pieces as described in
Section 4.1, these clauses only make sense for center pieces. Let C(pi) be the set
of colors of piece pi and q<

k be the smallest index of the corresponding square of
diamond dk, and q>

k the largest index of the corresponding square.

∧

color∈Ccenter\C(pi)

(xi,q<

k
∨ yk,color) ∧

∧

color∈Ccenter\C(pi)

(xi,q>

k
∨ yk,color) for pi ∈ Pcenter, dk ∈ Dcenter (8)

Several assignments that are implicitly violated by the compact translation,
become explicitly violated by the forbidden color clauses. For instance, two pieces
cannot be placed on neighbouring squares if they do not have at least one edge
in common, because the diamond between these squares cannot be colored. In
the compact translation, not all rotation clauses can be satisfied in that situa-
tion, although the SAT solver may not see it, yet. However, with the additional
forbidden color clauses this directly results in a conflict.

The disadvantage of adding forbidden color clauses, as with all types of addi-
tional clauses, is that the encoding will require more resources. Especially when
the number of center colors is large, the number of forbidden color clauses will
be enormous.

5.2 Explicit One-on-One Mapping

Recall that diamonds are explicitly forced to have exactly one-color which in turn
implicitly forces each piece on exactly one square. Optionally, we can extend
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the translation by adding it explicitly. A straight-forward translation of this
enforcement is:

(xi,j ∨ xi,l) for pi ∈ Pcorner and qj , ql ∈ Qcorner and j < l (9)

(xi,j ∨ xi,l) for pi ∈ Pborder and qj , ql ∈ Qborder and j < l (10)

(xi,j ∨ xi,l) for pi ∈ Pcenter and qj , ql ∈ Qcenter and j < l (11)

Notice that the number of additional clauses by this extension is O(|Pcenter|
3).

Recall that for unbounded edge-matching problems, all pieces are in Pcenter, so
the addition is much cheaper for bounded problems. However, if the problem is
large enough, say |Pcenter| > 40, the number of additional clauses will exceed
the number of original clauses. Yet, one cannot conclude that this addition is
counterproductive (in terms of solving speed).

6 Results

This section offers some results of the proposed translations of edge-matching
problems to CNF on a test set of bounded unsigned edge-matching problems.
Four instances arise from the clue puzzles by Tomy called cluex. Additionally,
eight problems were generated with various sizes (a), number of border colors
(b) and number of center colors (c) called em-a-b-c. The smaller five generated
instances have relatively many colors yielding only few solutions, while the larger
three instances have few colors and therefore many solutions. For each instance
from the test set we constructed four different encodings:

– Fcompact: The compact translation as described in Section 3 and 4;
– Ffbcolors: The forbidden color clauses (Section 5.1) added to Fcompact;
– Fexplicit: The explicit one-on-one mapping (Section 5.2) added to Fcompact;
– Fall: All presented clauses, the union of Ffbcolors and Fexplicit.

Table 1 offers several properties of the test set instances. Next to the names,
the second column lists the size (rows × columns) of the grid. Although, we
explained the translations using square grids, they can be used for rectangu-
lar grids as well. The third column shows the number of colors in the format
(|Cborder|, |Ccenter|). The fourth column shows the number of variables used for
all encodings. The number of clauses of Fcompact, and the number of the addi-
tional knowledge clauses are listed in the last three columns.

Only two state-of-the-art SAT solvers are used for the experiments: picosat [1]
and ubcsat [10]. The former is a complete solver – it can also prove that no
solution exits – while the latter is a local search solver. Initially, more solvers
were used, but the results of complete solvers were strongly related, as were those
of various incomplete ones. Therefore, only the strongest solver (based on earlier
experiments) of each category was selected. The picosat solver was faster than
minisat [4], probably due to use of rapid restarts in the former. For the ubcsat

solver, one can select from many different stochastic local search algorithms.

79



Table 1. Properties of the selected benchmarks. The number of variables is denoted
by #variables. The last columns offer the number of (additional) clauses.

name size colors #variables |Fcompact| |Ffbcolors| |Fexplicit|

clue1 6 × 6 (4, 3) 728 3688 +704 +3864
clue2 6 × 12 (4, 4) 2904 23570 +9120 +41808
clue3 6 × 6 (5, 4) 788 3836 +1792 +3864
clue4 6 × 12 (5, 4) 2936 23574 +9280 +41808

em-7-3-6 7 × 7 (3, 6) 1473 11563 +7500 +11324
em-7-4-8 7 × 7 (4, 8) 1617 14513 +11400 +11324
em-7-4-9 7 × 7 (4, 9) 1677 15063 +13800 +11324
em-8-4-5 8 × 8 (4, 5) 2420 22340 +11232 +29328
em-9-3-5 9 × 9 (3, 5) 3857 39932 +19796 +68232

em-11-3-4 11 × 11 (3, 4) 8713 99699 +29808 +285144
em-12-2-4 12 × 12 (2, 4) 12584 155712 +47200 +526224
em-14-7-3 14 × 14 (7, 3) 24356 305744 +41475 +1536792

Table 2. Computational costs (in seconds) to solve the test set using picosat.

name Fcompact Ffbcolors Fexplicit Fall

clue1 0.11 (0.02) 0.10 (0.00) 0.10 (0.00) 0.10 (0.00)
clue2 506.44 (364.19) 164.84 (49.87) 2.75 (1.68) 0.95 (0.37)
clue3 0.22 (0.12) 0.12 (0.04) 0.10 (0.00) 0.10 (0.00)
clue4 1527.54 (536.34) 269.77 (84.72) 1.90 (2.13) 0.54 (0.07)

em-7-3-6 > 3600 – > 3600 – 140.00 (135.18) 34.91 (27.18)
em-7-4-8 > 3600 – > 3600 – 1132.54 (1054.23) 852.32 (890.52)
em-7-4-9 > 3600 – > 3600 – 45.94 (43.75) 41.89 (55.94)
em-8-4-5 > 3600 – > 3600 – 209.35 (187.79) 86.58 (67.23)
em-9-3-5 > 3600 – > 3600 – 501.81 (220.31) 152.81 (121.13)

em-11-3-4 > 3600 – > 3600 – 163.48 (99.87) 51.68 (35.56)
em-12-2-4 > 3600 – > 3600 – 249.66 (151.65) 88.36 (81.92)
em-14-7-3 > 3600 – > 3600 – 80.24 (49.73) 32.58 (17.91)

Table 3. Computational costs (in seconds) to solve the test set using ubcsat.

name Fcompact Ffbcolors Fexplicit Fall

clue1 0.04 (0.03) 0.04 (0.02) 0.02 (0.01) 0.02 (0.01)
clue2 1.78 (1.40) 1.37 (1.21) 0.19 (0.04) 0.21 (0.11)
clue3 0.06 (0.06) 0.08 (0.06) 0.03 (0.02) 0.04 (0.02)
clue4 1.38 (0.89) 1.69 (1.38) 0.33 (0.19) 0.38 (0.31)

em-7-3-6 60.73 (17.65) 138.23 (134.30) 670.65 (701.69) 225.70 (78.76)
em-7-4-8 2376.62 (2169.16) 1732.65 (1801.32) > 3600 – > 3600 –
em-7-4-9 1690.02 (1815.71) 1284.47 (1502.43) > 3600 – > 3600 –
em-8-4-5 155.62 (180.88) 80.54 (74.25) 381.91 (309.00) 128.88 (135.49)
em-9-3-5 1258.10 (1492.35) 177.36 (138.91) 1928.79 (2352.45) 839.40 (870.74)

em-11-3-4 82.73 (35.38) 34.16 (5.10) 2.65 (1.30) 3.78 (1.85)
em-12-2-4 154.99 (27.92) 32.52 (17.88) 2.32 (1.70) 4.41 (1.89)
em-14-7-3 145.72 (21.20) 48.97 (23.19) 11.02 (7.99) 44.72 (39.55)
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From those algorithms ddfw [6] appeared to be the fastest one on the smaller
instances of the test set. Therefore, this algorithm6 was selected.

Each solver was run on each formula with ten seeds. The execution times
differed significantly for those seeds, for both picosat and ubcsat. Therefore, the
results show besides the average computational costs also the variance. In case
at least five seeds took more than an hour, > 3600 is listed.

The most striking result is that the complete solver picosat is unable to solve
most benchmarks in the test set when the explicit one-on-one mapping clauses
are not added, see Table 2. Although these clauses are redundant, they appear
crucial to solve the problem. Only the four clue puzzles can be solved without
these clauses, although clue2 and clue4 are solved considerably faster with
them.

The results of the incomplete solver ubcsat shown in Table 3 are much more
ambivalent. In contrast to picosat, the most elaborate translation hardly seems
the optimal encoding. Yet, only em-7-3-6 is solved fast using the compact en-
coding. The smaller generated instances (with relatively few solutions) are faster
solved by adding the redundant forbidden color clauses, while for the larger ones
(with many solutions) the explicit one-on-one mapping clauses appear useful.
Apparently, redundant clauses can guide the search for incomplete solvers too.

Yet, despite the weakness shown on the translation without the additional
clauses, the (complete) picosat appears the best overall choice. When the compact
translation is extended with both sets of additional clauses, of picosat outper-
forms ubcsat on the harder instances. Moreover, the results suggest that extend-
ing the translation with even more additional knowledge could further improve
the performance.

7 Conclusions and Future Work

This paper presented a compact translation of edge-matching problems into
CNF, as well as several extensions. The compact translation rarely resulted in
the fastest performance, both for complete and incomplete SAT solvers. For com-
plete solvers, the extensions even appeared crucial to solve the harder instances.
Yet, these results are not very surprising and mostly show the extend of the
importance of redundant clauses.

On the other hand, it is harder to explain why redundant clauses also guide
the search for incomplete SAT solvers. Arguably, any performance gain due
to adding redundant clauses could be interpreted as a flaw of the local search
algorithm – redundant clauses only require additional resources. More research
is needed to explain these results.

The focus of this paper, both the presentation and the experiments, is on
bounded unsigned edge-matching problems. Translating unbounded and / or
signed problems into CNF can be done in a similar manner. Future experiments
will have to show whether SAT solvers can be used to solve these problems, such
as Rubik’s Tangle, too.

6 Using the default settings with runs = 1,000, cut-off = 1,000,000
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Within the domain of edge-matching problems, there remains the enormous
challenge of constructing a translation of the Eternity II puzzle that could be
solved with a SAT solver. The proposed encoding is merely a first step in this
direction. A possible next step is to determine which other knowledge could be
added using redundant clauses.

Regarding the big picture, the challenge arises how to translate a problem into
CNF in general. The presented results suggest that adding redundant clauses can
significantly reduce the computational costs. Therefore, further research on the
use of redundant clauses may provide insight in how to meet this challenge. Also,
the results show that the optimal encoding will not only depend on properties of
a given problem, but also on the preferred solver, since complete and incomplete
solvers will require different translations.
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1 Description of the initial problem

Model RB is a CSP model whose threshold points can be precisely located,
and the instances generated at the threshold are guaranteed to be hard. In our
paper [1] we use three different methods to encode the CSP instances generated
from Model RB into SAT instances.We finally choose the most natural ”direct”
encoding method to define a new simple SAT model called RB-SAT. For further
explanations, see [1].

2 Description of the SAT encoding

Model RB [2]: A class of random CSP instances generated following Model RB
is denoted by RB(k, n, α, r, p) where, for each instance:

– k ≥ 2 denotes the arity of each constraint,
– n ≥ 2 denotes the number of variables,
– α > 0 determines the domain size d = nα of each variable,
– r > 0 determines the number m = r.n. lnn of constraints,
– 0 < p < 1 determines the number t = pdk of disallowed (incompatible) tuples

of each relation.
The following SAT model correspond to the direct encoding of Model RB

(k=2), i.e. RB-SAT (n, α, r, p):

Step 1. Generate n disjoint sets of boolean variables, each of which has cardi-
nality nα (where α > 0 is a constant), and then for every set, generate a
clause which is the disjunction of all variables in this set, and for every two
variables x and y in the same set, generate a binary clause ¬x ∨ ¬y;

Step 2. Randomly select two different disjoint sets and then generate without
repetitions pn2α clauses of the form ¬x∨¬z where x and z are two variables
selected at random from these two sets respectively (where 0 < p < 1 is a
constant);

Step 3. Run Step 2 (with repetitions) for another rn ln(n)-1 times (where r > 0
is a constant).

The instance can be forced to be satisfiable by randomly selecting a variable
in each disjoint set and assigning true to it, other variables being assigned false
and then keeping each constraint satisfied when selecting incompatible tuples
of values for this constraint. We submit the two categories to SAT COMPETI-
TION 2009.
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3 Expected behavior of the solvers on those benchmarks

For solvers based on DPLL method, the RB-SAT instances are very difficult
(exponential time). For solvers based on local search methods, these instances
are exponentially harder than the random 3-SAT instances.

4 Random category

Instances of this class are generated by a generator with repetition of disjoint
sets selected for the corresponding CSP. These benchmarks are submitted in the
random category of SAT COMPETITION 2009.

5 Crafted category

Instances of this class are generated through a generator without repetition

of disjoint sets selected for the corresponding CSP. These benchmarks are sub-
mitted in the crafted category of SAT COMPETITION 2009.

6 The benchmark test-sets

The distribution shown in table 1 is done for both categories: Random and
Crafted. Here, we vary only the parameter n of Model RB-SAT.

n rbsat-forced rbsat-unforced #instances #vars #clauses

40 rbsat-v760c43649gyes rbsat-v760c43649g 10 760 43649

45 rbsat-v945c61409gyes rbsat-v945c61409g 10 945 61409

50 rbsat-v1150c84314gyes rbsat-v1150c84314g 10 1150 84314

55 rbsat-v1375c111739gyes rbsat-v1375c111739g 10 1375 111739

60 rbsat-v1560c133795gyes rbsat-v1560c133795g 10 1560 133795

65 rbsat-v1820c171155gyes rbsat-v1820c171155g 10 1820 171155

70 rbsat-v2100c215164gyes rbsat-v2100c215164g 10 2100 215164

75 rbsat-v2400c266431gyes rbsat-v2400c266431g 10 2400 266431

80 rbsat-v2640c305320gyes rbsat-v2640c305320g 10 2640 305320

Table 1. The benchmark test-sets: RB-SAT (n,α = 0.8, r = 3, p = 0.23)
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Generator of satisfiable SAT instances

Milan Sesum, Predrag Janicic

Faculty of Mathematics, Belgrade

This program generates satisfiable SAT instances that correspond to the problem
of known-plaintext attack on the cryptographic algorithm DES. DES has 56 bits
long key. Finding all 56 bits by this approach is practically impossible. Because
of that, it was assumed that some of 56 key bits are known and the problem is to
find remaining, unknown bits. At the beginning, the program randomly generates
a plaintext (of length 64) and a key (of length 56) and then finds corresponding
ciphertext. After that, it uses the plaintext, the ciphertext and some of key bits in
generating the corresponding SAT formula. The number of unknown key bits is a
value of the second command line argument. The first command line argument is
random seed parameter.

Details about this aproach can be found in the paper http://www.matf.bg.ac.
yu/~janicic/papers/frocos2005.zip

The number of unknown key bits can be used as a fine tuning hardness parameter
– as this number is growing up, the corresponding formula’s hardness is growing up
too.

