0.04/0.07 c SCIP version 1.1.0.7
0.04/0.07 c LP-Solver SoPlex 1.4.1
0.04/0.07 c user parameter file <scip.set> not found - using default parameters
0.04/0.07 c read problem <HOME/instance-3739496-1338756424.opb>
0.04/0.07 c original problem has 3658 variables (3658 bin, 0 int, 0 impl, 0 cont) and 11930 constraints
0.04/0.09 c No objective function, only one solution is needed.
0.04/0.09 c start presolving problem
0.04/0.09 c presolving:
0.18/0.28 c (round 1) 1069 del vars, 2701 del conss, 745 chg bounds, 17 chg sides, 18 chg coeffs, 0 upgd conss, 562219 impls, 0 clqs
0.29/0.36 c (round 2) 2320 del vars, 7269 del conss, 1937 chg bounds, 34 chg sides, 35 chg coeffs, 0 upgd conss, 568475 impls, 0 clqs
0.29/0.37 c (round 3) 2749 del vars, 9202 del conss, 2212 chg bounds, 98 chg sides, 96 chg coeffs, 0 upgd conss, 570282 impls, 0 clqs
0.29/0.38 c (round 4) 3011 del vars, 10149 del conss, 2397 chg bounds, 130 chg sides, 130 chg coeffs, 0 upgd conss, 571323 impls, 0 clqs
0.29/0.38 c (round 5) 3130 del vars, 10618 del conss, 2477 chg bounds, 191 chg sides, 195 chg coeffs, 0 upgd conss, 571739 impls, 0 clqs
0.29/0.39 c (round 6) 3157 del vars, 10766 del conss, 2487 chg bounds, 206 chg sides, 217 chg coeffs, 0 upgd conss, 571857 impls, 0 clqs
0.29/0.39 c (round 7) 3159 del vars, 10787 del conss, 2488 chg bounds, 218 chg sides, 230 chg coeffs, 0 upgd conss, 571863 impls, 0 clqs
0.39/0.40 c (round 8) 3159 del vars, 10788 del conss, 2488 chg bounds, 218 chg sides, 230 chg coeffs, 1142 upgd conss, 571863 impls, 0 clqs
0.39/0.41 c (round 9) 3159 del vars, 10788 del conss, 2488 chg bounds, 224 chg sides, 277 chg coeffs, 1142 upgd conss, 571913 impls, 13 clqs
0.39/0.41 c (round 10) 3159 del vars, 10788 del conss, 2488 chg bounds, 224 chg sides, 299 chg coeffs, 1142 upgd conss, 571913 impls, 13 clqs
0.39/0.41 c (round 11) 3159 del vars, 10788 del conss, 2488 chg bounds, 224 chg sides, 314 chg coeffs, 1142 upgd conss, 571913 impls, 13 clqs
0.39/0.42 c (round 12) 3159 del vars, 10788 del conss, 2488 chg bounds, 224 chg sides, 325 chg coeffs, 1142 upgd conss, 571913 impls, 13 clqs
0.39/0.42 c (round 13) 3159 del vars, 10788 del conss, 2488 chg bounds, 224 chg sides, 332 chg coeffs, 1142 upgd conss, 571913 impls, 13 clqs
0.39/0.42 c (round 14) 3159 del vars, 10788 del conss, 2488 chg bounds, 224 chg sides, 336 chg coeffs, 1142 upgd conss, 571913 impls, 13 clqs
0.39/0.42 c (round 15) 3159 del vars, 10788 del conss, 2488 chg bounds, 224 chg sides, 339 chg coeffs, 1142 upgd conss, 571913 impls, 13 clqs
0.39/0.42 c (round 16) 3159 del vars, 10788 del conss, 2488 chg bounds, 224 chg sides, 342 chg coeffs, 1142 upgd conss, 571913 impls, 13 clqs
0.39/0.42 c (round 17) 3159 del vars, 10788 del conss, 2488 chg bounds, 225 chg sides, 344 chg coeffs, 1142 upgd conss, 571913 impls, 13 clqs
0.39/0.42 c presolving (18 rounds):
0.39/0.42 c 3159 deleted vars, 10788 deleted constraints, 2488 tightened bounds, 0 added holes, 225 changed sides, 344 changed coefficients
0.39/0.42 c 571913 implications, 13 cliques
0.39/0.42 c presolved problem has 499 variables (499 bin, 0 int, 0 impl, 0 cont) and 1142 constraints
0.39/0.42 c 42 constraints of type <knapsack>
0.39/0.42 c 1100 constraints of type <logicor>
0.39/0.42 c transformed objective value is always integral (scale: 1)
0.39/0.42 c Presolving Time: 0.30
0.39/0.42 c SATUNSAT-LIN
0.39/0.42 c -----------------------------------------------------------------------------------------------
0.39/0.42 c # frequency for calling separator <flowcover> (-1: never, 0: only in root node)
0.39/0.42 c # [type: int, range: [-1,2147483647], default: 0]
0.39/0.42 c separating/flowcover/freq = c -1
0.39/0.42 c # frequency for calling separator <cmir> (-1: never, 0: only in root node)
0.39/0.42 c # [type: int, range: [-1,2147483647], default: 0]
0.39/0.42 c separating/cmir/freq = c -1
0.39/0.42 c # additional number of allowed LP iterations
0.39/0.42 c # [type: int, range: [0,2147483647], default: 1000]
0.39/0.42 c heuristics/veclendiving/maxlpiterofs = c 1500
0.39/0.42 c # maximal fraction of diving LP iterations compared to node LP iterations
0.39/0.42 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.39/0.42 c heuristics/veclendiving/maxlpiterquot = c 0.075
0.39/0.42 c # frequency for calling primal heuristic <veclendiving> (-1: never, 0: only at depth freqofs)
0.39/0.42 c # [type: int, range: [-1,2147483647], default: 10]
0.39/0.42 c heuristics/veclendiving/freq = c -1
0.39/0.42 c # frequency for calling primal heuristic <simplerounding> (-1: never, 0: only at depth freqofs)
0.39/0.42 c # [type: int, range: [-1,2147483647], default: 1]
0.39/0.42 c heuristics/simplerounding/freq = c -1
0.39/0.42 c # frequency for calling primal heuristic <shifting> (-1: never, 0: only at depth freqofs)
0.39/0.42 c # [type: int, range: [-1,2147483647], default: 10]
0.39/0.42 c heuristics/shifting/freq = c -1
0.39/0.42 c # frequency for calling primal heuristic <rounding> (-1: never, 0: only at depth freqofs)
0.39/0.42 c # [type: int, range: [-1,2147483647], default: 1]
0.39/0.42 c heuristics/rounding/freq = c -1
0.39/0.42 c # additional number of allowed LP iterations
0.39/0.42 c # [type: int, range: [0,2147483647], default: 1000]
0.39/0.42 c heuristics/rootsoldiving/maxlpiterofs = c 1500
0.39/0.42 c # maximal fraction of diving LP iterations compared to node LP iterations
0.39/0.42 c # [type: real, range: [0,1.79769313486232e+308], default: 0.01]
0.39/0.42 c heuristics/rootsoldiving/maxlpiterquot = c 0.015
0.39/0.42 c # frequency for calling primal heuristic <rootsoldiving> (-1: never, 0: only at depth freqofs)
0.39/0.42 c # [type: int, range: [-1,2147483647], default: 20]
0.39/0.42 c heuristics/rootsoldiving/freq = c -1
0.39/0.42 c # number of nodes added to the contingent of the total nodes
0.39/0.42 c # [type: longint, range: [0,9223372036854775807], default: 500]
0.39/0.42 c heuristics/rens/nodesofs = c 2000
0.39/0.42 c # minimum percentage of integer variables that have to be fixable
0.39/0.42 c # [type: real, range: [0,1], default: 0.5]
0.39/0.42 c heuristics/rens/minfixingrate = c 0.3
0.39/0.42 c # frequency for calling primal heuristic <rens> (-1: never, 0: only at depth freqofs)
0.39/0.42 c # [type: int, range: [-1,2147483647], default: 0]
0.39/0.42 c heuristics/rens/freq = c -1
0.39/0.42 c # additional number of allowed LP iterations
0.39/0.42 c # [type: int, range: [0,2147483647], default: 1000]
0.39/0.42 c heuristics/pscostdiving/maxlpiterofs = c 1500
0.39/0.42 c # maximal fraction of diving LP iterations compared to node LP iterations
0.39/0.42 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.39/0.42 c heuristics/pscostdiving/maxlpiterquot = c 0.075
0.39/0.42 c # frequency for calling primal heuristic <pscostdiving> (-1: never, 0: only at depth freqofs)
0.39/0.42 c # [type: int, range: [-1,2147483647], default: 10]
0.39/0.42 c heuristics/pscostdiving/freq = c -1
0.39/0.42 c # frequency for calling primal heuristic <oneopt> (-1: never, 0: only at depth freqofs)
0.39/0.42 c # [type: int, range: [-1,2147483647], default: 1]
0.39/0.42 c heuristics/oneopt/freq = c -1
0.39/0.42 c # additional number of allowed LP iterations
0.39/0.42 c # [type: int, range: [0,2147483647], default: 1000]
0.39/0.42 c heuristics/objpscostdiving/maxlpiterofs = c 1500
0.39/0.42 c # maximal fraction of diving LP iterations compared to total iteration number
0.39/0.42 c # [type: real, range: [0,1], default: 0.01]
0.39/0.42 c heuristics/objpscostdiving/maxlpiterquot = c 0.015
0.39/0.42 c # frequency for calling primal heuristic <objpscostdiving> (-1: never, 0: only at depth freqofs)
0.39/0.42 c # [type: int, range: [-1,2147483647], default: 20]
0.39/0.42 c heuristics/objpscostdiving/freq = c -1
0.39/0.42 c # additional number of allowed LP iterations
0.39/0.42 c # [type: int, range: [0,2147483647], default: 1000]
0.39/0.42 c heuristics/linesearchdiving/maxlpiterofs = c 1500
0.39/0.42 c # maximal fraction of diving LP iterations compared to node LP iterations
0.39/0.42 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.39/0.42 c heuristics/linesearchdiving/maxlpiterquot = c 0.075
0.39/0.42 c # frequency for calling primal heuristic <linesearchdiving> (-1: never, 0: only at depth freqofs)
0.39/0.42 c # [type: int, range: [-1,2147483647], default: 10]
0.39/0.42 c heuristics/linesearchdiving/freq = c -1
0.39/0.42 c # frequency for calling primal heuristic <intshifting> (-1: never, 0: only at depth freqofs)
0.39/0.42 c # [type: int, range: [-1,2147483647], default: 10]
0.39/0.42 c heuristics/intshifting/freq = c -1
0.39/0.42 c # maximal fraction of diving LP iterations compared to node LP iterations
0.39/0.42 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.39/0.42 c heuristics/intdiving/maxlpiterquot = c 0.075
0.39/0.42 c # additional number of allowed LP iterations
0.39/0.42 c # [type: int, range: [0,2147483647], default: 1000]
0.39/0.42 c heuristics/guideddiving/maxlpiterofs = c 1500
0.39/0.42 c # maximal fraction of diving LP iterations compared to node LP iterations
0.39/0.42 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.39/0.42 c heuristics/guideddiving/maxlpiterquot = c 0.075
0.39/0.42 c # frequency for calling primal heuristic <guideddiving> (-1: never, 0: only at depth freqofs)
0.39/0.42 c # [type: int, range: [-1,2147483647], default: 10]
0.39/0.42 c heuristics/guideddiving/freq = c -1
0.39/0.42 c # additional number of allowed LP iterations
0.39/0.42 c # [type: int, range: [0,2147483647], default: 1000]
0.39/0.42 c heuristics/fracdiving/maxlpiterofs = c 1500
0.39/0.42 c # maximal fraction of diving LP iterations compared to node LP iterations
0.39/0.42 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.39/0.42 c heuristics/fracdiving/maxlpiterquot = c 0.075
0.39/0.42 c # frequency for calling primal heuristic <fracdiving> (-1: never, 0: only at depth freqofs)
0.39/0.42 c # [type: int, range: [-1,2147483647], default: 10]
0.39/0.42 c heuristics/fracdiving/freq = c -1
0.39/0.42 c # additional number of allowed LP iterations
0.39/0.42 c # [type: int, range: [0,2147483647], default: 1000]
0.39/0.42 c heuristics/feaspump/maxlpiterofs = c 2000
0.39/0.42 c # frequency for calling primal heuristic <feaspump> (-1: never, 0: only at depth freqofs)
0.39/0.42 c # [type: int, range: [-1,2147483647], default: 20]
0.39/0.42 c heuristics/feaspump/freq = c -1
0.39/0.42 c # minimum percentage of integer variables that have to be fixed
0.39/0.42 c # [type: real, range: [0,1], default: 0.666]
0.39/0.42 c heuristics/crossover/minfixingrate = c 0.5
0.39/0.42 c # contingent of sub problem nodes in relation to the number of nodes of the original problem
0.39/0.42 c # [type: real, range: [0,1], default: 0.1]
0.39/0.42 c heuristics/crossover/nodesquot = c 0.15
0.39/0.42 c # number of nodes without incumbent change that heuristic should wait
0.39/0.42 c # [type: longint, range: [0,9223372036854775807], default: 200]
0.39/0.42 c heuristics/crossover/nwaitingnodes = c 100
0.39/0.42 c # number of nodes added to the contingent of the total nodes
0.39/0.42 c # [type: longint, range: [0,9223372036854775807], default: 500]
0.39/0.42 c heuristics/crossover/nodesofs = c 750
0.39/0.42 c # frequency for calling primal heuristic <crossover> (-1: never, 0: only at depth freqofs)
0.39/0.42 c # [type: int, range: [-1,2147483647], default: 30]
0.39/0.42 c heuristics/crossover/freq = c -1
0.39/0.42 c # additional number of allowed LP iterations
0.39/0.42 c # [type: int, range: [0,2147483647], default: 1000]
0.39/0.42 c heuristics/coefdiving/maxlpiterofs = c 1500
0.39/0.42 c # maximal fraction of diving LP iterations compared to node LP iterations
0.39/0.42 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.39/0.42 c heuristics/coefdiving/maxlpiterquot = c 0.075
0.39/0.42 c # frequency for calling primal heuristic <coefdiving> (-1: never, 0: only at depth freqofs)
0.39/0.42 c # [type: int, range: [-1,2147483647], default: 10]
0.39/0.42 c heuristics/coefdiving/freq = c -1
0.39/0.42 c # maximal number of presolving rounds the presolver participates in (-1: no limit)
0.39/0.42 c # [type: int, range: [-1,2147483647], default: -1]
0.39/0.42 c presolving/probing/maxrounds = c 0
0.39/0.42 c # should presolving try to simplify knapsacks
0.39/0.42 c # [type: bool, range: {TRUE,FALSE}, default: FALSE]
0.39/0.42 c constraints/knapsack/simplifyinequalities = c TRUE
0.39/0.42 c # should disaggregation of knapsack constraints be allowed in preprocessing?