REMARK: Generating a formula of any number of key bits should take about
20 seconds (depends on concrete hardware).

Usage: gss s n

s - random seed parameter

n - number of unknown key bits
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Generator of SAT instances of unknown

satisfiability

Milan Sesum, Predrag Janicic

Faculty of Mathematics, Belgrade

This program generates unsatisfiable SAT instances that correspond to the prob-
lem of finding a collision in the hash function MD5, with the length of messages equal
to the the first command line argument. Because of the nature of hash functions
(it should be almost impossible to find collisions in hash function, especially when
length of starting message is small), it is extremely likely that formulae generated
by this program are unsatisfiable (for length of messages less than 128).

Details about this aproach can be found in the paper http://www.matf.bg.ac.
yu/~janicic/papers/frocos2005.zip

The length of starting message can be used as a fine tuning hardness parameter
– as the length is growing up, the corresponding formula’s hardness is growing up
too.

REMARK: Generating a formula of any length should take about 1 minute
(depends on concrete hardware). All formulae should be of size 4MB.

Usage: gus n

n - length of messages (in bits)
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Parity games instances

Oliver Friedmann

The generator is used to find parity games of a fixed size n that forced the
strategy improvement algorithm to require at least i iterations. The generator
creates predicate P (n; i) in propositional logic that basically simulates a run of the
strategy iteration on a game of size n with at least i iterations. Using a SAT solver
to solve P (n; i), one can draw the following conclusions:

SAT There is a game of size n that requires at least i iterations. Such a game can
be extracted using the returned variable assignment for P(n; i ).

UNSAT There is no game of size n that requires at least i iterations.

Since the exact number of iterations that is required to solve games of size n
in the worst case is unknown, all instances that are generated are submitted as
UNKNOWN.

The generator is a linux 32-bit executable that prints the specified benchmark
to stdout in the usual DIMACS-format.

Although the generator understands quite a lot of parameters, there are two
configurations, both of them depending on the two natural numbers N and I, that
are recommended to be used for benchmarks:

1) -n N -i I -pp

2) -n N -i I -pp -ci -ce

The solution of the second configuration is of higher theoretical interest and
should be tougher to be solved.

Note that the generated benchmarks will be very though already for very small
N and I. It is also recommended to choose N and I in such a way that the difference
between N and I is small.
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C32SAT and CBMC instances

Hendrik Post, Carsten Sinz
University of Karlsruhe (TH)

Institute for Theoretical Computer Science
Research group ”Verification meets Algorithm Engineering”

Am Fasanengarten 5
76131 Karlsruhe

Germany
post,sinz@ira.uka.de

1 Answer per benchmarks

post-c32s-col400-16 UNSAT

post-c32s-gcdm16-22 SAT

post-c32s-gcdm16-23 UNSAT

post-c32s-ss-8 UNSAT

post-cbmc-aes-d-r1 UNSAT

post-cbmc-aes-d-r2 UNSAT

post-cbmc-aes-ee-r2 UNSAT

post-cbmc-aes-ee-r3 UNSAT

post-cbmc-aes-ele UNSAT

post-cbmc-zfcp-2.8-u2 SAT

2 Bounded Software Model Checking for C

c32sat1 version 1.4.1 is used to prove properties about small, implicitely(*) repre-
sented, programs.

Author : Hendrik Post, University of Karlsruhe, Germany, post@ira.uka.de
Date : 9th of April 2008

CNF encodings of c32sat examples

• post-c32s-ss-8.cnf: Implicit representation of a selection sort implementation.
The verification condition checks for all sets of a bounded size (=8) that
elements are sorted after the application of the algorithm. (unsat, 15 mins
with Minisat 2.0 beta)

• post-c32s-gcdm16-22.cnf and post-c32s-gcdm16-23.cnf: Implicit representa-
tion of condition that the gcd algorithm will not use more than 22/23 itera-
tions. Unsat. for 23 iterations, sat for 22 iterations.

• post-c32s-col400-16.cnf: Sound encoding of the Collatz conjecture on 16 bit
integers. The formula is unsat -¿ no 16 bit integer will cause more than 400
iterations of the Collatz conjecture.

(*) The verification conditions are generated and not extracted from C programs.

1http://fmv.jku.at/c32sat/
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3 CBMC

1. post-cbmc-aes-d-r1.cnf

2. post-cbmc-aes-d-r2.cnf

3. post-cbmc-aes-ee-r2.cnf

4. post-cbmc-aes-ee-r3.cnf

5. post-cbmc-aes-ele.cnf

6. post-cbmc-zfcp-2.8-u2.cnf

#####

# 1 #

#####

c Benchmark for SATRace 2008

c Bounded Software Model Checking for C

c CBMC[3] (Version 2.8.) is used to prove that two AES implementations (Reference

c implementation[1] and Mike Scotts[2] C implementation) are equivalent.

c [1] Written by Paulo Barreto and Vincent Rijmen, K.U.Leuven

c [2] Written by Mike Scott, mike@compapp.dcu.ie

c [3] http://www.cprover.org/cbmc/

c Author : Hendrik Post, University of Karlsruhe, Germany, post@ira.uka.de

c Date : 7th of April 2008

c Subtask: Decryption with 128 bit keys and block size, 1 rounds, arbitrary text and key

c Original output of CBMC:

c size of program expression: 15868 assignments

c Generated 9132 claims, 168 remaining

#####

# 2 #

#####

c Benchmark for SATRace 2008

c Bounded Software Model Checking for C

c CBMC[3] (Version 2.8.) is used to prove that two AES implementations (Reference

c implementation[1] and Mike Scotts[2] C implementation) are equivalent.

c [1] Written by Paulo Barreto and Vincent Rijmen, K.U.Leuven

c [2] Written by Mike Scott, mike@compapp.dcu.ie

c [3] http://www.cprover.org/cbmc/

c Author : Hendrik Post, University of Karlsruhe, Germany, post@ira.uka.de

c Date : 7th of April 2008

c Subtask: Decryption with 128 bit keys and block size, 2 rounds, arbitrary text and key

c Original output of CBMC:

c size of program expression: 16863 assignments

c Generated 10192 claims, 408 remaining

#####

# 3 #

#####

c Benchmark for SATRace 2008

c Bounded Software Model Checking for C

c CBMC[3] (Version 2.8.) is used to prove that two AES implementations (Reference

c implementation[1] and Mike Scotts[2] C implementation) are equivalent.

c [1] Written by Paulo Barreto and Vincent Rijmen, K.U.Leuven
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c [2] Written by Mike Scott, mike@compapp.dcu.ie

c [3] http://www.cprover.org/cbmc/

c Author : Hendrik Post, University of Karlsruhe, Germany, post@ira.uka.de

c Date : 7th of April 2008

c Subtask: Encryption with 128 bit keys and block size, 2 rounds, arbitrary text and key

c Original output of CBMC:

c size of program expression: 16471 assignments

c Generated 112 claims, 16 remaining

#####

# 4 #

#####

c Benchmark for SATRace 2008

c Bounded Software Model Checking for C

c CBMC[3] (Version 2.8.) is used to prove that two AES implementations (Reference

c implementation[1] and Mike Scotts[2] C implementation) are equivalent.

c [1] Written by Paulo Barreto and Vincent Rijmen, K.U.Leuven

c [2] Written by Mike Scott, mike@compapp.dcu.ie

c [3] http://www.cprover.org/cbmc/

c Author : Hendrik Post, University of Karlsruhe, Germany, post@ira.uka.de

c Date : 7th of April 2008

c Subtask: Encryption with 128 bit keys and block size, 3 rounds, arbitrary text and key

c Original output of CBMC:

c size of program expression: 17365 assignments

c Generated 140 claims, 16 remaining

#####

# 5 #

#####

c Benchmark for SATRace 2008

c Bounded Software Model Checking for C

c CBMC[3] (Version 2.8.) is used to prove that two AES implementations (Reference

c implementation[1] and Mike Scotts[2] C implementation) are equivalent.

c [1] Written by Paulo Barreto and Vincent Rijmen, K.U.Leuven

c [2] Written by Mike Scott, mike@compapp.dcu.ie

c [3] http://www.cprover.org/cbmc/

c Author : Hendrik Post, University of Karlsruhe, Germany, post@ira.uka.de

c Date : 7th of April 2008

c Subtask: Decryption with 128 bit keys and block size,

c Both implementations are equivalent for all encryption loop-body executions,

c ,arbitrary text and key, arbitrary round number

c Original output of CBMC:

c size of program expression: 10502 assignments

c Generated 213 claims, 1 remaining

#####

# 6 #

#####

c Benchmark for SATRace 2008

c Bounded Software Model Checking for C
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c CBMC[3] (Version 2.8.) is used to find runtime errors in the Linux zfcp-Subsystem.

c However, the unwinding bound is not set high enough, hence the instance is SAT.

c [3] http://www.cprover.org/cbmc/

c Author : Hendrik Post, University of Karlsruhe, Germany, post@ira.uka.de

c Date : 7th of April 2008

c Original output of CBMC:

c size of program expression: 60896 assignments

c removed 51161 assignments

c Generated 53 claims, 52 remaining

94



sgen1: A generator of small, difficult satisfiability

benchmarks

Ivor Spence

March 2009

The release includes a proposed set of unsatisfiable benchmarks in the directory
unsat, and a proposed set of satisfiable benchmarks (together with corresponding
models) in the directory sat.

The benchmark generator is compiled using

gcc -o sgen1 sgen1.c -lm

and the arguments are

sgen1 sat|unsat -n num-of-variables -s random-seed [-m model]

Thus a typical unsatisfiable benchmark can be generated by

sgen1 -unsat -n 61 -s 100 >x.cnf

A satisfiable benchmark, with its model, can be generated by

sgen1 -sat -n 61 -s 100 -m y.model >y.cnf

The supplied script file makesgenbenchmarks.bash generates the proposed bench-
marks for submission.
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SatSgi - Satisfiable SAT instances generated from

Satisfiable Random Subgraph Isomorphism

Instances

Calin Anton, Lane Olson

antonc@macewan.ca

March 2009

Random SGI model -SRSGI

For integers n ≤ m , 0 ≤ q ≤
m(m−1)

2 , and integer percent 0 ≤ p ≤ 100, a satisfiable
random n, m, p, q consists of a graph H and a subgraph G. H is a G(n,m) random

graph of order m and size q. (q of the m(m−1)
2 possible edges are selected at random

without replacement.) G is obtained by the following two steps:

1. select at random an order n induced subgraph G’ of H;

2. randomly remove floor((p/100)*(number of edges of G’)) distinct edges of G’.

Therefore G is a subgraph of H, and the subgraph isomorphism problem: ”Is G a
subgraph of H” is satisfiable. The subgraph isomorphism problem is then encoded
to SAT using the direct encoding.

Preliminary experiments indicate that the hardest instances are generated for:

m q n p

20 152 18 5

21 168 19 10

22 173 20 20

23 189 21 25

24 193 22 30

26 243 24 30

28 302 26 25

Complete solvers find the instances with p = 0 difficult for m− 4 ≤ n ≤ m− 2 and

0.7m(m−1)
2 ≤ q ≤ 0.8m(m−1)

2 .
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SCIP – Solving Constraint Integer Programs

Timo Berthold1 ⋆, Stefan Heinz1 ⋆, Marc E. Pfetsch2, and Michael Winkler1

1 Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
{berthold,heinz,michael.winkler}@zib.de

2 Technische Universität Braunschweig, Institut für Mathematische Optimierung,
Pockelsstraße 14, 38106 Braunschweig, Germany

m.pfetsch@tu-bs.de

Abstract. This paper gives a brief description of the main components
and techniques used in the pseudo-Boolean and constraint integer pro-
gramming solver SCIP, which has been submitted for the pseudo-Boolean
evaluation 2009 in two versions; the versions differ only in the solver
interfaced to solve linear programming relaxations. The main compo-
nents used within SCIP are constraint handlers, domain propagation, con-
flict analysis, cutting planes, primal heuristics, node selection, branching
rules, and presolving.

1 Introduction

SCIP (Solving Constraint Integer Programs) is a framework for constraint integer
programming, a problem class described in more detail in Section 2. A subclass
of constraint integer programs are pseudo-Boolean problems and parts of SCIP

provide a pseudo-Boolean solver.
In this paper we briefly describe the main components and techniques of

the solver SCIP which are used to solve pseudo-Boolean optimization problems.
Furthermore, we give for each component references to more detailed papers.

One main technique used in SCIP is a branch-and-bound procedure, which is
a very general and widely used method to solve discrete optimization problems.
The idea of branching is to successively subdivide the given problem instance
into smaller subproblems until the individual subproblems are easy to solve. The
best of all solutions found in the subproblems yields the global optimum. During
the course of the algorithm, a branching tree is generated in which each node
represents one of the subproblems.

The intention of bounding is to avoid a complete enumeration of all poten-
tial solutions of the initial problem, which usually are exponentially many. For
a minimization problem, the main observation is that if a subproblem’s lower
(dual) bound is greater than the global upper (primal) bound, the subproblem

Parts of this paper are a short version of [3].
⋆ Supported by the DFG Research Center Matheon Mathematics for key

technologies in Berlin.
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can be pruned. Lower bounds are calculated with the help of a relaxation which
should be easy to solve; typically such bounds are obtained with the help of a
linear programming relaxation. Upper bounds are obtained by feasible solutions,
found, e.g., if the solution of the relaxation is also feasible for the corresponding
subproblem.

Good lower and upper bounds must be available for the bounding to be
effective. In order to improve a subproblem’s lower bound, one can tighten its
(linear) relaxation, e.g., via domain propagation or by adding cutting planes
(see Sections 4 and 6, respectively). Primal heuristics, which are described in
Section 7, help to improve the upper bound.

The selection of the next subproblem in the search tree and the branching
decision have a major impact on how early good primal solutions can be found
and how fast the lower bounds of the subproblems increase. More details on
branching and node selection are given in Section 8.

SCIP provides all necessary infrastructure to implement branch-and-bound
based algorithms for solving constraint integer programs. It manages the branch-
ing tree along with all subproblem data, automatically updates the linear pro-
gramming (LP) relaxation, and handles all necessary transformations due to
presolving problem modifications, see Section 9. Additionally, a cut pool, cut
filtering, and a SAT-like conflict analysis mechanism, see Section 5, are avail-
able. Furthermore, SCIP provides its own memory management and plenty of
statistical output.

Besides the infrastructure, all main algorithms are implemented as external
plugins. In the remainder of this paper, we will describe the key ingredients of
SCIP. First, however, we define the class of problems which are solvable with
this framework.

2 Constraint Integer Programming

Mixed integer programming (MIP) and the solution of Boolean satisfiability prob-
lems (SAT) are special cases of the general idea of constraint programming (CP).
The power of CP arises from the possibility to model a given problem directly
with a huge variety of different, expressive constraints. In contrast, SAT and
MIP only allow for very specific constraints: Boolean clauses for SAT and linear
and integrality constraints for MIP. Their advantage, however, lies in the sophis-
ticated techniques available to exploit the structure provided by these constraint
types.

An important point for the efficiency of solving algorithms is the interaction
between constraints. For instance, in SAT-solving, this takes place via propa-
gation of the variables’ domains. In MIP solving there exists a second, more
complex but very powerful communication interface: the LP-relaxation.