0.39/0.42 c # [type: bool, range: {TRUE,FALSE}, default: TRUE]
0.39/0.42 c constraints/knapsack/disaggregation = c FALSE
0.39/0.42 c # maximal number of cardinality inequalities lifted per separation round (-1: unlimited)
0.39/0.42 c # [type: int, range: [-1,2147483647], default: -1]
0.39/0.42 c constraints/knapsack/maxnumcardlift = c 0
0.39/0.42 c # should presolving try to simplify inequalities
0.39/0.42 c # [type: bool, range: {TRUE,FALSE}, default: FALSE]
0.39/0.42 c constraints/linear/simplifyinequalities = c TRUE
0.39/0.42 c # maximal number of separation rounds in the root node (-1: unlimited)
0.39/0.42 c # [type: int, range: [-1,2147483647], default: -1]
0.39/0.42 c separating/maxroundsroot = c 5
0.39/0.42 c # maximal number of separation rounds per node (-1: unlimited)
0.39/0.42 c # [type: int, range: [-1,2147483647], default: 5]
0.39/0.42 c separating/maxrounds = c 1
0.39/0.42 c # solving stops, if the given number of solutions were found (-1: no limit)
0.39/0.42 c # [type: int, range: [-1,2147483647], default: -1]
0.39/0.42 c limits/solutions = c 1
0.39/0.42 c # maximal memory usage in MB; reported memory usage is lower than real memory usage!
0.39/0.42 c # [type: real, range: [0,1.79769313486232e+308], default: 1e+20]
0.39/0.42 c limits/memory = c 13950
0.39/0.42 c # maximal time in seconds to run
0.39/0.42 c # [type: real, range: [0,1.79769313486232e+308], default: 1e+20]
0.39/0.42 c limits/time = c 1791
0.39/0.42 c # frequency for displaying node information lines
0.39/0.42 c # [type: int, range: [-1,2147483647], default: 100]
0.39/0.42 c display/freq = c 10000
0.39/0.42 c -----------------------------------------------------------------------------------------------
0.39/0.42 c start solving problem
0.39/0.42 c
0.39/0.42 c time | node | left |LP iter| mem |mdpt |frac |vars |cons |ccons|cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
0.39/0.42 c 0.3s| 1 | 0 | 5 | 13M| 0 | 1 | 499 |1142 |1142 | 499 |1142 | 0 | 0 | 0 | 1.068778e+03 | -- | Inf
0.39/0.43 c 0.3s| 1 | 0 | 11 | 13M| 0 | 0 | 499 |1142 |1142 | 499 |1144 | 2 | 0 | 0 | 1.069000e+03 | -- | Inf
0.39/0.43 c * 0.3s| 1 | 0 | 11 | 13M| 0 | - | 499 |1142 |1142 | 499 |1144 | 2 | 0 | 0 | 1.069000e+03 | 1.069000e+03 | 0.00%
0.39/0.43 c
0.39/0.43 c SCIP Status : problem is solved [optimal solution found]
0.39/0.43 c Solving Time (sec) : 0.32
0.39/0.43 c Solving Nodes : 1
0.39/0.43 c Primal Bound : +1.06900000000000e+03 (1 solutions)
0.39/0.43 c Dual Bound : +1.06900000000000e+03
0.39/0.43 c Gap : 0.00 %
0.39/0.43 c NODE 1
0.39/0.43 c DUAL BOUND 1069
0.39/0.43 c PRIMAL BOUND 1069
0.39/0.43 c GAP 0
0.39/0.43 s SATISFIABLE
0.39/0.43 v x3658 -x3657 -x3656 -x3655 -x3654 -x3653 -x3652 -x3651 -x3650 -x3649 -x3648 -x3647 -x3646 -x3645 -x3644 -x3643 -x3642 -x3641 -x3640
0.39/0.43 v -x3639 -x3638 -x3637 -x3636 -x3635 -x3634 -x3633 -x3632 -x3631 -x3630 -x3629 -x3628 -x3627 -x3626 -x3625 -x3624 -x3623 -x3622
0.39/0.43 v -x3621 -x3620 -x3619 -x3618 -x3617 -x3616 -x3615 -x3614 -x3613 -x3612 -x3611 -x3610 -x3609 -x3608 -x3607 -x3606 -x3605
0.39/0.43 v -x3604 -x3603 -x3602 -x3601 -x3600 -x3599 x3598 -x3597 -x3596 -x3595 -x3594 -x3593 -x3592 -x3591 -x3590 -x3589 -x3588 -x3587
0.39/0.43 v -x3586 -x3585 -x3584 -x3583 -x3582 -x3581 -x3580 -x3579 -x3578 -x3577 -x3576 -x3575 -x3574 -x3573 -x3572 -x3571 -x3570 -x3569
0.39/0.43 v -x3568 -x3567 -x3566 -x3565 -x3564 -x3563 -x3562 -x3561 -x3560 -x3559 -x3558 -x3557 -x3556 -x3555 -x3554 -x3553 -x3552 -x3551
0.39/0.43 v -x3550 -x3549 -x3548 -x3547 -x3546 -x3545 -x3544 -x3543 -x3542 -x3541 -x3540 x3539 x3538 x3537 x3536 x3535 x3534 x3533 x3532
0.39/0.43 v x3531 x3530 -x3529 -x3528 -x3527 -x3526 -x3525 -x3524 -x3523 -x3522 -x3521 -x3520 -x3519 -x3518 -x3517 -x3516 -x3515 -x3514
0.39/0.43 v -x3513 -x3512 -x3511 -x3510 -x3509 -x3508 -x3507 -x3506 -x3505 -x3504 -x3503 -x3502 -x3501 -x3500 -x3499 -x3498 -x3497 -x3496
0.39/0.43 v -x3495 -x3494 -x3493 -x3492 -x3491 -x3490 -x3489 -x3488 -x3487 -x3486 -x3485 -x3484 -x3483 -x3482 -x3481 x3480 x3479 x3478
0.39/0.43 v x3477 x3476 x3475 -x3474 -x3473 -x3472 -x3471 -x3470 -x3469 -x3468 -x3467 -x3466 -x3465 -x3464 -x3463 -x3462 -x3461 -x3460 -x3459
0.39/0.43 v -x3458 -x3457 -x3456 -x3455 -x3454 -x3453 -x3452 -x3451 -x3450 -x3449 -x3448 -x3447 -x3446 -x3445 -x3444 -x3443 -x3442 -x3441
0.39/0.43 v -x3440 -x3439 -x3438 -x3437 -x3436 -x3435 -x3434 -x3433 -x3432 -x3431 -x3430 -x3429 -x3428 -x3427 -x3426 -x3425 -x3424
0.39/0.43 v -x3423 -x3422 -x3421 -x3420 -x3419 -x3418 -x3417 -x3416 -x3415 -x3414 -x3413 -x3412 x3411 x3410 x3409 x3408 x3407 -x3406 -x3405
0.39/0.43 v -x3404 -x3403 -x3402 -x3401 -x3400 -x3399 -x3398 -x3397 -x3396 -x3395 -x3394 -x3393 -x3392 -x3391 -x3390 -x3389 -x3388 -x3387
0.39/0.43 v -x3386 -x3385 -x3384 -x3383 -x3382 -x3381 -x3380 -x3379 -x3378 -x3377 -x3376 -x3375 -x3374 -x3373 -x3372 -x3371 -x3370 -x3369
0.39/0.43 v -x3368 -x3367 -x3366 -x3365 -x3364 -x3363 -x3362 -x3361 -x3360 -x3359 -x3358 -x3357 -x3356 -x3355 -x3354 -x3353 -x3352 -x3351
0.39/0.43 v -x3350 -x3349 -x3348 x3347 x3346 x3345 x3344 x3343 x3342 x3341 x3340 -x3339 -x3338 -x3337 -x3336 -x3335 -x3334 -x3333 -x3332
0.39/0.43 v -x3331 -x3330 -x3329 -x3328 -x3327 -x3326 -x3325 -x3324 -x3323 -x3322 -x3321 -x3320 -x3319 -x3318 -x3317 -x3316 -x3315
0.39/0.43 v -x3314 -x3313 -x3312 -x3311 -x3310 -x3309 -x3308 -x3307 -x3306 -x3305 -x3304 -x3303 -x3302 -x3301 -x3300 -x3299 -x3298 -x3297
0.39/0.43 v -x3296 -x3295 -x3294 -x3293 -x3292 -x3291 -x3290 -x3289 x3288 x3287 x3286 -x3285 -x3284 -x3283 -x3282 -x3281 -x3280 -x3279 -x3278
0.39/0.43 v -x3277 -x3276 -x3275 -x3274 -x3273 -x3272 -x3271 -x3270 -x3269 -x3268 -x3267 -x3266 -x3265 -x3264 -x3263 -x3262 -x3261
0.39/0.43 v -x3260 -x3259 -x3258 -x3257 -x3256 -x3255 -x3254 -x3253 -x3252 -x3251 -x3250 -x3249 -x3248 -x3247 -x3246 -x3245 -x3244 -x3243
0.39/0.43 v -x3242 -x3241 -x3240 -x3239 -x3238 -x3237 -x3236 -x3235 -x3234 -x3233 -x3232 -x3231 -x3230 -x3229 -x3228 -x3227 -x3226 -x3225
0.39/0.43 v -x3224 -x3223 -x3222 x3221 x3220 x3219 x3218 -x3217 -x3216 -x3215 -x3214 -x3213 -x3212 -x3211 -x3210 -x3209 -x3208 -x3207 -x3206
0.39/0.43 v -x3205 -x3204 -x3203 -x3202 -x3201 -x3200 -x3199 -x3198 -x3197 -x3196 -x3195 -x3194 -x3193 -x3192 -x3191 -x3190 -x3189
0.39/0.43 v -x3188 -x3187 -x3186 -x3185 -x3184 -x3183 -x3182 -x3181 -x3180 -x3179 -x3178 -x3177 -x3176 -x3175 -x3174 -x3173 -x3172 -x3171
0.39/0.43 v -x3170 -x3169 -x3168 x3167 x3166 x3165 -x3164 -x3163 -x3162 -x3161 -x3160 -x3159 -x3158 -x3157 -x3156 -x3155 -x3154 -x3153 -x3152
0.39/0.43 v -x3151 -x3150 -x3149 -x3148 -x3147 -x3146 -x3145 -x3144 -x3143 -x3142 -x3141 -x3140 -x3139 -x3138 -x3137 -x3136 -x3135
0.39/0.43 v -x3134 -x3133 -x3132 -x3131 -x3130 -x3129 -x3128 -x3127 -x3126 -x3125 -x3124 -x3123 -x3122 -x3121 -x3120 -x3119 -x3118 -x3117
0.39/0.43 v -x3116 -x3115 -x3114 -x3113 -x3112 -x3111 -x3110 -x3109 -x3108 -x3107 -x3106 -x3105 -x3104 -x3103 -x3102 -x3101 -x3100 x3099
0.39/0.43 v x3098 -x3097 -x3096 -x3095 -x3094 -x3093 -x3092 -x3091 -x3090 -x3089 -x3088 -x3087 -x3086 -x3085 -x3084 -x3083 -x3082 -x3081
0.39/0.43 v -x3080 -x3079 -x3078 -x3077 -x3076 -x3075 -x3074 -x3073 -x3072 -x3071 -x3070 -x3069 -x3068 -x3067 -x3066 -x3065 -x3064 -x3063
0.39/0.43 v -x3062 -x3061 -x3060 -x3059 -x3058 -x3057 -x3056 -x3055 -x3054 -x3053 -x3052 -x3051 -x3050 -x3049 -x3048 -x3047 -x3046 -x3045
0.39/0.43 v -x3044 -x3043 -x3042 -x3041 x3040 x3039 x3038 x3037 -x3036 -x3035 -x3034 -x3033 -x3032 -x3031 -x3030 -x3029 -x3028 -x3027
0.39/0.43 v -x3026 -x3025 -x3024 -x3023 -x3022 -x3021 -x3020 -x3019 -x3018 -x3017 -x3016 -x3015 -x3014 -x3013 -x3012 -x3011 -x3010 -x3009
0.39/0.43 v -x3008 -x3007 -x3006 -x3005 -x3004 -x3003 -x3002 -x3001 -x3000 -x2999 -x2998 -x2997 -x2996 -x2995 -x2994 -x2993 -x2992 -x2991
0.39/0.43 v -x2990 -x2989 -x2988 -x2987 -x2986 -x2985 -x2984 -x2983 -x2982 -x2981 -x2980 x2979 -x2978 -x2977 -x2976 -x2975 -x2974 -x2973
0.39/0.43 v -x2972 -x2971 -x2970 -x2969 -x2968 -x2967 -x2966 -x2965 -x2964 -x2963 -x2962 -x2961 -x2960 -x2959 -x2958 -x2957 -x2956 -x2955
0.39/0.43 v -x2954 -x2953 -x2952 -x2951 -x2950 -x2949 -x2948 -x2947 -x2946 -x2945 -x2944 -x2943 -x2942 -x2941 -x2940 -x2939 -x2938 -x2937
0.39/0.43 v -x2936 -x2935 x2934 x2933 x2932 x2931 x2930 x2929 x2928 -x2927 -x2926 -x2925 -x2924 -x2923 -x2922 -x2921 -x2920 -x2919 -x2918
0.39/0.43 v -x2917 -x2916 -x2915 -x2914 -x2913 -x2912 -x2911 -x2910 -x2909 -x2908 -x2907 -x2906 -x2905 -x2904 -x2903 -x2902 -x2901 -x2900
0.39/0.43 v -x2899 -x2898 -x2897 -x2896 -x2895 -x2894 -x2893 -x2892 -x2891 -x2890 -x2889 -x2888 -x2887 -x2886 -x2885 -x2884 -x2883
0.39/0.43 v -x2882 -x2881 -x2880 -x2879 -x2878 -x2877 -x2876 -x2875 -x2874 -x2873 -x2872 -x2871 -x2870 -x2869 -x2868 x2867 x2866 x2865 x2864
0.39/0.43 v x2863 -x2862 -x2861 -x2860 -x2859 -x2858 -x2857 -x2856 -x2855 -x2854 -x2853 -x2852 -x2851 -x2850 -x2849 -x2848 -x2847 -x2846
0.39/0.43 v -x2845 -x2844 -x2843 -x2842 -x2841 -x2840 -x2839 -x2838 -x2837 -x2836 -x2835 -x2834 -x2833 -x2832 -x2831 -x2830 -x2829 -x2828
0.39/0.43 v -x2827 -x2826 -x2825 -x2824 -x2823 -x2822 -x2821 -x2820 -x2819 -x2818 -x2817 -x2816 -x2815 -x2814 -x2813 -x2812 -x2811 -x2810
0.39/0.43 v -x2809 -x2808 -x2807 -x2806 -x2805 x2804 x2803 x2802 x2801 x2800 x2799 x2798 x2797 -x2796 -x2795 -x2794 -x2793 -x2792 -x2791
0.39/0.43 v -x2790 -x2789 -x2788 -x2787 -x2786 -x2785 -x2784 -x2783 -x2782 -x2781 -x2780 -x2779 -x2778 -x2777 -x2776 -x2775 -x2774