The goal of constraint integer programming is to combine the advantages
and compensate the weaknesses of CP, MIP, and SAT. To support this aim,
we slightly restrict the notion of a CP, in order to be able to apply MIP and
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SAT-solving techniques, and especially provide an LP-relaxation without losing
(too much of) the high degree of freedom in modeling.

Definition (constraint integer program). A constraint integer program
CIP = (C, I, c) consists of solving

(CIP) c⋆ = min{cT x | C(x), x ∈ Rn, xj ∈ Z for all j ∈ I}

with a finite set C = {C1, . . . , Cm} of constraints Ci : Rn → {0, 1}, i = 1, . . . ,m,
a subset I ⊆ N = {1, . . . , n} of the variable index set, and an objective function
vector c ∈ Rn. A CIP has to fulfill the following additional condition:

∀x̂I ∈ ZI ∃(A′, b′) : {xC ∈ RC | C(x̂I , xC)} = {xC ∈ RC | A′xC ≤ b′} (1)

with C := N \ I, A′ ∈ Rk×C , and b′ ∈ Rk for some k ∈ Z≥0.

Restriction (1) ensures that the subproblem remaining after fixing all integer
variables always is a linear program. Note that this does not forbid quadratic or
more involved expressions – as long as the nonlinearity only refers to the integer
variables.

MIPs are special cases of CIPs in which all constraints are linear, i.e., C(x) =
{x ∈ R

n | Ax ≤ b} for some A ∈ R
m×n, b ∈ R

m. One can also show that
every CP with finite domains for all variables can be modeled as a CIP. The
variables of Pseudo-Boolean optimization problems (PB) take 0/1 (false/true)
values. Therefore, each PB is a CP with finite domains. In [14] is shown how to
transform a PB into a CIP.

The main goal when applying CIP to PB problems is to use the MIP-
machinery with LP-relaxations, cutting planes, elaborated branching rules, etc.,
and directly propagating the (nonlinear) multiplications of nonlinear PB prob-
lems. The hope is that on the one hand the fixings derived by domain propagation
reduce the size of the LP and therefore potentially the computational overhead.
On the other hand, these fixings may even yield a stronger LP-bound which vice
versa can lead to further variable fixings which can be propagated and so forth.

For more details on the idea of constraint integer programming, see [2]. For
an introduction to the integration of pseudo-Boolean optimization into SCIP,
see [13]. For a discussion of how to handle nonlinear PB optimization, we refer
to [14].

3 Constraint Handlers

Since a CIP consists of constraints, the central objects of SCIP are the constraint
handlers. Each constraint handler represents the semantic of a single class of
constraints and provides algorithms to handle constraints of the corresponding
type. The primary task of a constraint handler is to check a given solution for
feasibility with respect to all constraints of its type existing in the problem
instance. This feasibility test suffices to provide an algorithm which correctly
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solves CIPs with constraints of the supported types. To improve the performance
of the solving process, constraint handlers may provide additional algorithms and
information about their constraints to the framework, besides others

– presolving methods to simplify the problem’s representation,
– propagation methods to tighten the variables’ domains,
– a linear relaxation, which can be generated in advance or on the fly, that

strengthens the LP relaxation of the problem, and
– branching decisions to split the problem into smaller subproblems, using

structural knowledge of the constraints in order to generate a well-balanced
branching tree.

The standard distribution of SCIP already includes a constraint handler for linear
constraints that is needed to solve MIPs. Additionally, some specializations of
linear constraints like knapsack, set partitioning, or variable bound constraints
are supported by constraint handlers, which can exploit the special structure of
these constraints in order to obtain more efficient data structures and algorithms.
Furthermore, SCIP provides constraint handlers for logical constraints, such as
and, or, and xor constraints and for nonlinear constraints, like SOS1, SOS2,
and indicator constraints.

4 Domain Propagation

Constraint propagation is an essential part of every CP solver [7]. The task
is to analyze the set of constraints of the current subproblem and the current
domains of the variables in order to infer additional valid constraints and domain
reductions, thereby restricting the search space. The special case in which only
the domains of the variables are affected by the propagation process is called
domain propagation. If the propagation only tightens the lower and upper bounds
of the domains without introducing holes it is called bound propagation.

In mixed integer programming, the concept of bound propagation is well-
known under the term node preprocessing. Usually, MIP solvers apply restricted
versions of the preprocessing algorithms, that are used before starting the branch-
and-bound process, to simplify the subproblems [16, 26].

Besides the integrality restrictions, there are only linear constraints in a MIP.
In contrast, CP models can include a large variety of constraint classes with
different semantics and structures. Thus, a CP solver usually provides specialized
constraint propagation algorithms for every single constraint class.

Constraint based (primal) domain propagation is supported by the constraint
handler concept of SCIP. In addition, it features two dual domain reduction
methods that are driven by the objective function, namely the objective propa-
gation and the root reduced cost strengthening [24].

5 Conflict Analysis

Most MIP solvers discard infeasible and bound-exceeding subproblems with-
out paying further attention to them. Modern SAT solvers, in contrast, try to
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learn from infeasible subproblems, which is an idea due to Marques-Silva and
Sakallah [23]. The infeasibilities are analyzed in order to generate so-called con-
flict clauses. These are implied clauses that help to prune the search tree. They
also enable the solver to apply so-called nonchronological backtracking. A similar
idea in CP are no-goods, see [27].

Conflict analysis can be generalized to CIP and, as a special case, to MIP
and PB. There are two main differences of CIP and SAT solving in the context
of conflict analysis. First, the variables of a CIP do not need to be of binary
type. Therefore, we have to extend the concept of the conflict graph: it has to
represent bound changes instead of variable fixings, see [1] for details.

Furthermore, the infeasibility of a subproblem in the CIP search tree usually
has its reason in the LP relaxation of the subproblem. In this case, there is no
single conflict-detecting constraint as in SAT or CP solving. To cope with this
situation, we have to analyze the LP in order to identify a subset of all bound
changes that suffices to render the LP infeasible or bound-exceeding. Note that
it is an NP-hard problem to identify a subset of the local bounds of minimal
cardinality such that the LP stays infeasible if all other local bounds are removed.
Therefore, we use a greedy heuristic approach based on an unbounded ray of the
dual LP, see [1].

After having analyzed the LP, the algorithm works in the same fashion as
conflict analysis for SAT instances: it constructs a conflict graph, chooses a cut
in this graph, and produces a conflict constraint which consists of the bound
changes along the frontier of this cut.

6 Cutting Plane Separators

Besides splitting the current subproblem into two or more easier subproblems
by branching, one can also try to tighten the subproblem’s relaxation in order
to rule out the current LP solution x̌ and to obtain a different one. The LP
relaxation can be tightened by introducing additional linear constraints aT x ≤ b
that are violated by x̌ but do not cut off feasible solutions of the subproblem.
Thus, the current solution x̌ is separated from the convex hull of the feasible
solutions of the subproblem by the cutting plane aT x ≤ b.

The theory of cutting planes is very well covered in the literature. For an
overview of computationally useful cutting plane techniques, see [16, 22]. A recent
survey of cutting plane literature can be found in [19].

SCIP features separators for knapsack cover cuts [8], complemented mixed
integer rounding cuts [21], Gomory mixed integer cuts [17], strong Chvátal-
Gomory cuts [20], flow cover cuts [25], implied bound cuts [26], and clique
cuts [18, 26]. Detailed descriptions of these cutting plane algorithms and an ex-
tensive analysis of their computational impact can be found in [28].

Almost as important as finding cutting planes is the selection of the cuts
that actually enter the LP relaxation. Balas, Ceria, and Cornuéjols [9] and An-
dreello, Caprara, and Fischetti [5] proposed to base the cut selection on efficacy
and orthogonality. The efficacy is the Euclidean distance of the corresponding
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hyperplane to the current LP solution. An orthogonality bound ensures that the
cuts added to the LP form an almost pairwise orthogonal set of hyperplanes.
SCIP follows these suggestions. Furthermore, it considers the parallelism w.r.t.
the objective function.

7 Primal Heuristics

Primal heuristics have a significant relevance as supplementary procedures inside
a MIP and PB solver: they aim at finding good feasible solutions early in the
search process, which helps to prune the search tree by bounding and allows
to apply more reduced cost fixing and other dual reductions that tighten the
problem formulation.

Overall, there are 24 heuristics integrated into SCIP. They can be roughly
subclassified into four categories:

– Rounding heuristics try to iteratively round the fractional values of an LP
solution in such a way that the feasibility of the constraints is maintained
or recovered by further roundings.

– Diving heuristics iteratively round a variable with fractional LP value and
resolve the LP, thereby simulating a depth first search (see Section 8) in the
branch-and-bound tree.

– Objective diving heuristics are similar to diving heuristics, but instead of
fixing the variables by changing their bounds, they perform “soft fixings” by
modifying their objective coefficients.

– Improvement heuristics consider one or more primal feasible solutions that
have been previously found and try to construct an improved solution with
better objective value.

Detailed descriptions of primal heuristics for mixed integer programs and an in-
depth analysis of their computational impact can be found in [10], an overview
is given in [11].

8 Node Selection and Branching Rules

Two of the most important decisions in a branch-and-bound algorithm are the
selection of the next subproblem to process (node selection) and how to split the
current problem Q into smaller subproblems (branching rule).

The most popular branching strategy in MIP solving is to split the domain
of an integer variable xj , j ∈ I, with fractional LP value x̌j /∈ Z into two parts,
thus creating two subproblems Q1 = Q∩{xj ≤ ⌊x̌j⌋} and Q2 = Q∩{xj ≥ ⌈x̌j⌉}.
In case of a binary variable this boils down to Q1 = Q ∩ {xj = 0} and Q2 =
Q∩ {xj = 1}. Several methods to select such a fractional variable for branching
are discussed in [2, 4]. SCIP implements most of the discussed branching rules,
especially reliability branching which is a very effective general branching rule
for MIPs.
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Besides a good branching strategy, the selection of the next subproblem to
be processed is an important step of every branch-and-bound based search algo-
rithm. There are essentially three methods: depth first search, best bound search,
and best estimate search.

The default node selection strategy of SCIP is a combination of these three,
which is also referred to as interleaved best bound/best estimate search with plung-
ing.

9 Presolving

Presolving transforms the given problem instance into an equivalent instance
that is (hopefully) easier to solve. The most fundamental presolving concepts
for MIP are described in [26]. For additional information, see [16].

The task of presolving is threefold: first, it reduces the size of the model by
removing irrelevant information such as redundant constraints or fixed variables.
Second, it strengthens the LP relaxation of the model by exploiting integrality
information, e.g., to tighten the bounds of the variables or to improve coeffi-
cients in the constraints. Third, it extracts information from the model such as
implications or cliques which can be used later for branching and cutting plane
separation. SCIP implements a full set of primal and dual presolving reductions
for MIP problems, see [2].

Restarts differ from the classical presolving methods in that they are not
applied before the branch-and-bound search commences, but abort a running
search process in order to reapply other presolving mechanisms and start the
search from scratch. They are a well-known ingredient of SAT solvers, but have
not been used so far for solving MIPs.

Cutting planes, primal heuristics, strong branching [6], and reduced cost
strengthening in the root node often identify fixings of variables that have not
been detected during presolving. These fixings can trigger additional presolving
reductions after a restart, thereby simplifying the problem instance and im-
proving its LP relaxation. The downside is that we have to solve the root LP
relaxation again, which can sometimes be very expensive.

Nevertheless, the above observation leads to the idea of applying a restart
directly after the root node processing if a certain fraction of the integer variables
has been fixed during the processing of the root node. In our implementation, a
restart is performed if at least 5% of the integer variables have been fixed.

10 Submission

We submitted two version of SCIP 1.1.0.7. They differ only in the solver applied
to the LP relaxations. Version SCIPspx uses SoPlex 1.4.1 as LP solver. The other
is equipped with the linear programming solver CLP 1.8.2 (SCIPclp). All these
solvers are available in source code and free for noncommercial use [12, 15].
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SAT4J at the SAT09 competitive events

Daniel Le Berre Anne Parrain

http://www.sat4j.org/

Overview of the SAT4J project

SAT4J is an open source library of SAT solvers writ-
ten in Java. The initial aim of the SAT4J project was
to allow Java programmers to access SAT technology
directly in Java. As a consequence, the SAT4J library
started in 2004 as an implementation in Java of the
Minisat specification [6] and has been developed us-
ing both Java and Open Source coding standards.
From a research point of view, SAT4J is the plat-
form we use to develop our ideas on pseudo boolean
solvers. As such, the SAT engine is generic and can
handle arbitrary constraints (currently clause, car-
dinality and pseudo boolean constraints) as in the
original Minisat. Such genericity has been designed
over the years, and is one of the reason why SAT4J
SAT engine is currently no longer competitive with
state-of-the-art SAT solvers. However, the library
has been adopted by various Java based software,
in the area of software engineering[1], but also in
bioinformatics[5, 9] or formal verification1 [10]. The
inclusion of SAT4J into the widely used Eclipse open
platform[8] make it one of the most widely used SAT
solver around the world (more than 13 Million down-
loads of Eclipse 3.4 in one year2).

SAT’09 competition

The SAT solver is based on the original Minisat im-
plementation: the generic CDCL engine and the vari-
able activity scheme has not changed. Most of the
key component of the solvers have been made con-

1See Alloy4 (http://alloy4.mit.edu and Forge http://

sdg.csail.mit.edu/forge/
2http://www.eclipse.org/downloads/

figurable. Here are the settings used for the SAT 09
competition, in SAT4J 2.1 RC1:

restarts The solver is using the rapid restart in/out
strategy proposed by Armin Biere in Picosat[2].

clause minimization The conflict clause mini-
mization of Minisat 1.14 (so called Expensive
Simplification)[12] is used at the end of conflict
analysis. Such minimization procedure has been
made generic to be used with any kind of con-
straints (e.g. cardinality or pseudo boolean con-
straints).

phase selection The phase selection strategy is the
lightweight caching scheme of RSAT[11].

learning strategy The solver learns only clauses
whose size no longer than 10% of the number
of variables. In practice, it does not change a lot
the behavior of the solver on application bench-
marks because the number of variables is large.
On random or crafted categories, it might end
up preventing the solver to learn any clause.

clause deletion strategy The solver monitors the
available memory and removes half of the
learned clauses (ordered by decreasing activity,
as in the original minisat) when it drops below
10% of the total amount of memory.

PB’09 evaluation

Two different solvers have been submitted to the PB
evaluation:
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SAT4J Pseudo Resolution The solver is exactly
the core SAT engine with the ability to pro-
cess cardinality constraints and pseudo boolean
constraints. Such constraints are considered as
simple clauses during conflict analysis. As such,
features such as conflict clause minimization are
available in such solver. The proof system of
the solver is still resolution so such solver can-
not solve efficiently benchmarks such as pigeon
holes for instance. The Pseudo Boolean solver
PBClasp is using roughly the same approach in
the PB’09 evaluation.

SAT4J Pseudo CutingPlanes That solver uses
exactly the same settings as SATJ Pseudo Res-
olution but uses cutting planes instead of res-
olution during conflict analysis as described in
[3, 7]. The proof system of the solver is thus
more powerful than resolution and it allows to
solve crafted benchmarks such as pigeon hole.
However, the conflict analysis procedure is much
more complex to implement than plain resolu-
tion and uses arbitrary precision arithmetic to
avoid overflow. Furthermore, the solver gets
slower when it learns new pseudo boolean con-
straints as it used to be the case in the 90’s
with SAT solvers because we haven’t found yet
a lazy data structure similar to the Head-Tails
or watched literals for PB constraints to prevent
it.

There are a few differences in the settings of the SAT
engine when dealing with pseudo boolean constraints:

heuristics it takes into account the objective func-
tion is any to set first to false the literals that
appear in the objective function to minimize.

restart strategy it uses the classical one found in
Minisat.

learning strategy it learns all constraints.

other the formula cannot be simplified when literals
at learned at decision level 0 (it is the case for
pure SAT).

The optimization part is solved by strengthening:
once a solution M is found, the value of the objective

function for such solution is computed (y = f(M)).
We add a new constraint in the solver to prevent solu-
tions with value equal or greater than y to be found:
f < y. Since all the added constraints are of the form
f < y′ with y′ < y, we simply keep one strengthening
constraint per problem by replacing f < y by f < y′

while keeping all learned constraints. Once the solver
cannot find a new solution, the latest one is proved
optimal.

MAXSAT’09 evaluation

The solver submitted to the MAXSAT09 evaluation
basically translates the Partial Weighted Max SAT
(PWMS) problems into Pseudo Boolean Optimiza-
tion ones. Since all the other variants (MAXSAT,
Partial MAXSAT and Weighted MAXSAT) can be
considered as specific cases of PWMS, such approach
can be used for all categories of the MAXSAT evalu-
ation.

The idea is to add a new variable per weighted soft
clause that represents that such clause has been vi-
olated, and to translate the maximization problem
on those weighted soft clauses into a minimization
problem on a linear function over those variables.
Formally, suppose T = {Cw1

1
, Cw2

2
, . . . , Cwn

n
} is the

original set of weighted clauses of the weighted par-
tial max sat problem. We translate that problem into
T ′ = {s1∨C1, s2∨C2, . . . , sn∨Cn} plus the objective
function min : Σn

i=1
wi × si.

That approach may look unapplicable in practice
because on need to add as many new selector vari-
ables as clauses in the original problem. However,
we have several cases for which no new variable is
necessary:

hard clauses (wi = ∞) there is no need for new
variables for hard clauses since they must be sat-
isfied. They can be treated “as is” by the SAT
solver.

unit soft clauses those constraints are violated
when its literal is falsified. Has such, it is suf-
ficient to consider that literal only in the opti-
mization function, so no new selector variable is
needed. In that case, the optimization function
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is min : Σn

i=1
wi × ¬li where li is the literal in

the unit clause Ci.

The second optimization was introduced in SAT4J
MAXSAT for the MAXSAT08 evaluation. As a con-
sequence, our approach is expected to perform badly
on pure MAXSAT or Weighted MAXSAT problems
because we need to add as many new variables as
clauses in the original problem. However, on Partial
[Weighted] MAXSAT, depending on the proportion
of soft clauses compared to the hard clauses, the num-
ber of additional variables can be negligible compared
to the original number of variables. This is especially
true for instances of binate covering problem [4], a
specific case of the partial weighted MAXSAT prob-
lem whose soft clauses are all unit, because we do not
need to add any new selector variable in that case.

The pseudo boolean solver used in SAT4J
MAXSAT is SAT4J Pseudo Resolution since
MAXSAT08 (in the two previous editions, it was
SAT4J Pseudo Cutting Planes). Since those engines
are tailored to solve application benchmarks, not ran-
domly generated benchmarks, our approach is also
expected to perform poorly on randomly generated
PWMS problems.
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Abstract. Call control features (e.g., call-divert, voice-mail) are primitive op-

tions to which users can subscribe off-line to personalise their service. The con-

figuration of a feature subscription involves choosing and sequencing features

from a catalogue and is subject to constraints that prevent undesirable feature in-

teractions at run-time. When the subscription requested by a user is inconsistent,

one problem is to find an optimal relaxation. In this paper, we show that this prob-

lem is NP-hard and we present a constraint programming formulation using the

variable weighted constraint satisfaction problem framework. We also present

simple formulations using partial weighted maximum satisfiability and integer

linear programming. We experimentally compare our formulations of the differ-

ent approaches; the results suggest that our constraint programming approach is

the best of the three overall.

1 Introduction

Information and communication services, from news feeds to internet telephony, are

playing an increasing, and potentially disruptive, role in our daily lives. As a result,

providers seek to develop personalisation solutions allowing customers to control and

enrich their service. In telephony, for instance, personalisation relies on the provisioning

of call control features. A feature is an increment of functionality which, if activated,

modifies the basic service behaviour in systematic or non-systematic ways, e.g., do-not-

disturb, multi-media ring-back tones, call-divert-on-busy, credit-card-calling, find-me.

Modern service delivery platforms provide the ability to implement features as mod-

ular applications and compose them on demand when setting up live sessions, that is,

consistently with the feature subscriptions preconfigured by participants. In this con-

text, a personalisation approach consists of exposing feature catalogues to subscribers

and letting them select and sequence the features of their choice.

Not all sequences of features are acceptable though due to the possible occurrence

of feature interactions. A feature interaction is “some way in which a feature modifies

or influences the behaviour of another feature in generating the system’s overall be-

haviour” [1]. For instance, a do-not-disturb feature will block any incoming call and

cancel the effect of any subsequent feature subscribed by the callee. This is an unde-

sirable interaction: as shown in Figure 1, the call originating from X will never reach
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Fig. 1. An example of an undesirable feature interaction

call-logging. However, if call-logging is placed before do-not-disturb then both features

will play their role.

Distributed Feature Composition (DFC) provides a method and a formal architec-

ture model to address feature interactions [1–3]. The method consists of constraining

the selection and sequencing of features by prescribing constraints that prevent unde-

sirable interactions. These feature interaction resolution constraints are represented in

a feature catalogue as precedence or exclusion constraints. A precedence constraint,

fi ≺ fj , means that if the features fi and fj are part of the same sequence then fi

must precede fj in the sequence. An exclusion constraint between fi and fj means that

they cannot be together in any sequence. Undesirable interactions are then avoided by

rejecting any sequence that does not satisfy the catalogue constraints.

A feature subscription is defined by a set of features, a set of user specified prece-

dence constraints and a set of feature interaction constraints from the catalogue. The

main task is to find a sequence of features that is consistent with the constraints in the

catalogue. It may not always be possible to construct a sequence of features that consists

of all the user selected features and respect all user specified precedence constraints. In

such cases, the task is to find a relaxation of the feature subscription that is closest to

the initial requirements of the user.

In this paper, we shall show that checking the consistency of a feature subscription

is polynomial in time, but finding an optimal relaxation of a feature subscription, when

inconsistent, is NP-hard. We shall then present the formulation of finding an optimal re-

laxation using constraint programming. In particular, we shall use the variable weighted

constraint satisfaction problem framework. In this framework, a branch and bound al-

gorithm that maintains some level of consistency is usually used for finding an optimal

solution. We shall investigate the impact of maintaining three different levels of con-

sistency. The first one is Generalised Arc Consistency (GAC) [4], which is commonly

used. The others are mixed consistencies. Here, mixed consistency means maintaining

different levels of consistency on different sets of variables of a given problem. The first

(second) mixed consistency enforces (a restricted version of) singleton GAC on some

variables and GAC on the remaining variables of the problem.

We shall also consider partial weighted maximum satisfiability, an artificial intelli-

gence technique, and integer linear programming, an operations research approach. We

shall present the formulations using these approaches and shall discuss their differences

with respect to the constraint programming formulation.

We have conducted experiments to compare the different approaches. The experi-

ments are performed on a variety of random catalogues and random feature subscrip-

tions. We shall present empirical results that demonstrate the superiority of maintaining
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mixed consistency on the generalised arc consistency. For hard problems, we see a dif-

ference of up to three orders of magnitude in terms of search nodes and one order of

magnitude in terms of time. Our results suggest that, when singleton generalised arc

consistency is used, the constraint programming approach considerably outperforms

our integer linear programming and partial weighted maximum satisfiability formula-

tions. We highlight the factors that deteriorate the scalability of the latter approaches.

The rest of the paper is organised as follows. Section 2 provides an overview of the

DFC architecture, its composition style and subscription configuration method. Sec-

tion 3 presents the relevant definitions and theorems. Section 4 describes the constraint

programming formulation for finding an optimal relaxation and discusses branch and

bound algorithms that maintain different levels of consistency. The integer linear pro-

gramming and partial weighted maximum satisfiability formulations of the problem are

described in Section 5. The empirical evaluation of these approaches is shown in Sec-

tion 6. Finally our conclusions are presented in Section 7.

2 Configuring Feature Subscriptions in DFC

In DFC each feature is implemented by one or more modules called feature box types

(FBT) and each FBT has many run-time instances called feature boxes. We assume

in this paper that each feature is implemented by a single FBT and we associate fea-

tures with FBTs. As shown in Figure 2, a call session between two end-points is set up

by chaining feature boxes. The routing method decomposes the connection path into

a source and a target region and each region into zones. A source (target) zone is a

sequence of feature boxes that execute for the same source (target) address.

The first source zone is as-
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sociated with the source address

encapsulated in the initial setup

request, e.g., zone of X in Fig-

ure 2. A change of source ad-

dress in the source region, caused

for instance by an identifica-

tion feature, triggers the creation

of a new source zone [5]. If no

such change occurs in a source

zone and the zone cannot be

expanded further, routers switch

to the target region. Likewise,

a change of target address in

the target region, as performed

by Time-Dependent-Routing (TDR) in Figure 2, triggers the creation of a new target

zone. If no such change occurs in a target zone and the zone cannot be expanded further

(as for Z in Figure 2), the request is sent to the final box identified by the encapsulated

target address.

DFC routers are only concerned with locating feature boxes and assembling zones

into regions. They do not make decisions as to the type of feature boxes (the FBTs)
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appearing in zones or their ordering. They simply fetch this information from the fea-

ture subscriptions that are preconfigured for each address in each region based on the

catalogue published by the service provider.

A catalogue is a set of features subject to precedence and exclusion constraints.

Features fall into three classes: source, target and reversible, i.e., a subset of features

that are both source and target. Constraints are formulated by designers on pairs of

source features and pairs of target features to prevent undesirable feature interactions

in each zone [6]. Specifically, a precedence constraint imposes a routing order between

two features, as for the case of Terminating-Call-Screening (TCS) and Call-Logging

(CL) in Figure 2. An exclusion constraint makes two features mutually exclusive, as for

the case of CL and Call-Forwarding-Unconditional (CFU) in Figure 2.

A subscription is a subset of catalogue features and a set of user precedence con-

straints between features in each region. For instance, the subscription of Y in the target

region includes the user precedence TDR≺TCS. Configuring a subscription involves

selecting, parameterising and sequencing features in each region consistently with the

catalogue constraints and other integrity rules [3]. In particular, the source and target

regions of a subscription must include the same reversible features in inverse order, i.e.

source and target regions are not configured independently.

3 Formal Definitions

Let fi and fj be features, we write a precedence constraint of fi before fj as 〈fi, fj〉, or

as fi ≺ fj . An exclusion constraint between fi and fj expresses that these features can-

not appear together in a sequence of features. We encode this as the pair of precedence

constraints 〈fi, fj〉 and 〈fj , fi〉.

Definition 1 (Feature Catalogue). A catalogue is a tuple 〈F, P 〉, where F is a set of

features that are available to users and P is a set of precedence constraints on F .

The transpose of a catalogue 〈F, P 〉 is the catalogue 〈F, PT 〉 such that ∀〈fi, fj〉 ∈ F 2 :
〈fi, fj〉 ∈ P ⇔ 〈fj , fi〉 ∈ PT . In DFC the precedence constraints between the features

in the source (target) catalogue are specified with respect to the direction of the call. For

the purpose of configuration, we combine the source catalogue 〈Fs, Ps〉 and the target

catalogue 〈Ft, Pt〉 into a single catalogue 〈Fc, Pc〉 ≡ 〈Fs ∪ Ft, Ps ∪ Pt
T 〉.

Definition 2 (Feature Subscription). A feature subscription S of catalogue 〈Fc, Pc〉
is a tuple 〈F,C, U, WF , WU 〉, where F ⊆ Fc, C is the projection of Pc on F , i.e.,

Pc ↓F = {fi ≺ fj ∈ Pc : {fi, fj} ⊆ F}, U is a set of (user defined) precedence

constraints on F , WF : F → N is a function that assigns weights to features and

WU : U → N is a function that assigns weights to user precedence constraints. The

value of S is defined by Value(S) =
∑

f∈F WF (f) +
∑

p∈U WU (p).

Note that a weight associated with a feature signifies its importance for the user. These

weights could be elicited directly, or using data mining or analysis of user interactions.

Definition 3 (Consistency). A feature subscription 〈F,C, U, WF , WU 〉 of some cata-

logue is defined to be consistent if and only if the directed graph 〈F,C ∪ U〉 is acyclic.
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Due to the composition of the source and target catalogues into a single catalogue, a

feature subscription S is consistent if and only if both source and target regions are

consistent in the DFC sense.

Theorem 1 (Complexity of Consistency Checking). Determining whether a feature

subscription 〈F,C, U, WF , WU 〉 is consistent or not can be checked in O(|F | + |C| +
|U |).

Proof. We use Topological Sort [7]. In Topological Sort we are interested in ordering

the nodes of a directed graph such that if the edge 〈i, j〉 is in the set of edges of the

graph then node i is less than node j in the order. In order to use Topological Sort for

detecting whether a feature subscription is consistent, we associate nodes with features

and edges with precedence constraints. Then, the subscription is consistent iff for all

edges 〈i, j〉 in the graph associated with the subscription we have that i ≺ j in the order

computed by Topological Sort. As the complexity of Topological Sort is linear with

respect to the size of the graph, detecting whether a feature subscription is consistent is

O(|F | + |C| + |U |). ⊓⊔

If an input feature subscription is not consistent then the task is to relax the given

feature subscription by dropping one or more features or user precedence constraints to

generate a consistent feature subscription with maximum value.

Definition 4 (Relaxation). A relaxation of a feature subscription 〈F,C, U, WF , WU 〉
is a subscription 〈F ′, C ′, U ′, W ′

F , W ′
U 〉 such that F ′ ⊆ F , C ′ = Pc↓F ′ , U ′ ⊆ U↓F ′ ,

WF ′ is WF restricted to F ′, and WU ′ is WU restricted to U ′.

Definition 5 (Optimal Relaxation). Let RS be the set of all consistent relaxations of

a feature subscription S. We say that Si ∈ RS is an optimal relaxation of S if it has

maximum value among all relaxations, i.e., if and only if there does not exist Sj ∈ RS

such that Value(Sj) > Value(Si).

Theorem 2 (Complexity of Finding an Optimal Relaxation). Finding an optimal

relaxation of a feature subscription is NP-hard.