0.39/0.43 v -x2773 -x2772 -x2771 -x2770 -x2769 -x2768 -x2767 -x2766 -x2765 -x2764 -x2763 -x2762 -x2761 -x2760 -x2759 -x2758 -x2757 -x2756
0.39/0.43 v -x2755 -x2754 -x2753 -x2752 -x2751 -x2750 -x2749 -x2748 -x2747 -x2746 -x2745 -x2744 -x2743 -x2742 -x2741 -x2740 -x2739 -x2738
0.39/0.43 v x2737 x2736 x2735 x2734 x2733 x2732 -x2731 -x2730 -x2729 -x2728 -x2727 -x2726 -x2725 -x2724 -x2723 -x2722 -x2721 -x2720 -x2719
0.39/0.43 v -x2718 -x2717 -x2716 -x2715 -x2714 -x2713 -x2712 -x2711 -x2710 -x2709 -x2708 -x2707 -x2706 -x2705 -x2704 -x2703 -x2702 -x2701
0.39/0.43 v -x2700 -x2699 -x2698 -x2697 -x2696 -x2695 -x2694 -x2693 -x2692 -x2691 -x2690 -x2689 -x2688 -x2687 -x2686 -x2685 -x2684 -x2683
0.39/0.43 v x2682 x2681 x2680 x2679 x2678 -x2677 -x2676 -x2675 -x2674 -x2673 -x2672 -x2671 -x2670 -x2669 -x2668 -x2667 -x2666 -x2665
0.39/0.43 v -x2664 -x2663 -x2662 -x2661 -x2660 -x2659 -x2658 -x2657 -x2656 -x2655 -x2654 -x2653 -x2652 -x2651 -x2650 -x2649 -x2648 -x2647
0.39/0.43 v -x2646 -x2645 -x2644 -x2643 -x2642 -x2641 -x2640 -x2639 -x2638 -x2637 -x2636 -x2635 -x2634 -x2633 -x2632 -x2631 -x2630 -x2629
0.39/0.43 v -x2628 x2627 -x2626 -x2625 -x2624 -x2623 -x2622 -x2621 -x2620 -x2619 -x2618 -x2617 -x2616 -x2615 -x2614 -x2613 -x2612 -x2611
0.39/0.43 v -x2610 -x2609 -x2608 -x2607 -x2606 -x2605 -x2604 -x2603 -x2602 -x2601 -x2600 -x2599 -x2598 -x2597 -x2596 -x2595 -x2594 -x2593
0.39/0.43 v -x2592 -x2591 -x2590 -x2589 -x2588 -x2587 -x2586 -x2585 -x2584 -x2583 -x2582 -x2581 -x2580 -x2579 -x2578 -x2577 -x2576 -x2575
0.39/0.43 v -x2574 -x2573 x2572 x2571 x2570 -x2569 -x2568 -x2567 -x2566 -x2565 -x2564 -x2563 -x2562 -x2561 -x2560 -x2559 -x2558 -x2557
0.39/0.43 v -x2556 -x2555 -x2554 -x2553 -x2552 -x2551 -x2550 -x2549 -x2548 -x2547 -x2546 -x2545 -x2544 -x2543 -x2542 -x2541 -x2540 -x2539
0.39/0.43 v -x2538 -x2537 -x2536 -x2535 -x2534 -x2533 -x2532 -x2531 -x2530 -x2529 -x2528 -x2527 -x2526 -x2525 -x2524 -x2523 -x2522 -x2521
0.39/0.43 v -x2520 -x2519 -x2518 -x2517 -x2516 -x2515 -x2514 -x2513 -x2512 -x2511 -x2510 -x2509 x2508 x2507 x2506 -x2505 -x2504 -x2503
0.39/0.43 v -x2502 -x2501 -x2500 -x2499 -x2498 -x2497 -x2496 -x2495 -x2494 -x2493 -x2492 -x2491 -x2490 -x2489 -x2488 -x2487 -x2486 -x2485
0.39/0.43 v -x2484 -x2483 -x2482 -x2481 -x2480 -x2479 -x2478 -x2477 -x2476 -x2475 -x2474 -x2473 -x2472 -x2471 -x2470 -x2469 -x2468 -x2467
0.39/0.43 v -x2466 -x2465 -x2464 -x2463 -x2462 -x2461 -x2460 -x2459 -x2458 -x2457 -x2456 -x2455 -x2454 -x2453 -x2452 -x2451 -x2450
0.39/0.43 v x2449 -x2448 -x2447 -x2446 -x2445 -x2444 -x2443 -x2442 -x2441 -x2440 -x2439 -x2438 -x2437 -x2436 -x2435 -x2434 -x2433 -x2432
0.39/0.43 v -x2431 -x2430 -x2429 -x2428 -x2427 -x2426 -x2425 -x2424 -x2423 -x2422 -x2421 -x2420 -x2419 -x2418 -x2417 -x2416 -x2415 -x2414
0.39/0.43 v -x2413 -x2412 -x2411 -x2410 -x2409 -x2408 -x2407 -x2406 -x2405 -x2404 -x2403 -x2402 -x2401 -x2400 -x2399 -x2398 -x2397 -x2396
0.39/0.43 v -x2395 -x2394 -x2393 -x2392 -x2391 -x2390 -x2389 -x2388 -x2387 -x2386 -x2385 -x2384 x2383 x2382 x2381 x2380 x2379 -x2378 -x2377
0.39/0.43 v -x2376 -x2375 -x2374 -x2373 -x2372 -x2371 -x2370 -x2369 -x2368 -x2367 -x2366 -x2365 -x2364 -x2363 -x2362 -x2361 -x2360 -x2359
0.39/0.43 v -x2358 -x2357 -x2356 -x2355 -x2354 -x2353 -x2352 -x2351 -x2350 -x2349 -x2348 -x2347 -x2346 -x2345 -x2344 -x2343 -x2342
0.39/0.43 v -x2341 -x2340 -x2339 -x2338 -x2337 -x2336 -x2335 -x2334 -x2333 -x2332 -x2331 -x2330 -x2329 -x2328 -x2327 -x2326 -x2325 -x2324
0.39/0.43 v x2323 x2322 x2321 x2320 x2319 x2318 x2317 x2316 -x2315 -x2314 -x2313 -x2312 -x2311 -x2310 -x2309 -x2308 -x2307 -x2306 -x2305
0.39/0.43 v -x2304 -x2303 -x2302 -x2301 -x2300 -x2299 -x2298 -x2297 -x2296 -x2295 -x2294 -x2293 -x2292 -x2291 x2290 x2289 x2288 x2287 x2286
0.39/0.43 v x2285 -x2284 -x2283 -x2282 -x2281 -x2280 -x2279 -x2278 -x2277 -x2276 -x2275 -x2274 -x2273 -x2272 -x2271 -x2270 -x2269 -x2268
0.39/0.43 v -x2267 -x2266 -x2265 -x2264 -x2263 -x2262 -x2261 -x2260 -x2259 -x2258 -x2257 -x2256 -x2255 -x2254 -x2253 -x2252 -x2251 -x2250
0.39/0.43 v -x2249 -x2248 -x2247 -x2246 -x2245 -x2244 -x2243 -x2242 -x2241 -x2240 -x2239 -x2238 -x2237 -x2236 -x2235 -x2234 -x2233 -x2232
0.39/0.43 v -x2231 -x2230 -x2229 -x2228 -x2227 -x2226 -x2225 -x2224 -x2223 -x2222 -x2221 -x2220 -x2219 -x2218 -x2217 -x2216 -x2215
0.39/0.43 v -x2214 -x2213 -x2212 -x2211 -x2210 -x2209 -x2208 -x2207 -x2206 x2205 x2204 x2203 x2202 x2201 x2200 x2199 x2198 -x2197 -x2196
0.39/0.43 v -x2195 -x2194 -x2193 -x2192 -x2191 -x2190 -x2189 -x2188 -x2187 -x2186 -x2185 -x2184 -x2183 -x2182 -x2181 -x2180 -x2179 -x2178