Proof. Given a directed graph 〈V,E〉, the Feedback Vertex Set Problem is to find a

smallest V ′ ⊆ V whose deletion makes the graph acyclic. This problem is known

to be NP-hard [8]. We prove that finding an optimal relaxation is NP-hard by reduc-

ing the feedback vertex set problem to the latter. Given a feature subscription S =
〈F,C, U, WF , WU 〉, the feedback vertex set problem can be reduced to our problem by

associating the nodes of the directed graph V with features F , the edges E with cata-

logue precedence constraints C, the empty set ∅ with U , and the constant function that

maps every element of its domain to 1 (λx.1) with both WF and WU . Notice that, as

U = ∅, the only way of finding an optimal relaxation of S is by removing a set of fea-

tures from F . Assuming that an optimal relaxation is S′ = 〈F ′, C ′, U ′, W ′
F , W ′

U 〉, the

set of features F −F ′ corresponds to the smallest set of nodes V ′ whose deletion makes

the directed graph acyclic. Thus, we can conclude that finding an optimal relaxation S′

is NP-hard. ⊓⊔
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4 A Constraint Programming Approach

Constraint programming has been successfully used in many applications such as plan-

ning, scheduling, resource allocation, routing, and bio-informatics [9]. Here problems

are primarily stated as a Constraint Satisfaction Problems (CSP), that is a finite set of

variables, together with a finite set of constraints. A solution to a CSP is an assignment

of a value to each variable such that all constraints are satisfied simultaneously. The

basic approach to solving a CSP instance is to use a backtracking search algorithm that

interleaves two processes: constraint propagation and labeling. Constraint propagation

helps in pruning values that do not lead to a solution of the problem. Labeling involves

assigning values to variables that may lead to a solution.

Various generalisations of the CSP have been developed to find a solution that is

optimal with respect to certain criteria such as costs, preferences or priorities. One of

the most significant is the Constraint Optimisation Problem (COP). Here the goal to

find an optimal solution that maximises (minimises) the objective function. The sim-

plest COP formulation retains the CSP limitation of allowing only hard Boolean-valued

constraints but adds an objective function over the variables.

4.1 Formulation

In this section we model the problem of finding an optimal relaxation of a feature sub-

scription 〈F,C, U, WF , WU 〉 as a COP .

Variables and Domains. We associate each feature fi ∈ F with two variables: a

Boolean variable bfi and an integer variable pfi. A Boolean variable bfi is instantiated

to 1 or 0 depending on whether fi is included in the subscription or not, respectively.

The domain of each integer variable pfi is {1, . . . , |F |}. Assuming that the computed

subscription is consistent, an integer variable pfi corresponds to the position of the

feature fi in a sequence. We associate each user precedence constraint pij ≡ (fi ≺
fj) ∈ U with a Boolean variable bpij . A Boolean variable bpij is instantiated to 1 or 0

depending on whether pij is respected in the computed subscription or not respectively.

Constraints. A catalogue precedence constraint pij ∈ C that feature fi should be

before feature fj can be expressed as follows:

bfi ∧ bfj ⇒ (pfi < pfj).

Note that the constraint is activated only if the selection variables bfi and bfj are instan-

tiated to 1. A user precedence constraint pij ∈ U that fi should be placed before fj in

their subscription can be expressed as follows:

bpij ⇒ (bfi ∧ bfj ∧ (pfi < pfj)).

Note that if a user precedence constraint holds then the features fi and fj are included

in the subscription and also the feature fi is placed before fj , that is, the selection

variables bfi and bfj are instantiated to 1 and pfi < pfj is true.
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Objective Function. The objective of finding an optimal relaxation of a feature sub-

scription can be expressed as follows:

Maximise
∑

fi∈F

bfi × WF (fi) +
∑

pij∈U

bpij × WU (pij).

4.2 Solution Technique

A depth-first branch and bound algorithm (BB) is generally used to find an optimal solu-

tion. In case of maximisation, BB keeps the current optimal value of the solution while

traversing the search tree. This value is a lower bound (lb) of the objective function. At

each node of the search tree BB computes an overestimation of the global value. This

value is an upper bound (ub) of the best solution that can be found as long as the current

search path is maintained. If ub ≤ lb, then a solution of a greater value than the current

optimal value cannot be found below the current node, so the current branch is pruned

and the algorithm backtracks.

Enforcing local consistency enables the computation of ub(i,a), which is a special-

isation of ub for a value a of an unassigned variable i. If ub(i,a) ≤ lb, then value a
can be removed because it will not be present in any solution better than the current

one. Removed values are restored when BB backtracks above the node where they were

eliminated. The quality of the upper bound can be improved by increasing the level

of local consistency that is maintained at each node of the search tree. The different

levels of local consistencies that we have considered are generalised Arc Consistency

(GAC) [4] and mixed consistency [10].

A problem is said to be generalised arc consistent if it has non-empty domains and

for any assignment of a variable each constraint in which that variable is involved can

be satisfied. A problem is said to be singleton generalised arc consistent [11] if it has

non-empty domains and for any assignment of a variable, the resulting subproblem can

be made GAC. Enforcing Singleton generalised Arc Consistency (SGAC) in a SAC-1

manner [12] works by having an outer loop consisting of variable-value pairs of the

form (x, a). For each a in the domain of x if there is a domain wipeout while enforcing

arc consistency then a is removed from the domain of x and arc consistency is enforced.

The main problem with SAC-1 is that deleting a single value triggers the outer loop

again. The Restricted SAC (RSAC) algorithm avoids this triggering by considering each

variable-value pair only once [13].

Mixed consistency means maintaining different levels of consistency on different

variables of a problem. In [14] it has been shown that maintaining mixed consistency, in

particular maintaining SAC on some variables and maintaining arc consistency on some

variables, can reduce the solution time for some CSPs. In this paper we shall study the

effect of maintaining different levels of consistency on different sets of variables within

a branch and bound search. We shall investigate the effect of Maintaining generalised

Singleton Arc Consistency (MGSAC) on the Boolean variables and Maintaining gener-

alised Arc Consistency (MGAC) on the remaining variables of the problem. We shall

also investigate the effect of Maintaining Restricted Singleton generalised Arc Consis-

tency (MRSGAC) on the Boolean variables and MGAC on the remaining variables. The

former shall be denoted by MSGACb and the latter by MRGSACb. Results presented in

119



Section 6 suggest that maintaining singleton generalised arc consistency on the Boolean

variables of the random instances of the feature subscription configuration problem re-

duces the search space and time of the branch and bound algorithm significantly.

5 Other Approaches

We present a partial weighted maximum Boolean satisfiability and an integer linear

programming formulation for finding an optimal relaxation of a feature subscription.

5.1 Partial Weighted Maximum Boolean Satisfiability

The Boolean Satisfiability Problem (SAT) is a decision problem whose instance is an

expression in propositional logic written using only ∧, ∨, ¬, variables and parenthe-

ses. The problem is to decide whether there is an assignment of true and false values

to the variables that will make the expression true. The expression is normally writ-

ten in conjunctive normal form. The Partial Weighted Maximum Boolean Satisfiability

Problem (PWMSAT) is an extension of SAT that includes the notions of hard and soft

clauses. Any solution should respect the hard clauses. Soft clauses are associated with

weights. The goal is to find an assignment that maximises the sum of the weights of the

satisfied clauses. The PWMSAT formulation of finding an optimal relaxation of a feature

subscription 〈F,C, U, WF , WU 〉 is outlined below.

Variables. Let PrecDom be the set of possible precedence constraints that can be de-

fined on F , i.e., {fi ≺ fj : {fi, fj} ⊆ F ∧ fi 6= fj}). For each feature fi ∈ F there

is a Boolean variable bfi, which is true or false depending on whether feature fi is in-

cluded or not in the computed subscription. For each precedence constraint pij there is

a Boolean variable bpij , which is true or false depending on whether the precedence

constraint fi ≺ fj holds or not in the computed subscription.

Clauses. In our model, clauses are represented with a tuple 〈w, c〉, where w is the

weight of clause and c is the clause itself. Note that the hard clauses are associated

with weight ⊤, which represents an infinite penalty for not satisfying the clause. Each

precedence constraint pij ∈ C must be satisfied if the features fi and fj are included in

the computed subscription. We model this by adding the following clause

〈⊤, (¬bfi ∨ ¬bfj ∨ bpij)〉.

The precedence relation should be transitive and asymmetric in order to ensure that

the subscription graph is acyclic. In order to ensure this, for every {pij , pjk} ⊆ PrecDom,

we add the following clause:

〈⊤, (¬bpij ∨ ¬bpjk ∨ bpik)〉. (1)

Note that Rule (1) need only be applied to 〈i, j, k〉 such that i 6= k because of Rule (2)

below. In our model, both bpij and bpji can be false. However, if one of them is true
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the other one is false. As this should be the case for any precedence relation, we add the

following clause for every pij ∈ PrecDom:

〈⊤, (¬bpij ∨ ¬bpji)〉. (2)

We make sure that each precedence constraint pij ∈ PrecDom is only satisfied when its

features are included by considering the following clauses:

〈⊤, (bfi ∨ ¬bpij)〉 〈⊤, (bfj ∨ ¬bpij)〉.

We need to penalise any solution that does not include a feature fi ∈ F or a user

precedence constraint pij ∈ U . This is done by adding the following clauses:

〈wfi, (bfi)〉 〈wpij , (bpij)〉,

where wfi = WF (fi) and wpij = WU (〈fi, fj〉). The cost of violating these clauses is

the weight of the feature fi and the weight of the precedence constraint pij respectively.

The number of Boolean variables in the PWMSAT model (approximately |F |2) is

greater than the number of Boolean variables in the CP model (|F | + |U |). These extra

variables are used by Rule (1) and (2) to avoid cycles in the final subscription graph. We

remark that the subscription contains a cycle if and only if the transitive closure of C∪U
contains a cycle. Therefore, it is sufficient to associate Boolean variables only with the

precedence constraints in the transitive closure of C ∪U . Reducing these variables will

also reduce the transitive clauses, especially when the input subscription graph is not

dense. Otherwise, Rule (1) will generate |F |×(|F |−1)×(|F |−2) transitivity clauses.

For example, for the subscription 〈F,C, U, WF , WU 〉 with F = {f1, f2, f3, f4, f5, f6},

C = {p12, p21, p34, p43, p56, p65}, and U = ∅, Rule (1) will generate 120 transitive

clauses. Since any relaxation of the given subscription respecting the clauses generated

by Rule (2) is acyclic, the 120 transitive clauses are useless. Thus, if PrecDom is instead

set to be the transitive closure of C ∪ U , then Rule (1) would not generate any clause

for the mentioned example. Another way to reduce the number of transitive clauses is

by not considering the ones where {pji, pkj , pik} ∩ C 6= ∅, especially when the input

subscription graph is not sparse. The reason is that these transitive clauses are always

entailed due to the enforcement of the catalogue precedence constraints.

Note that the two techniques described before for reducing the number of transitive

clauses complement each other. This reduction in the number of clauses might have an

impact on the runtime of the PWMSAT approach, since less memory might be needed.

Even though it is sufficient to associate a Boolean variable with each precedence con-

straint in the transitive closure of C∪U , it is still greater than |F |+ |U |. Another way of

reducing the number of variables is to associate a feature with a finite domain variable

representing its position (as done in the CP model), log-encode the finite domain vari-

ables, and express the precedence constraints using a lexicographical comparator [15].

This approach indeed uses fewer variables than the implemented approach since only

|F | × log |F | variables are needed for encoding the position variables. However, it is

not so straightforward to automatically translate the resulting Boolean formula into its

corresponding conjunctive normal form.

121



5.2 Integer Linear Programming

In Linear Programming the goal is to optimise an objective function subject to linear

equality and inequality constraints. When all the variables are forced to be integer-

valued, the problem is an Integer Linear Programming (ILP) problem. The standard

way of expressing these problems is by presenting the function to be optimised, the

linear constraints to be respected and the domain of the variables involved. Both the CP

and the PWMSAT formulations for finding an optimal relaxation of a feature subscription

〈F,C, U, WF , WU 〉 can be modeled in ILP. The translation of the PWMSAT formulation

into ILP formulation is straightforward. For this particular model, we observed that

CPLEX was not able to solve even simple problems within a time limit of 4 hours. Due

to the lack of space we shall describe neither the formulation nor its corresponding

results. The ILP formulation that is equivalent to the CP formulation is outlined below.

Variables. For each fi ∈ F , we use a binary variable bfi and an integer variable pfi. A

binary variable bfi is equal to 1 or 0 depending on whether feature fi is included or not.

An integer variable pfi is the position of feature fi in the final subscription. For each

user precedence constraint pij ∈ U , we use a binary variable bpij . It is instantiated to 1

or 0 depending on whether the precedence constraint fi ≺ fj holds or not.

Linear Inequalities. If the features fi and fj are included in the computed subscription

and if pij ∈ C then the position of feature fi must be less than the position of feature fj .

To this effect, we need to translate the underlying implication (bfi ∧ bfj ⇒ (pfi < pfj))
into the following linear inequality:

pfi − pfj + n ∗ bfi + n ∗ bfj ≤ 2n − 1 . (3)

Here, n is a constant that is used to refer to the number of features |F | selected by the

user. When both bfi and bfj are 1, Inequality (3) will force (pfi < pfj). Note that this is

not required for any user precedence constraint pij ∈ U , since it can be violated.

A user precedence pij ∈ U is equivalent to the implication bpij ⇒ pfi < pfj ∧bfi∧
bfj , which in turn is equivalent to the conjunction of the three implications (bpij ⇒
(pfi < pfj)), (bpij ⇒ bfi) and (bpij ⇒ bfj). These implications can be translated into

the following inequalities:

pfi − pfj + n ∗ bpij ≤ n − 1 (4)

bpij − bfi ≤ 0 (5)

bpij − bfj ≤ 0 . (6)

Inequality (4) means that bpij = 1 forces pfi < pfj to be true. Also, if bpij = 1 then

both bfi and bfj are equal to 1 from Inequalities (5) and (6) respectively.

Objective Function. The objective is to find an optimal relaxation of a feature sub-

scription configuration problem 〈F,C, U, WF , WU 〉 that maximises the sum of the weights

of the features and the user precedence constraints that are selected:

Maximise
∑

fi∈F

wfi bfi +
∑

pij∈U

wpij bpij .
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6 Experimental Results

In this section, we shall describe the empirical evaluation of finding an optimal relax-

ation of randomly generated feature subscriptions using constraint programming, partial

weighted maximum Boolean satisfiability and integer linear programming.

6.1 Problem Generation and Solvers

We generated and experimented with a variety of random catalogues and many classes

of random feature subscriptions. All the random selections below are performed with

uniform distributions. A random catalogue is defined by a tuple 〈fc, Bc, Tc〉. Here, fc

is the number of features, Bc is the number of binary constraints and Tc ⊆ {<, >,<>}
is a set of types of constraints. Note that fi <> fj means that in any given subscription

both fi and fj cannot exist together. A random catalogue is generated by selecting

Bc pairs of features randomly from fc(fc − 1)/2 pairs of features. Each selected pair

of features is then associated with a type of constraint that is selected randomly from

Tc. A random feature subscription is defined by a tuple 〈fu, pu, w〉. Here, fu is the

number of features that are selected randomly from fc features, pu is the number of

user precedence constraints between the pairs of features that are selected randomly

from fu(fu − 1)/2 pairs of features, and w is an integer greater than 0. Each feature

and each user precedence constraint is associated with an integer weight that is selected

randomly between 1 and w inclusive.

We generated catalogues of the following forms: 〈50, 250, {<, >}〉, 〈50, 500, {<, >
, <>}〉 and 〈50, 750, {<, >}〉. For each random catalogue, we generated classes of fea-

ture subscriptions of the following forms: 〈10, 5, 4〉, 〈15, 20, 4〉, 〈20, 10, 4〉, 〈25, 40, 4〉,
〈30, 20, 4〉, 〈35, 35, 4〉, 〈40, 40, 4〉, 〈45, 90, 4〉 and 〈50, 5, 4〉. Note that 〈50, 250, {<, >
}〉 is the default catalogue by and the value of w is 4 by default, unless stated otherwise.

For the catalogue 〈50, 250, {<, >}〉 we also generated 〈5, 0, 1〉, 〈10, 0, 1〉, . . . , 〈50, 0, 1〉
and 〈5, 5, 1〉, 〈10, 10, 1〉, . . . , 〈50, 50, 1〉 classes of random feature subscriptions. For

each class 10 instances were generated and their mean results are reported in this paper.

The CP model was implemented and solved using CHOCO [16], a Java library for

constraint programming systems. The PWMSAT model of the problem was implemented

and solved using SAT4J [17], an efficient library of SAT solvers in Java. The ILP model of

the problem was solved using ILOG CPLEX [18]. All the experiments were performed

on a PC Pentium 4 (CPU 1.8 GHz and 768MB of RAM) processor. The performances

of all the approaches are measured in terms of search nodes (#nodes) and runtime in

milliseconds (time). We used the time limit of 4 hours to cut the search.

6.2 Maintaining Different Levels of Consistency in CP

For the CP model, we first investigated the effect of Maintaining generalised Arc Con-

sistency (MGAC) during branch and bound search. We then studied the effect of main-

taining different levels of consistency on different sets of variables within a problem. In

particular we investigated, (1) maintaining generalised singleton arc consistency on the

Boolean variables and MGAC on the remaining variables, and (2) maintaining restricted
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singleton generalised arc consistency on the Boolean variables and MGAC on the re-

maining variables; the former is denoted by MSGACb and the latter by MRSGACb. The

results are presented in Table 1 for these three branch and bound search algorithms.

Table 1 clearly shows that main- MGAC MRSGACb MSGACb

〈f, p〉 time #nodes time #nodes time #nodes

〈10, 5〉 17 21 23 16 26 16

〈15, 20〉 92 726 34 41 42 41

〈20, 10〉 203 1,694 39 47 50 46

〈25, 40〉 14,985 88,407 595 187 678 169

〈30, 20〉 6,073 29,211 653 184 768 161

〈35, 35〉 124,220 481,364 7,431 1,279 8,379 1,093

〈40, 40〉 1,644,624 5,311,838 67,798 9,838 76,667 8,475

Table 1. Average results of MGAC, MRSGACb and MSGACb.

taining (R)SGAC on the Boolean vari-

ables and GAC on the integer variables

dominates maintaining GAC on all the

variables. To the best of our knowl-

edge this is the first time that such a

significant improvement has been ob-

served by maintaining a partial form

of singleton arc consistency. We also

see that there is no difference in the number of nodes visited by MRSGACb and MSGACb

for the first two classes of feature subscriptions. However, as the problem size increases

the difference in terms of the number of nodes also increases significantly. Note that in

the remainder of the paper the results that correspond to the CP approach are obtained

by using MSGACb algorithm.

6.3 Comparison between the Alternative Approaches

The performances of using constraint programming (CP), partial weighted maximum

satisfiability (PWMSAT) and integer linear programming (CPLEX) approaches are pre-

sented in Tables 2 and 3. If any approach failed to find and prove an optimal relaxation

within a time limit of 4 hours then that time limit is used as the runtime of the algorithm

and the number of nodes visited in that time limit is used as the number of nodes of the

algorithm in order to compute the average runtime and average search nodes of a given

problem class. In the tables, the column labelled as #us is used to denote the number

of instances for which the time limit was exceeded. If this column is not present for

any approach then it means that all the instances of all the problem classes were solved

within the time limit. In general finding an optimal relaxation is NP-hard. Therefore,

we need to investigate which approach can do it in reasonable time.

Tables 2 and 3 suggest that our CP approach performs better than our ILP and PWM-

SAT approaches. Although in very few cases the CP approach is outperformed by the

other two approaches, it performs significantly better in all other cases. Nevertheless,

Table 2. Catalogue 〈50, 250, {<, >}〉.

optimal PWMSAT CPLEX CP

〈f, p〉 value #nodes time #us #nodes time #us #nodes time

〈10, 5〉 36 167 345 0 0 11 0 16 23

〈15, 20〉 69 721 1,039 0 51 61 0 41 34

〈20, 10〉 62 1,295 1,619 0 50 47 0 47 39

〈25, 40〉 115 5,039 4,391 0 3,482 1,945 0 187 595

〈30, 20〉 93 5,415 6,397 0 1,901 1,025 0 184 653

〈35, 35〉 118 30,135 23,955 0 35,247 22,763 0 1,279 7,431

〈40, 40〉 123 186,913 282,760 0 299,829 247,140 0 9,838 67,798

〈45, 90〉 173 6,291,957 12,638,251 8 5,280,594 7,690,899 2 104,729 1,115,515

〈50, 4〉 96 165,928 195,717 0 1,164,755 1,010,383 0 60,292 413,611
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it is also true that a remarkable improvement in our CP approach is due to maintaining

(restricted) singleton arc consistency on the Boolean variables. For example, for feature

subscription 〈40, 40〉 and catalogue 〈50, 250, {<, >}〉 constraint programming (with

MSGACb), on average, requires approximately only 1 minute whereas MGAC requires

approximately half an hour.

The CP approach solved all the instances
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within the time limit. CPLEX could not solve

2 instances. More precisely, it could not prove

their optimality within the time limit. SAT4J

exceeded the time limit for 9 instances. This

could be a consequence of O(n3) transitive

clauses, where n = |F |. Figure 3 depicts a

plot between the number of clauses and the

runtime of SAT4J. This plot clearly suggests

that the runtime of SAT4J increases as the num-

ber of clauses increases. The high number of

clauses restricts the scalability of the PWM-

SAT approach. For large instances SAT4J also

runs out of the default memory (64MB). For instance, for catalogue 〈50, 250, {<, >}〉
and feature subscription 〈45, 90〉, SAT4J runs out of memory when solving one of the

instances. Note that the results for SAT4J presented in this section correspond to the

instances that are generated after reducing the variables and the clauses by applying

the techniques described in Section 5.1. The application of these techniques reduces

the runtime up to 65%. However, this only enabled one of the previously unsolvable

instances to be solved.

Figure 4 presents the comparison of the different approaches in terms of their run-

times for the subscriptions, when U = ∅ and the weight of each feature is 1. The

runtimes of the approaches for the instances when |F | = |U | are presented in Figure 5.

Overall, the CP approach performs best. Although, the SAT4J solver performs best when

|F | > 35 and U = ∅, it would be interesting to find out whether its performance will

deteriorate when |F | > 50. In Figure 5, when |F | = 50, neither the ILP approach nor

the PWMSAT approach managed to solve all the instances. This is the reason that their

average runtimes, for the case of 50 features, are close to the timeout. If the timeout

Table 3. Results for more dense catalogues.

Catalogue 〈50, 500, {<, >, <>}〉 Catalogue 〈50, 750, {<, >}〉
PWMSAT CPLEX CP PWMSAT CPLEX CP

〈f, p〉 #nodes time #nodes time #nodes time #nodes time #us #nodes time #nodes time

〈10, 5〉 326 528 0 10 13 3 246 500 0 28 33 16 7

〈15, 20〉 1,066 1,173 4 53 31 28 1,111 985 0 306 261 40 45

〈20, 10〉 2,583 1,981 18 85 49 59 2,484 1,542 0 798 540 82 145

〈25, 40〉 5,753 2,961 76 554 110 250 6,904 3,158 0 7,043 5,741 236 910

〈30, 20〉 9,738 4,092 90 447 158 417 11,841 5,025 0 22,253 18,461 591 2,381

〈35, 35〉 12,584 6,841 300 1,824 461 1,643 31,214 18,278 0 109,472 126,354 2,288 12,879

〈40, 40〉 22,486 11,310 711 3,018 892 3,914 68,112 92,105 0 354,454 514,275 6,363 42,268

〈45, 90〉 60,504 59,267 2,130 17,452 2,286 14,803 602,192 2,443,228 1 1,969,716 3,780,539 19,909 188,826

〈50, 4〉 43,765 21,472 1,500 3,771 4,208 16,921 184,584 319,531 0 1,646,752 3,162,084 51,063 342,492
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Fig. 4. Results for 〈fu, 0, 1〉, where fu varies

from 5 to 50 in steps of 5.
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Fig. 5. Results for 〈fu, pu, 1〉, where fu = pu

and fu varies from 5 to 50 in steps of 5.

was higher, the gap between the CP approach and the other approaches, for the case of

50 features in Figure 5 would be even more significant.

7 Conclusions

We presented, and evaluated, three optimisation-based approaches to finding optimal re-

configurations of call-control features when the user’s preferences violate the technical

constraints defined by a set of DFC rules. We proved that finding an optimal relaxation

of a feature subscription is NP-hard. For the constraint programming approach, we stud-

ied the effect of maintaining generalised arc consistency and two mixed consistencies

during branch and bound search. Our experimental results suggest that maintaining (re-

stricted) generalised singleton arc consistency on the Boolean variables and generalised

arc consistency on the integer variables outperforms MGAC significantly. Our results

also suggest that the CP approach when applied with stronger consistency, is able to

scale well compared to the other approaches. Finding an optimal relaxation for a rea-

sonable size catalogue (e.g., [19] refers to a catalogue with up to 25 features) is feasible

using constraint programming.
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File format: PB07

Description: For each of 7 networks, 10 routing problems are generated

as PB SAT formulas.

File <network>__<start node>_<end node>.opb encodes the

feasibility of routing between the given start node and end node

in a non-optical variant of the network.

Each of files <network>__<start node>_<end node>__<wavelengths>.opb

encodes the same routing problem but for an optical network with

the given number of wavelengths per link.
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Given a CNF formula F and an assignment A, the objective function that local

search for SAT attempts to minimize is usually the total number of unsatisfied clauses

in F under A. The score of a variable x with respect to A, scoreA(x), is the decrease

of the objective function when it is flipped.

A variable x is said to be decreasing with respect to A if scoreA(x) > 0. Promising

decreasing variables are defined in [3] as follows:

1. Before any flip, i.e., when A is an initial random assignment, all decreasing vari-

ables with respect to A are promising.

2. Let x and y be two different variables and x be not decreasing with respect to A. If,

after y is flipped, x becomes decreasing with respect to the new assignment, then x

is a promising decreasing variable with respect to the new assignment.

3. A promising decreasing variable remains promising with respect to subsequent as-

signments in local search until it is no longer decreasing.

G2WSAT [3] deterministically picks a promising decreasing variable to flip, if

such variables exist. If there is no promising decreasing variable, G2WSAT uses a

heuristic, such as Novelty [5], Novelty+ [1], or Novelty++ [3], to pick a variable to

flip from a randomly selected unsatisfied clause c. G2WSAT uses Novelty++.

Novelty(p, c): Sort the variables in clause c by their scores, breaking ties in favor of

the least recently flipped variable. Consider the best and second best variables from

the sorted variables. If the best variable is not the most recently flipped one in c,

then pick it. Otherwise, with probability p, pick the second best variable, and with

probability 1-p, pick the best variable.

Novelty++(p, dp, c): With probability dp (diversification probability), pick the least

recently flipped variable in c, and with probability 1-dp, do as Novelty.

AdaptG2wsat0 [4] is G2WSAT using the adaptive noise mechanism [2] to adjust

noise during search. In addition, when there are several promising decreasing variables,

adaptG2wsat0 flips the oldest one. AdaptG2wsat0 won a silver medal in the random

category of the SAT 2007 competition under the purse based scoring. It would win the

gold medal if the lexicographical scheme was used.
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We propose two solvers based on adaptG2wsat0 for the SAT 2009 competition.

adaptg2wsat2009: when there is no promising decreasing variable, with probability

dp (diversification probability), randomly pick a variable to flip in the chosen un-

satisfied clause c, after excluding the most recently flipped variable in c, and with

probability 1-dp, do as Novelty.

adaptg2wsat2009++: when there is no promising decreasing variable, use

Novelty++(p, dp) to select the variable to flip,

The commande line is

DIR/solvername BENCHNAME RANDOMSEED

where solvername is adaptg2wsat2009 or adaptg2wsat2009++, and DIR is the name of

the directory where adaptg2wsat2009 or adaptg2wsat2009++ files are stored.
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iPAWS is a local search solver based on the PAWS algorithm [1] but modified to automatically adapt its weight
decay parameter to each problem instance. Details of iPAWS have been published in [2]. The submitted version
follows the proposal of that paper in that iPAWS reverts back to PAWS with MaxInc = 10 when encountering
any problem consisting entirely of three literal clauses. As iPAWS is a local search technique, it will only ter-
minate upon successfully finding a solutions to satisfiable instance.

The MaxThres Parameter: The key innovation of iPAWS is the automatic adjustment of a MaxThres weight
decay parameter that replaces the manually tuned PAWS MaxInc parameter. The operation of MaxThres is
detailed in the UpdateClauseWeights function of Algorithm 1. This function is called whenever iPAWS decides it
has reached a local minimum and differs from the original PAWS only at lines 5 and 6. Previously, PAWS reduced
weight at line 5 if IncCounter > MaxInc and omitted the while loop of line 6. Now the MaxThres parameter
causes weight to be reduced when the number of weighted clauses (|W|) and the number of false clauses (|F|)
both exceed MaxThres and only after at least MinInc consecutive weight increase phases have been completed
(MinInc is fixed at 3). In addition, the while loop at line 6 ensures that each weight reduction phase reduces
|W| to a value less than MaxThres (this step becomes necessary when evaluating the performance of different
MaxThres values during the same run). The main advantage of MaxThres is that we can (on average) obtain
equivalent performance with the original PAWS while reducing the number of different parameter settings from
22 for MaxInc to 8 for MaxThres.