0.39/0.43 v -x2177 -x2176 -x2175 -x2174 -x2173 -x2172 -x2171 -x2170 -x2169 -x2168 -x2167 -x2166 -x2165 -x2164 -x2163 -x2162 -x2161 -x2160
0.39/0.43 v -x2159 -x2158 -x2157 -x2156 -x2155 -x2154 -x2153 -x2152 x2151 x2150 -x2149 -x2148 -x2147 -x2146 -x2145 -x2144 -x2143 -x2142
0.39/0.43 v -x2141 -x2140 -x2139 -x2138 -x2137 -x2136 -x2135 -x2134 -x2133 -x2132 -x2131 -x2130 -x2129 -x2128 -x2127 -x2126 -x2125 -x2124
0.39/0.43 v -x2123 -x2122 -x2121 -x2120 -x2119 -x2118 -x2117 -x2116 -x2115 -x2114 -x2113 -x2112 -x2111 -x2110 -x2109 -x2108 -x2107 -x2106
0.39/0.43 v -x2105 -x2104 -x2103 -x2102 -x2101 -x2100 -x2099 -x2098 -x2097 -x2096 -x2095 -x2094 -x2093 -x2092 -x2091 -x2090 -x2089 -x2088
0.39/0.43 v x2087 x2086 x2085 x2084 x2083 x2082 x2081 x2080 x2079 -x2078 -x2077 -x2076 -x2075 -x2074 -x2073 -x2072 -x2071 -x2070 -x2069
0.39/0.43 v -x2068 -x2067 -x2066 -x2065 -x2064 -x2063 -x2062 -x2061 -x2060 -x2059 -x2058 -x2057 -x2056 -x2055 -x2054 -x2053 -x2052 -x2051
0.39/0.43 v -x2050 -x2049 -x2048 -x2047 -x2046 -x2045 -x2044 -x2043 -x2042 -x2041 -x2040 -x2039 -x2038 -x2037 -x2036 -x2035 -x2034 -x2033
0.39/0.43 v -x2032 -x2031 -x2030 -x2029 -x2028 -x2027 -x2026 -x2025 -x2024 -x2023 -x2022 -x2021 x2020 x2019 x2018 x2017 -x2016 -x2015
0.39/0.43 v -x2014 -x2013 -x2012 -x2011 -x2010 -x2009 -x2008 -x2007 -x2006 -x2005 -x2004 -x2003 -x2002 -x2001 -x2000 -x1999 -x1998 -x1997
0.39/0.43 v -x1996 -x1995 -x1994 -x1993 -x1992 -x1991 -x1990 -x1989 -x1988 -x1987 -x1986 -x1985 -x1984 -x1983 -x1982 -x1981 -x1980 -x1979
0.39/0.43 v -x1978 -x1977 -x1976 -x1975 -x1974 -x1973 -x1972 -x1971 -x1970 -x1969 -x1968 -x1967 -x1966 -x1965 -x1964 -x1963 -x1962 -x1961
0.39/0.43 v -x1960 -x1959 -x1958 x1957 x1956 x1955 x1954 x1953 x1952 x1951 x1950 x1949 x1948 -x1947 -x1946 -x1945 -x1944 -x1943 -x1942
0.39/0.43 v -x1941 -x1940 -x1939 -x1938 -x1937 -x1936 -x1935 -x1934 -x1933 -x1932 -x1931 -x1930 -x1929 -x1928 -x1927 -x1926 -x1925 -x1924
0.39/0.43 v -x1923 -x1922 -x1921 -x1920 -x1919 -x1918 -x1917 -x1916 -x1915 -x1914 -x1913 -x1912 -x1911 -x1910 -x1909 -x1908 -x1907 x1906
0.39/0.43 v x1905 x1904 -x1903 -x1902 -x1901 -x1900 -x1899 -x1898 -x1897 -x1896 -x1895 -x1894 -x1893 -x1892 -x1891 -x1890 -x1889 -x1888
0.39/0.43 v -x1887 -x1886 -x1885 -x1884 -x1883 -x1882 -x1881 -x1880 -x1879 -x1878 -x1877 -x1876 -x1875 -x1874 -x1873 -x1872 -x1871 -x1870
0.39/0.43 v -x1869 -x1868 -x1867 -x1866 -x1865 -x1864 -x1863 -x1862 -x1861 -x1860 -x1859 -x1858 x1857 x1856 x1855 x1854 -x1853 -x1852
0.39/0.43 v -x1851 -x1850 -x1849 -x1848 -x1847 -x1846 -x1845 -x1844 -x1843 -x1842 -x1841 -x1840 -x1839 -x1838 -x1837 -x1836 -x1835 -x1834
0.39/0.43 v -x1833 -x1832 -x1831 -x1830 -x1828 -x1827 -x1826 -x1825 -x1824 -x1823 -x1822 -x1821 -x1820 -x1819 -x1818 -x1817 -x1816 -x1815
0.39/0.43 v -x1814 -x1813 -x1812 -x1811 -x1810 -x1809 -x1808 -x1807 -x1806 -x1805 -x1804 -x1803 -x1802 -x1801 -x1800 -x1799 -x1798 -x1797
0.39/0.43 v -x1796 -x1795 -x1794 -x1793 -x1792 -x1791 -x1790 -x1789 -x1788 -x1787 -x1786 -x1785 -x1784 -x1783 -x1782 -x1781 -x1780 -x1779
0.39/0.43 v -x1778 -x1777 -x1776 -x1775 -x1774 -x1773 -x1772 -x1771 x1770 x1769 -x1768 -x1767 -x1766 -x1765 -x1764 -x1763 -x1762 -x1761
0.39/0.43 v -x1760 -x1759 -x1758 -x1757 -x1756 -x1755 -x1754 -x1753 -x1752 -x1751 -x1750 -x1749 -x1748 -x1747 -x1746 -x1745 -x1744 -x1743
0.39/0.43 v -x1742 -x1741 -x1740 -x1739 -x1738 -x1737 -x1736 -x1735 -x1734 -x1733 -x1732 -x1731 -x1730 -x1729 -x1728 -x1727 -x1726 -x1725
0.39/0.43 v -x1724 -x1723 -x1722 -x1721 -x1720 -x1719 -x1718 -x1717 -x1716 -x1715 -x1714 -x1713 -x1712 x1711 x1710 x1709 x1708 x1707
0.39/0.43 v x1706 x1705 x1704 x1703 x1702 x1701 -x1700 -x1699 -x1698 -x1697 -x1696 -x1695 -x1694 -x1693 -x1692 -x1691 -x1690 -x1689 -x1688
0.39/0.43 v -x1687 -x1686 -x1685 -x1684 -x1683 -x1682 -x1681 -x1680 -x1679 -x1678 -x1677 -x1676 -x1675 -x1674 -x1673 -x1672 -x1671 -x1670
0.39/0.43 v -x1669 -x1668 -x1667 -x1666 -x1665 -x1664 -x1663 -x1662 -x1661 -x1660 -x1659 -x1658 -x1657 -x1656 -x1655 -x1654 -x1653 x1652
0.39/0.43 v x1651 x1650 x1649 x1648 x1647 x1646 -x1645 -x1644 -x1643 -x1642 -x1641 -x1640 -x1639 -x1638 -x1637 -x1636 -x1635 -x1634
0.39/0.43 v -x1633 -x1632 -x1631 -x1630 -x1629 -x1628 -x1627 -x1626 -x1625 -x1624 -x1623 -x1622 -x1621 -x1620 -x1619 -x1618 -x1617 -x1616
0.39/0.43 v -x1615 -x1614 -x1613 -x1612 -x1611 -x1610 -x1609 -x1608 -x1607 -x1606 -x1605 -x1604 -x1603 -x1602 -x1601 -x1600 -x1599 -x1598
0.39/0.43 v -x1597 -x1596 -x1595 -x1594 x1593 x1592 x1591 x1590 x1589 x1588 x1587 x1586 x1585 x1584 x1583 x1582 x1581 x1580 x1579 x1578
0.39/0.43 v -x1577 -x1576 -x1575 -x1574 -x1573 -x1572 -x1571 -x1570 -x1569 -x1568 -x1567 -x1566 -x1565 -x1564 -x1563 -x1562 -x1561 -x1560
0.39/0.43 v -x1559 -x1558 -x1557 -x1556 -x1555 -x1554 -x1553 -x1552 -x1551 -x1550 -x1549 -x1548 -x1547 -x1546 -x1545 -x1544 -x1543 -x1542
0.39/0.43 v -x1541 -x1540 -x1539 -x1538 -x1537 -x1536 -x1535 x1534 x1533 x1532 x1531 x1530 x1529 x1528 x1527 x1526 x1525 x1524 x1523 x1522
0.39/0.43 v x1521 x1520 x1519 x1518 x1517 x1516 x1515 x1514 x1513 x1512 x1511 -x1510 -x1509 -x1508 -x1507 -x1506 -x1505 -x1504 -x1503
0.39/0.43 v -x1502 -x1501 -x1500 -x1499 -x1498 -x1497 -x1496 -x1495 -x1494 -x1493 -x1492 -x1491 -x1490 -x1489 -x1488 -x1487 -x1486 -x1485
0.39/0.43 v -x1484 -x1483 -x1482 -x1481 -x1480 -x1479 -x1478 -x1477 -x1476 x1475 x1474 x1473 x1472 x1471 x1470 x1469 x1468 x1467 x1466
0.39/0.43 v x1465 x1464 x1463 x1462 x1461 x1460 x1459 x1458 x1457 -x1456 -x1455 -x1454 -x1453 -x1452 -x1451 -x1450 -x1449 -x1448 -x1447
0.39/0.43 v -x1446 -x1445 -x1444 -x1443 -x1442 -x1441 -x1440 -x1439 -x1438 -x1437 -x1436 -x1435 -x1434 -x1433 -x1432 -x1431 -x1430 -x1429
0.39/0.43 v -x1428 -x1427 -x1426 -x1425 -x1424 -x1423 -x1422 -x1421 -x1420 -x1419 -x1418 -x1417 x1416 x1415 x1414 x1413 x1412 x1411 x1410
0.39/0.43 v x1409 x1408 x1407 x1406 x1405 x1404 x1403 x1402 x1401 x1400 x1399 x1398 x1397 x1396 x1395 x1394 x1393 x1392 x1391 x1390 x1389
0.39/0.43 v -x1388 -x1387 -x1386 -x1385 -x1384 -x1383 -x1382 -x1381 -x1380 -x1379 -x1378 -x1377 -x1376 -x1375 -x1374 -x1373 -x1372 -x1371
0.39/0.43 v -x1370 -x1369 -x1368 -x1367 -x1366 -x1365 -x1364 -x1363 -x1362 -x1361 -x1360 -x1359 -x1358 x1357 x1356 x1355 x1354 x1353
0.39/0.43 v x1352 x1351 x1350 x1349 x1348 x1347 x1346 x1345 x1344 x1343 x1342 x1341 x1340 x1339 x1338 x1337 x1336 -x1335 -x1334 -x1333 -x1332
0.39/0.43 v -x1331 -x1330 -x1329 -x1328 -x1327 -x1326 -x1325 -x1324 -x1323 -x1322 -x1321 -x1320 -x1319 -x1318 -x1317 -x1316 -x1315 -x1314
0.39/0.43 v -x1313 -x1312 -x1311 -x1310 -x1309 -x1308 -x1307 -x1306 -x1305 -x1304 -x1303 -x1302 -x1301 -x1300 -x1299 x1298 x1297 x1296
0.39/0.43 v x1295 x1294 x1293 x1292 x1291 x1290 x1289 x1288 x1287 x1286 x1285 x1284 x1283 x1282 x1281 x1280 x1279 x1278 x1277 x1276 x1275
0.39/0.43 v x1274 x1273 x1272 x1271 x1270 x1269 -x1268 -x1267 -x1266 -x1265 -x1264 -x1263 -x1262 -x1261 -x1260 -x1259 -x1258 -x1257
0.39/0.43 v -x1256 -x1255 -x1254 -x1253 -x1252 -x1251 -x1250 -x1249 -x1248 -x1247 -x1246 -x1245 -x1244 -x1243 -x1242 -x1241 -x1240 x1239
0.39/0.43 v x1238 x1237 x1236 x1235 x1234 x1233 x1232 x1231 x1230 x1229 x1228 x1227 x1226 x1225 x1224 x1223 x1222 x1221 x1220 x1219 x1218
0.39/0.43 v x1217 x1216 x1215 x1214 x1213 x1212 x1211 x1210 x1209 x1208 -x1207 -x1206 -x1205 -x1204 -x1203 -x1202 -x1201 -x1200 -x1199 -x1198
0.39/0.43 v -x1197 -x1196 -x1195 -x1194 -x1193 -x1192 -x1191 -x1190 -x1189 -x1188 -x1187 -x1186 -x1185 -x1184 -x1183 -x1182 -x1181
0.39/0.43 v x1180 x1179 x1178 x1177 x1176 x1175 x1174 x1173 x1172 x1171 x1170 x1169 x1168 x1167 x1166 x1165 x1164 x1163 x1162 x1161 x1160
0.39/0.43 v x1159 x1158 x1157 x1156 x1155 x1154 x1153 x1152 x1151 x1150 -x1149 -x1148 -x1147 -x1146 -x1145 -x1144 -x1143 -x1142 -x1141 -x1140
0.39/0.43 v -x1139 -x1138 -x1137 -x1136 -x1135 -x1134 -x1133 -x1132 -x1131 -x1130 -x1129 -x1128 -x1127 -x1126 -x1125 -x1124 -x1123
0.39/0.43 v -x1122 x1121 x1120 x1119 x1118 x1117 x1116 x1115 x1114 x1113 x1112 x1111 x1110 x1109 x1108 x1107 x1106 x1105 x1104 x1103 x1102
0.39/0.43 v x1101 x1100 x1099 -x1098 -x1097 -x1096 -x1095 -x1094 -x1093 -x1092 -x1091 -x1090 -x1089 -x1088 -x1087 -x1086 -x1085 -x1084
0.39/0.43 v -x1083 -x1082 -x1081 -x1080 -x1079 -x1078 -x1077 -x1076 -x1075 -x1074 -x1073 -x1072 -x1071 -x1070 -x1069 -x1068 -x1067 -x1066
0.39/0.43 v -x1065 -x1064 -x1063 x1062 x1061 x1060 x1059 x1058 x1057 x1056 x1055 x1054 x1053 x1052 x1051 x1050 x1049 x1048 x1047 x1046 x1045
0.39/0.43 v x1044 x1043 x1042 x1041 x1040 x1039 x1038 x1037 x1036 x1035 x1034 -x1033 -x1032 -x1031 -x1030 -x1029 -x1028 -x1027 -x1026
0.39/0.43 v -x1025 -x1024 -x1023 -x1022 -x1021 -x1020 -x1019 -x1018 -x1017 -x1016 -x1015 -x1014 -x1013 -x1012 -x1011 -x1010 -x1009 -x1008
0.39/0.43 v -x1007 -x1006 -x1005 -x1004 x1003 x1002 x1001 x1000 x999 x998 x997 x996 x995 x994 x993 x992 x991 x990 x989 x988 x987 x986
0.39/0.43 v x985 x984 x983 x982 x981 x980 x979 x978 x977 x976 x975 x974 x973 x972 x971 x970 x969 x968 -x967 -x966 -x965 -x964 -x963 -x962
0.39/0.43 v -x961 -x960 -x959 -x958 -x957 -x956 -x955 -x954 -x953 -x952 -x951 -x950 -x949 -x948 -x947 -x946 -x945 x944 x943 x942 x941 x940
0.39/0.43 v x939 x938 x937 x936 x935 x934 x933 x932 x931 x930 x929 x928 x927 x926 x925 x924 x923 x922 x921 x920 x919 x918 x917 x916 x915
0.39/0.43 v x914 x913 x912 x911 x910 x909 x908 x907 x906 x905 x904 x903 -x902 -x901 -x900 -x899 -x898 -x897 -x896 -x895 -x894 -x893 -x892