Algorithm 1: UpdateClauseWeights
Input: F ← the set of currently false clauses; W ← the set of currently weighted clauses;
Output: updated membership of W; updated clause weights for F ∪ W;
for each ci ∈ F do1

Weight(ci) ← Weight(ci) + 1;2

if Weight(ci) = 2 then W ← W ∪ ci;3

IncCounter ← IncCounter + 1;4

if |W| > MaxThres and |F| > MaxThres and IncCounter > MinInc then5

while |W| > MaxThres do6

for each ci ∈ W do7

Weight(ci) ← Weight(ci) − 1;8

if Weight(ci) = 1 then W ← W − ci;9

IncCounter ← 0;10

Local Search Cost Distribution Shape: A local search cost distribution is the distribution of the count of
false clauses recorded at each flip during a sequence of local search steps. The basis of iPAWS is that it uses
the shape of this distribution to estimate the best MaxThres parameter setting according to the following rule
of thumb: select the distribution with the smallest mean, given the distribution has a roughly normal shape.
As a result of extensive preliminary experimentation, we decided to use skewness and kurtosis statistics as an
additional guide for parameter setting. Skewness measures the degree of symmetry of a distribution (where a
zero value indicates perfect symmetry) and is calculated as follows:

1
n

∑n

i=1

(

xi−x
σ

)3

In the case of measuring the skewness of a local search cost distribution for a particular MaxThres value, n

would be the number of flips taken at the selected MaxThres value, xi the number of false clauses observed at
flip i, and x and σ the mean and standard deviation respectively of the distribution of xi’s. Kurtosis measures
the degree of “peakedness” of a distribution, where a higher value indicates a sharper peak with flatter tails (in
comparison to a standard normal distribution). We calculated kurtosis as follows:

1
n

∑n

i=1

(

xi−x
σ

)4
− 3

Simulated Annealing: Having identified a few promising measures, we required a method to control the
parameter value selection process during the lifetime of a single run. To achieve this we used two interleaved
searches on the same problem, one with a high MaxThres setting (750) and the other with a good low default
setting (75), as follows: each search starts with its own copy of the same problem initialisation, and then pursues
its own separate search trajectory; the two search procedures then compete for processor time according to a
simulated annealing (SA) schedule shown in Algorithm 2.

Here, SA is used to control a decision model that begins by randomly allocating time slices to the two
search procedures and then, as the temperature decreases, biases decisions more and more towards respecting
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Algorithm 2: DecideUpperOrLowerSetting
Input: lowerThres ← lower MaxThres setting; upperThres ← upper MaxThres setting;
temp ← 1024; step ← 400; tempStep ← initial steps allocated to upper setting;
upperStep ← current steps allocated to upper setting;
lowerStep ← current steps allocated to lower setting;
if lowerStep < upperStep then tempStep ← tempStep + lowerStep;1

else tempStep ← tempStep + upperStep;2

while tempStep ≥ step do3

temp ← temp ÷ 2;4

step ← step × 2;5

cost ← CostDifference(lowerThres, upperThres);6

diff ← AbsoluteValue(cost);7

uphillProb ← 50e
−(

diff
temp

)
;8

if probability ≤ uphillProb then9

if cost ≥ 0 then return lowerThres; else return upperThres;10

else11

if cost ≤ 0 then return lowerThres; else return upperThres;12

the CostDifference measure defined in Algorithm 3. This measure quantifies our notion of local search cost
distribution shape. An important point to note here is that all statistics for each distribution (i.e. the mean,
standard deviation, skewness and kurtosis) are reset each time the distribution reaches a solution that improves
on the previously best minimum cost (for that distribution). This eliminates the initial high variance phase
of the search and avoids the distorting effects of outlying cost values. In addition, we ignore the sign of the
skewness and kurtosis measures, taking their absolute value only (see AbsSkew and AbsKurt in Algorithm 3).

Algorithm 3: CostDifference(thres1, thres2)

minCostRatio ← 10 × (MinCost(thres1) ÷ (MinCost(thres1) + MinCost(thres2));1

rangeRatio ← 10 × (Range(thres1) ÷ (Range(thres1) + Range(thres2));2

skewRatio ← 10 × (AbsSkew(thres1) ÷ (AbsSkew(thres1) + AbsSkew(thres2));3

kurtRatio ← 10 × (AbsKurt(thres1) ÷ (AbsKurt(thres1) + AbsKurt(thres2));4

return 100 − ((9 × rangeRatio) + (7 × minCostRatio) + (2 × (skewRatio + kurtRatio)));5

The DecideUpperOrLowerSetting procedure controls the PAWS MaxThres setting for the first 50,000 flips
of the combined search trajectories. During this phase, the iPAWS will behave much like its predecessor (with
MaxInc set to 10), except that it will “waste” a certain number of flips exploring the non-optimal distribution.
Such exploration will help if the best setting is in the upper distribution, but otherwise it will degrade the
relative performance.

Binary Search: After the 50,000 flip threshold, both the upper and lower search trajectories are allowed to
explore other MaxThres settings within a lower range of {25 50 75 125} and an upper range of {250 500 750 ∞}.
This procedure takes the form of a binary search, such that after every search step of 100 flips (where the value
of MaxThres remains fixed) the DecideUpperOrLowerSetting function determines which half of the parameter
space will be used next. Then we use the DecideSetting and FindBestCost functions to further subdivide the
parameter space into a single setting. For example, if DecideUpperOrLowerSetting selects lower, then we will
call:

DecideSetting(FindBestCost(25, 50), FindBestCost(75, 125))
Otherwise we will call:

DecideSetting(FindBestCost(250, 500), FindBestCost(750, ∞))
The DecideSetting function follows the simulated annealing approach of DecideUpperOrLowerSetting with two
changes to reflect the finer grain of the decision. Firstly, the annealing function has a consistently higher
probability of returning an uphill move, replacing line 8 of Algorithm 2 with:

uphillProb ← 30e−( diff

temp
) + 20

Secondly, the annealing schedule is only reduced according to the number of steps taken since the last minimum
cost was discovered for each distribution, replacing lines 1-2 from Algorithm 2 with:

if (lowerStep < upperStep) then tempStep ← lowerStep;
else tempStep ← upperStep;

Finally, we limit the parameter search space on problems with more than 50,000 clauses to only consider 25 or
50 in the lower distribution (the upper distribution parameter range remains unchanged). This reflects empirical
observations showing that larger problems tend to have smaller optimal MaxThres settings.
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1 Description

We have all been through a situation where the installation of a new piece of soft-
ware turns out to be a nightmare. These kinds of problems may occur because
there are constraints between the different pieces of software (called packages).
Although these constraints are expected to be handled in a consistent and effi-
cient way, current software distributions are developed by distinct individuals.
This is opposed to traditional systems which have a centralized and closed de-
velopment. Open systems also tend to be much more complex, and therefore
some packages may become incompatible. In such circumstances, user prefer-
ences should be taken into account.

The constraints associated with each package can be defined by a tuple
(p, D, C), where p is the package, D are the dependencies of p, and C are the
conflicts of p. D is a set of dependency clauses, each dependency clause being a
disjunction of packages. C is a set of packages conflicting with p. Previous work
has applied SAT-based tools to ensure the consistency of both repositories and
installations, as well as to upgrade consistently package installations. SAT-based
tools have first been used to support distribution editors [3]. The developed tools
are automatic and ensure completeness, which makes them more reliable than
ad-hoc and manual tools. Recently, Max-SAT has been applied to solve the soft-
ware package installation problem from the user point of view [1]. In addition,
the OPIUM tool [4] uses PB constraints and optimizes a user provided single

objective function. One modeling example could be preferring smaller packages
to larger ones.

The encoding of these constraints into SAT is straightforward: for each pack-
age pi there is a Boolean variable xi that is assigned to true iff package pi is
installed, and clauses are either dependency clauses or conflict clauses (one clause
for each pair of conflicting packages).

Example 1 Given a set of package constraints S = {(p1, {p2, p5 ∨ p6}, ∅),
(p2, ∅, {p3}), (p3, {p4}, {p1}), (p4, ∅, {p5, p6})}, its encoded CNF instance is the

⋆ The submitted instances to the Max-SAT Evaluation 2009 are a small subset of the
instances available. Due to the limit of 231 in the size for the weights, more difficult
instances have not been submitted. All the instances used in [2] are available in the
following link: http://sat.inesc-id.pt/mancoosi/mancoosi-i0-4000d0u98.tgz
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following:
¬x1 ∨ x2 ¬x3 ∨ x4

¬x1 ∨ x5 ∨ x6 ¬x3 ∨ ¬x1

¬x2 ∨ ¬x3 ¬x4 ∨ ¬x5

¬x4 ∨ ¬x6

The problem described above is called software installability problem. The
possibility of upgrading some of the packages (or introducing new packages)
poses new challenges as existing packages may eventually be deleted. The goal
of the software upgradeability problem is to find a solution that satisfies user
preferences by minimizing the impact of introducing new packages in the cur-
rent system, which is a reasonable assumption. Such preferences may be distin-
guished establishing the following hierarchy: (1) constraints on packages cannot
be violated, (2) required packages should be installed, (3) packages that have
been previously installed by the user should not be deleted, (4) the number of
remaining packages installed (as a result of dependencies) should be minimized.

The software upgradeability problem can be naturally encoded as a weighted
partial MaxSAT problem. In weighted MaxSAT, each clause is a pair (C, w)
where C is a CNF clause and w is its corresponding weight. In weighted partial
MaxSAT, hard clauses must be satisfied, in contrast to the remaining soft clauses
that should be satisfied. Hard clauses are associated with a weight that is greater
than the sum of the weights of the soft clauses. A solution to the weighted partial
MaxSAT problem maximizes the sum of the weights of the satisfied clauses.

The following example shows a weighted partial MaxSAT formula for the
upgradeability problem.

Example 2 Given a set of package constraints S = {(p1, {p2, p5}, {p4}),
(p2, ∅, ∅), (p3, {p2∨p4}, ∅), (p4, ∅, ∅), (p5, ∅, ∅)}, the set of packages the user wants

to install I = {p1}, and the current set of installed packages in the system

A = {p2}, its weighted partial MaxSAT instance is the following:

(¬x3, 1) (x2, 4) (¬x1 ∨ x2, 16)
(¬x4, 1) (x1, 8) (¬x1 ∨ x5, 16)
(¬x5, 1) (¬x1 ∨ ¬x4, 16)

(¬x3 ∨ x2 ∨ x4, 16)

This example uses a weight distribution that gives priority to the user prefer-
ences over all the other packages, and also gives priority to the current installa-
tion profile over the remaining packages. The minimum weight (with value 1) is
assigned to clauses encoding packages being installed as a result of dependencies,
whose number should be minimized. A medium weight (with value 4, resulting
from the sum of the weights of the previous clauses plus 1) is assigned to clauses
encoding packages currently installed in our system, in order to minimize the
number of removed packages. A maximum weight (with value 8) is assigned to
the packages the user wants to install. Finally, we assign a hard weight (with
value 16) to clauses encoding the dependencies and conflicts.

For more details on how to solve Upgradeability Problem instances in an
efficient way, see [2].
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1 Job Shop Scheduling Problem

A Job Shop Scheduling Problem(JSSP) consists of a set of jobs and a set of
machines. Each job is a sequence of operations. Each operation requires the
exclusive use of a machine for an uninterrupted duration, i.e. its processing
time. A schedule is a set of start times for each operation. The time required
to complete all the jobs is called the makespan. The objective of the JSSP is to
determine the schedule which minimizes the makespan.

2 Partial Max-SAT Encoding

In this distribution, we follow a variant of the SAT encoding proposed by Craw-
ford and Baker [2]. In the SAT encoding, we assume there is a schedule whose
makespan is at most i and generate a SAT instance Si. If Si is satisfiable, then
the JSSP can complete all the jobs by the makespan i. Therefore, if we find a
positive integer k such that Sk is satisfiable and Sk−1 is unsatisfiable, then the
minimum makespan is k.

Before encoding, we estimate the lower bound Llow and the upper bound
Lup of the minimum makespan. In this encoding, we use a job-shop solver by
Brucker [1] for the estimatsion.

In order to solve the JSSP in the Max-SAT framework, we introduce a set
PLup

= {p1, p2, . . . , pLup
} of new atoms. The intended meaning of pi = true is

that we found a schedule whose makespan is i or longer than i. To realize the
intention, the formulas Fi(i = 1, . . . , Lup), which represent “if all the operations
complete at i, then pi becomes true,” are introduced. Besides, we introduce a
formula TLup

= (¬pLup
∨ pLup−1)∧ (¬pLup−1 ∨ pLup−2)∧ · · · ∧ (¬p2 ∨ p1) which

implies that ∀l(1 ≤ l < k)(pl = true) must hold if pk = true holds.
In this setting, if we obtain a model M of GLup

(= SLup
∧F1∧· · ·∧FLup

∧TLup
)

and k is the maximum integer such that pk ∈ M , that is, ∀j(k < j ≤ Lup)(pj 6∈
M), then we must have ∀l(1 ≤ l ≤ k)(pl ∈ M), namely, M∩PLup

= {p1, . . . , pk}.
The existence of such k is guaranteed by Fk and TLup

, and indicates that there
is a schedule whose makespan is k. If k is the minimum makespan, there is no
model of GLup

smaller than M with respect to PLup
. Thus, a minimal model of

GLup
with respect to PLup

represents a schedule which minimizes the makespan.
The encoding is easily adapted for a partial Max-SAT encoding by adding

some unit clauses as follows: We introduce Lup − Llow unit clauses ¬pi(i =
Llow + 1, . . . , Lup). Then, we solve MAXLup

(= GLup
∧ ¬pLlow+1 ∧ . . . ∧ ¬pLup

)
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Table 1: Benchmark problems
File Name #vars #clauses(#soft-clauses) Optimum

ft10-808-1090 110641 1151201(282) 930
la01-666-0671 34497 342463(5) 660
la04-567-0696 35772 359683(129) 590
orb08-894-1058 107409 1121427(164) 899

with a partial Max-SAT solver where all clauses in GLup
are treated as hard

clauses and ¬pi(i = Llow + 1, . . . , Lup) are as soft clauses. A Max-SAT model
of MAXLup

represents a optimum schedule.
Some experimental results are reported by Nabeshima [4] and Koshimura [3].

3 The Benchmark Test-sets

The distribution is shown in Table 1. We encode four JSSPs in OR-Library [5].
These four are not hard according to our experimence.

Each problem file is named xxx-yyy-zzz. xxx is problem name in OR-Library,
yyy is a lower bound of the optimal schedule, and zzz is a upper bound of the
optimal schedule. A Max-SAT solution represents a optimal schedule whose
length is ’yyy+uuu’ where uuu is the number of soft clauses satisfied in the
solution.

References

[1] P. Brucker P, B. Jurisch, and B. Sievers: A branch and bound algorithm
for the job-shop scheduling problem. Discrete Applied Mathematics, Vol.49,
pp.107-127, 1994.

[2] J. M. Crawford and A. B. Baker: Experimental Results on the Application
of Satisfiability Algorithms to Scheduling Problems. In Proc. of AAAI-94,
pp.1092–1097 (1994)

[3] M. Koshimura, H. Nabeshima, H. Fujita, and R. Hasegawa: Minimal Model
Generation with respect to an Atom Set. In Proc. of FTP2009, pp.49–59
(2009).

[4] H. Nabeshima, T. Soh, K. Inoue, and K. Iwanuma: Lemma Reusing for SAT
based Planning and Scheduling. In Proc. of ICAPS’06, pp.103–112 (2006).

[5] OR-Library. http://people.brunel.ac.uk/~mastjjb/jeb/info.html

140



IUT_BMB_Maxsatz 

 
Abdorrahim Bahrami Seyyed Rasoul Mousavi Kiarash Bazargan 

Isfahan University of Technology Isfahan University of Technology Isfahan University of Technology 

 Abdorrahim@ec.iut.ac.ir srm@cc.iut.ac.ir Kiarash@cc.iut.ac.ir 

 

IUT_BMB_Maxsatz is has been derived from the well-known Maxsatz Max-sat 

solver [1], which was developed by J. Planes et al. This solver have many inference 

rules which can simplify the CNF Formula and improve the best-so-far answer called 

UB (Upper Bound) using the inference rules. UB is an upper bound for the best-so-far 

answer. In IUT_BMB_Maxsatz first an upper bound for best-so-far is estimated using 

UBCSAT [2]. UBCSAT is a collection of solvers including non-deterministic solvers 

which can be used to estimate the best result for a CNF formula.  

 

In IUT_BMB_Maxsatz, a local search has been added to the original Maxsatz. 

Whenever, a leaf of the search tree is achieved and UB is updated, the local search 

algorithm is called which tried to improve the new UB.  The local search algorithm 

used in the current version is a simple hill climbing. The neighbors of a candidate 

solution is defined as to be all the candidate solutions which are different from the 

current one in one bit only  The better the UB is, the further the search tree is pruned. 
 

A non-deterministic adaptive scheme has been used to decide whether or not to call 

the local search. Initially, it is called with the probability of 1. The probability for 

subsequent applications of local search, however, depends on the outcomes of its 

previous applications. Each successful application of local search, i.e. one which 

improves UB, increases this probability by 0.02 and each unsuccessful one decreases 

it by the same value 0.02. The reason for adopting such a non-deterministic adaptive 

scheme is that the likelihood of achieving an improved UB via the application of a 

local search varies (is usually decreased) as the Branch and Bound tree search 

proceeds. At the beginning of the search, UB is usually rather raw and is likely to be 

improved by the local search algorithm. However, by progression of the search, UB 

gets nearer and nearer the best possible result and the probability of unsuccessful local 

search is increased, in which case the local search will only be an unfruitful time-

consuming task and should be avoided. This solver was particularly successful on 

random and crafted data. 
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IUT_BMB_Maxsatz has been derived from the well-known Maxsatz Max-sat solver 

[1], which was developed by J. Planes et al. This solver have many inference rules 

which can simplify the CNF Formula and improve the best-so-far answer called UB 

(Upper Bound) using the inference rules. UB is an upper bound for the best-so-far 

answer. In IUT_BMB_LSMaxsatz the initial value of upper bound is the number of 

clauses unlike the IUT_BMB_Maxsatz which an initial value for upper bound are 

estimated with UBCSAT [2]. As IUT_BMB_Maxsatz, it incorporates a local search 

scheme. Whenever, a leaf of the search tree is achieved and UB is updated, the local 

search algorithm is called which tried to improve the new UB.  The local search 

algorithm used in the current version is a simple hill climbing. The neighbors of a 

candidate solution is defined as to be all the candidate solutions which are different 

from the current one in one bit only  The better the UB is, the further the search tree is 

pruned. 
 

A non-deterministic adaptive scheme has been used to decide whether or not to call 

the local search. Initially, it is called with the probability of 1. The probability for 

subsequent applications of local search, however, depends on the outcomes of its 

previous applications. Each successful application of local search, i.e. one which 

improves UB, increases this probability by 0.02 and each unsuccessful one decreases 

it by the same value 0.02. The reason for adopting such a non-deterministic adaptive 

scheme is that the likelihood of achieving an improved UB via the application of a 

local search varies (is usually decreased) as the Branch and Bound tree search 

proceeds. At the beginning of the search, UB is usually rather raw and is likely to be 

improved by the local search algorithm. However, by progression of the search, UB 

gets nearer and nearer the best possible result and the probability of unsuccessful local 

search is increased, in which case the local search will only be an unfruitful time-

consuming task and should be avoided. This solver was particularly successful on 

industrial data. 
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IUT_BCMB_WMaxsatz has been derived from the well-known Weighted Maxsatz 

Weighted Max-sat solver [1], which was developed by Chu Min Li et al. This solver 

have many inference rules which can simplify the CNF Formula and improve the 

best-so-far answer called UB (Upper Bound) using the inference rules. UB is an upper 

bound for the best-so-far answer. In IUT_BCMB_WMaxsatz first an upper bound for 

best-so-far is estimated using UBCSAT [2]. UBCSAT is a collection of solvers 

including non-deterministic solvers which can be used to estimate the best result for a 

CNF formula.  

 

In IUT_BCMB_WMaxsatz, a local search has been added to the original Maxsatz. 

Whenever, a leaf of the search tree is achieved and UB is updated, the local search 

algorithm is called which tried to improve the new UB.  The local search algorithm 

used in the current version is a simple hill climbing. The neighbors of a candidate 

solution is defined as to be all the candidate solutions which are different from the 

current one in one bit only  The better the UB is, the further the search tree is pruned. 
 

A non-deterministic adaptive scheme has been used to decide whether or not to call 

the local search. Initially, it is called with the probability of 1. The probability for 

subsequent applications of local search, however, depends on the outcomes of its 

previous applications. Each successful application of local search, i.e. one which 

improves UB, increases this probability by 0.02 and each unsuccessful one decreases 

it by the same value 0.02. The reason for adopting such a non-deterministic adaptive 

scheme is that the likelihood of achieving an improved UB via the application of a 

local search varies (is usually decreased) as the Branch and Bound tree search 

proceeds. At the beginning of the search, UB is usually rather raw and is likely to be 

improved by the local search algorithm. However, by progression of the search, UB 

gets nearer and nearer the best possible result and the probability of unsuccessful local 

search is increased, in which case the local search will only be an unfruitful time-

consuming task and should be avoided. This solver was particularly successful on 

random and crafted data. 
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IUT_BCMB_LSWMaxsatz has been derived from the well-known Weighted Maxsatz 

Weighted Max-sat solver [1], which was developed by Chu Min Li et al. This solver 

have many inference rules which can simplify the CNF Formula and improve the 

best-so-far answer called UB (Upper Bound) using the inference rules. UB is an upper 

bound for the best-so-far answer. In IUT_BCMB_LSWMaxsatz the initial value of 

upper bound is the number of clauses unlike the IUT_BCMB_WMaxsatz which an 

initial value for upper bound are estimated with UBCSAT [2]. As 

IUT_BCMB_WMaxsatz, it incorporates a local search scheme. Whenever, a leaf of 

the search tree is achieved and UB is updated, the local search algorithm is called 

which tried to improve the new UB.  The local search algorithm used in the current 

version is a simple hill climbing. The neighbors of a candidate solution is defined as 

to be all the candidate solutions which are different from the current one in one bit 

only  The better the UB is, the further the search tree is pruned. 
 

A non-deterministic adaptive scheme has been used to decide whether or not to call 

the local search. Initially, it is called with the probability of 1. The probability for 

subsequent applications of local search, however, depends on the outcomes of its 

previous applications. Each successful application of local search, i.e. one which 

improves UB, increases this probability by 0.02 and each unsuccessful one decreases 

it by the same value 0.02. The reason for adopting such a non-deterministic adaptive 

scheme is that the likelihood of achieving an improved UB via the application of a 

local search varies (is usually decreased) as the Branch and Bound tree search 

proceeds. At the beginning of the search, UB is usually rather raw and is likely to be 

improved by the local search algorithm. However, by progression of the search, UB 

gets nearer and nearer the best possible result and the probability of unsuccessful local 

search is increased, in which case the local search will only be an unfruitful time-

consuming task and should be avoided. This solver was particularly successful on 

industrial data. 
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Clone is an exact Max-SAT solver that uses branch-and-bound search to find opti-

mal solutions. Clone computes lower bounds by computing solutions to relaxed prob-

lems. Clone removes some constraints in the original CNF and turns it into a relaxed

formula, which is then compiled into a d-DNNF (Deterministic Decomposable Nega-

tion Normal Form). The relaxed formula’s Max-SAT solution, which can be computed

very efficiently from the d-DNNF, can be used as a bound on the solution of the original

problem. Once every variable involved in the relaxation is assigned a value, the solution

of the conditioned relaxed formula is no longer a bound—it becomes exact. Thus, Clone

only needs to perform branch-and-bound search on the search space of those variables

involved in the relaxation of constraints, resulting in a smaller search space. For more

information about the bound computation and other techniques used in Clone, please

see [1]. Clone is also available for download from http://reasoning.cs.ucla.

edu/clone.
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Abstract—This paper describes MSUNCORE, a state of the
art, unsatisfiability-based, MAXSAT solver. MSUNCORE is built
on top of PicoSAT [3], a state-of-the-art conflict-drived clause
learning (CDCL) SAT solver.

I. INTRODUCTION

MSUNCORE (acronym for Maximum Satisfiability with

UNsatisfiable COREs) entails a number of unsatisfiability-

based MAXSAT algorithms [10], [11], [15]–[17], implements

several MAXSAT algorithms, being capable of solving plain

MAXSAT [17], and (weighted) (partial) MAXSAT [10], [11],

[15], [16]. In addition, MSUNCORE represents an alterna-

tive to branch-and-bound MAXSAT algorithms (see for ex-

ample [8], [9]), and targets large-scale practical MAXSAT

problem instances. The first version of MSUNCORE was

implemented in late 2007 and early 2008 [15]–[17]. The most

recent version of MSUNCORE is from early 2009 [10], [11].

This paper provides a brief overview of the MSUNCORE

family of MAXSAT algorithms. Additional detail can be found

in the MSUNCORE publications [10], [11], [15]–[17].

II. UNSATISFIABILITY-BASED MAXSAT

An alternative to the widely used branch-and-bound algo-

rithms for MAXSAT (see for example [8], [9]) is the iterated

identification of unsatisfiable sub-formulas. Fu & Malik [6]

proposed the first unsatisfiability-based MAXSAT solver. The

proposed approach consists of identifying unsatisfiable sub-

formulas, relaxing each clause in each unsatisfiable sub-

formula, and adding a new constraint requiring exactly one

relaxation variable to be relaxed in each unsatisfiable sub-

formula. Key aspects of this work include the use of the

quadratic pairwise [18] CNF encoding for the EqualsOne

constraint, and the use of multiple relaxation variables for each

clause. Several optimizations were first proposed in some of

the MSUNCORE algorithms [15]–[17], including the use of

non-quadratic CNF encodings of AtMostOne and EqualsOne

constraints, and the use of constraints involving the relaxation

variables of each clause. Several new unsatisfiability-based

MAXSAT algorithms were proposed in [15]–[17], several

of which requiring a single relaxation variable per clause.

Moreover, additional unsatisfiability-based MAXSAT algo-

rithms have been recently proposed [2]. Finally, extensions

of unsatisfiability-based MAXSAT algorithms for weighted

(partial) MAXSAT were independently proposed in [2], [10],

[11].

MSUNCORE Contributors: Jordi Planes and Vasco Manquinho.

III. MSUNCORE

MSUNCORE is based on iterative identification of un-

satisfiable sub-formulas (or cores), by directly interfacing a

CDCL [12] SAT solver.

A. Core Extraction

MSUNCORE uses a SAT solver for iterative identification

of unsatisfiable sub-formulas. Albeit ideally a minimal un-

satisfiable sub-formula would be preferred, any unsatisfiable

can be considered. Clauses in unsatisfiable sub-formulas are

then relaxed by adding a relaxation variable to each clause.

MSUNCORE implements a number of different algorithms.

Some algorithms require multiple relaxation variables per

clause [6] whereas others use a single relaxation variable [16],

[17].

B. Cardinality Constraints

MSUNCORE encodes AtMost, AtLeast and Equals con-

straints into CNF. A number of encodings can be used.

Concrete examples include the pairwise and bitwise encod-

ings [18], [19], the ladder encoding [7], sequential coun-

ters [20], sorting networks [5], and binary decision diagrams

(BDDs) [5]. Albeit not yet available in MSUNCORE, Reduced

Boolean Circuits (RBCs) [1] can be used to enable sharing of

clauses among the encodings of cardinality constraints.

C. SAT Solver Interface

Even though MSUNCORE interfaces PicoSAT [3], any

CDCL SAT solver can be used, as long as it computes

unsatisfiable sub-formulas in unsatisfiable instances. A number

of standard techniques can be used when interacting with

the SAT solvers. These include variable filtering of auxiliary

variables [14] and reuse of learnt clauses [13].

D. Implementation

The version of MSUNCORE used in the 2009 MAXSAT

Evaluation is a re-implementation of the MSUNCORE pro-

totype used in the 2008 MAXSAT Evaluation. For the 2008

MAXSAT Evaluation, the MSUNCORE prototype was written

in Perl and interfaced a modified version of MiniSAT 1.14. For

the 2009 MAXSAT Evaluation, the new version of MSUN-

CORE is written in C++, and interfaces PicoSAT [3].

E. Using MSUNCORE

The most recent MSUNCORE distribution contains the

MSUNCORE executable (for a number of target architectures).

In addition, the MSUNCORE distribution includes both a

linkable library and a header file that exposes a simple API
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to integrate MSUNCORE in applications. The use of the

library is illustrated with a simple driver, also included in the

MSUNCORE distribution.

MSUNCORE accepts the most widely used formats for

representing MAXSAT problem instances, including CNF,

WCNF, and PMCNF. Albeit MSUNCORE accepts any prob-

lem instance of (weighted) (partial) MAXSAT, it is currently

unable to handle arbitraly large integers, being restricted to

C++ long integers.

F. Availability

There are two versions of MSUNCORE, one developed

in 2008 and one developed in 2009. The 2008 version is

implemented in Perl and interfaces a modified version of

MiniSat 1.14 [4]. The 2009 version is implemented in C++,

and interfaces PicoSAT 914 [3]. Both versions of MSUN-

CORE can be obtained from the lead developer home page

http://www.csi.ucd.ie/staff/jpms/soft/, and are available for re-

search and educational purposes. Communication of errors

or suggestions for improvements should be forwarded to the

lead developer.

IV. CONCLUSIONS

This paper outlines MSUNCORE, a state-of-the-art,

unsatisfiability-based, MAXSAT solver, capable of solving

(weighted) (partial) MAXSAT problem instances from prac-

tical application domains. More detailed descriptions of the

algorithms available in the existing versions of MSUNCORE

can be found elsewhere [10], [11], [15], [16]. MSUNCORE

has consistently ranked as the best performer for instances of

the industrial MAXSAT category in the MAXSAT evaluation.

In the industrial categories of (weighted) (partial) MAXSAT,

MSUNCORE is among the top performers for concrete classes

of instances.
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WBO is a Weighted Boolean Optimization solver able to tackle both MaxSAT
and Pseudo-Boolean problem instances. It is based on the ideas described in the
paper ”Algorithms for Weighted Boolean Optimization” published in SAT 2009
proceedings. WBO is based on the identification of unsatisfiable subformulas.
After the identification of an unsatisfiable core, it relaxes the constraints in the
core by adding a new relaxation variable to each constraint. A new constraint
is added so that at most one of the relaxation variables can be assigned value 1.
The algorithm ends when the resulting formula becomes satisfiable. See the
referred paper for details.
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MaxSatz applies resolution style inference rules, and incorporates a lower
bound computation method that increments the lower bound by one when it
detects an inconsistent subset using unit propagation and failed literal detection.
It adapts to Max-SAT the technology of the SAT solver Satz. For further details
see [3, 4, 2, 1].
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[1] Li, C. M., Manà, F., Mohamedou, N., and Planes, J. Exploiting cycle
structures in max-sat. In Proceedings of Twelfth International Conference
on Theory and Applications of Satisfiability Testing (SAT 2009) (Swansea,
Wales, UK, June 2009), O. Kullmann, Ed., vol. 5584 of LNCS, Springer,
pp. 467–480.
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