0.39/0.43 v -x891 -x890 -x889 -x888 -x887 -x886 x885 x884 x883 x882 x881 x880 x879 x878 x877 x876 x875 x874 x873 x872 x871 x870 x869
0.39/0.43 v x868 x867 x866 x865 x864 x863 x862 x861 x860 x859 x858 x857 x856 x855 x854 x853 x852 x851 x850 x849 -x848 -x847 -x846 -x845 -x844
0.39/0.43 v -x843 -x842 -x841 -x840 -x839 -x838 -x837 -x836 -x835 -x834 -x833 -x832 -x831 -x830 -x829 -x828 -x827 x826 x825 x824 x823
0.39/0.43 v x822 x821 x820 x819 x818 x817 x816 x815 x814 x813 x812 x811 x810 x809 x808 x807 x806 x805 x804 x803 x802 x801 x800 x799 x798
0.39/0.43 v -x797 -x796 -x795 -x794 -x793 -x792 -x791 -x790 -x789 -x788 -x787 -x786 -x785 -x784 -x783 -x782 -x781 -x780 -x779 -x778 -x777
0.39/0.43 v -x776 -x775 -x774 -x773 -x772 -x771 -x770 -x769 -x768 x767 x766 x765 x764 x763 x762 x761 x760 x759 x758 x757 x756 x755 x754
0.39/0.43 v x753 x752 x751 x750 x749 x748 x747 x746 x745 x744 x743 x742 x741 -x740 -x739 -x738 -x737 -x736 -x735 -x734 -x733 -x732 -x731
0.39/0.43 v -x730 -x729 -x728 -x727 -x726 -x725 -x724 -x723 -x722 -x721 -x720 -x719 -x718 -x717 -x716 -x715 -x714 -x713 -x712 -x711 -x710
0.39/0.43 v -x709 x708 x707 x706 x705 x704 x703 x702 x701 x700 x699 x698 x697 x696 x695 x694 x693 x692 x691 x690 x689 x688 x687 x686 x685
0.39/0.43 v x684 x683 x682 x681 x680 x679 x678 x677 -x676 -x675 -x674 -x673 -x672 -x671 -x670 -x669 -x668 -x667 -x666 -x665 -x664 -x663
0.39/0.43 v -x662 -x661 -x660 -x659 -x658 -x657 -x656 -x655 -x654 -x653 -x652 -x651 -x650 x649 x648 x647 x646 x645 x644 x643 x642 x641
0.39/0.43 v x640 x639 x638 x637 x636 x635 x634 x633 x632 x631 x630 x629 x628 x627 x626 x625 x624 x623 x622 x621 x620 -x619 -x618 -x617 -x616
0.39/0.43 v -x615 -x614 -x613 -x612 -x611 -x610 -x609 -x608 -x607 -x606 -x605 -x604 -x603 -x602 -x601 -x600 -x599 -x598 -x597 -x596
0.39/0.43 v -x595 -x594 -x593 -x592 -x591 x590 x589 x588 x587 x586 x585 x584 x583 x582 x581 x580 x579 x578 x577 x576 x575 x574 x573 x572
0.39/0.43 v x571 x570 x569 x568 x567 x566 x565 x564 x563 x562 x561 x560 x559 x558 x557 x556 x555 x554 x553 x552 x551 x550 -x549 -x548 -x547
0.39/0.43 v -x546 -x545 -x544 -x543 -x542 -x541 -x540 -x539 -x538 -x537 -x536 -x535 -x534 -x533 -x532 x531 x530 x529 x528 x527 x526 x525
0.39/0.43 v x524 x523 x522 x521 x520 x519 x518 x517 x516 x515 x514 x513 x512 x511 x510 x509 x508 x507 x506 x505 x504 x503 x502 x501 x500
0.39/0.43 v x499 x498 x497 x496 x495 x494 x493 x492 x491 x490 x489 x488 x487 -x486 -x485 -x484 -x483 -x482 -x481 -x480 -x479 -x478 -x477
0.39/0.43 v -x476 -x475 -x474 -x473 x472 x471 x470 x469 x468 x467 x466 x465 x464 x463 x462 x461 x460 x459 x458 x457 x456 -x455 -x454 -x453
0.39/0.43 v -x452 -x451 -x450 -x449 -x448 -x447 -x446 -x445 -x444 -x443 -x442 -x441 -x440 -x439 -x438 -x437 -x436 -x435 -x434 -x433
0.39/0.43 v -x432 -x431 -x430 -x429 -x428 -x427 -x426 -x425 -x424 -x423 -x422 -x421 -x420 -x419 -x418 -x417 -x416 -x415 -x414 x413 x412 x411
0.39/0.43 v x410 x409 x408 x407 x406 x405 x404 x403 x402 x401 x400 x399 x398 x397 x396 x395 x394 x393 x392 x391 x390 x389 x388 x387 x386
0.39/0.43 v x385 x384 x383 x382 x381 x380 x379 x378 x377 x376 x375 x374 x373 x372 x371 x370 x369 -x368 -x367 -x366 -x365 -x364 -x363
0.39/0.43 v -x362 -x361 -x360 -x359 -x358 -x357 -x356 -x355 x354 x353 x352 x351 x350 x349 x348 x347 x346 x345 x344 x343 x342 x341 x340 x339
0.39/0.43 v x338 x337 x336 x335 x334 x333 x332 x331 x330 x329 x328 x327 x326 x325 x324 x323 x322 x321 -x320 -x319 -x318 -x317 -x316 -x315
0.39/0.43 v -x314 -x313 -x312 -x311 -x310 -x309 -x308 -x307 -x306 -x305 -x304 -x303 -x302 -x301 -x300 -x299 -x298 -x297 -x296 x295 x294
0.39/0.43 v x293 x292 x291 x290 x289 x288 x287 x286 x285 x284 x283 x282 x281 x280 x279 x278 x277 x276 x275 x274 x273 x272 x271 x270 x269
0.39/0.43 v x268 x267 x266 x265 x264 x263 x262 x261 x260 x259 x258 x257 x256 x255 x254 x253 x252 x251 x250 -x249 -x248 -x247 -x246 -x245
0.39/0.43 v -x244 -x243 -x242 -x241 -x240 -x239 -x238 -x237 x236 x235 x234 x233 x232 x231 x230 x229 x228 x227 x226 x225 x224 x223 x222
0.39/0.43 v x221 x220 x219 x218 x217 x216 x215 x214 x213 x212 x211 x210 x209 x208 x207 x206 x205 x204 x203 x202 x201 x200 x199 x198 x197
0.39/0.43 v x196 x195 x194 x193 x192 x191 x190 x189 x188 -x187 -x186 -x185 -x184 -x183 -x182 -x181 -x180 -x179 -x178 x177 x176 x175 x174
0.39/0.43 v x173 x172 x171 x170 x169 x168 x167 x166 x165 x164 x163 x162 x161 x160 x159 x158 x157 x156 x155 x154 x153 x152 x151 x150 x149
0.39/0.43 v x148 x147 x146 x145 x144 x143 x142 x141 x140 x139 x138 x137 x136 x135 x134 x133 x132 x131 x130 x129 x128 x127 x126 x125 x124
0.39/0.43 v x123 x122 x121 x120 x119 x118 x117 x116 x115 x114 x113 x112 x111 x110 x109 x108 x107 x106 x105 x104 x103 x102 x101 x100 x99
0.39/0.43 v x98 x97 x96 x95 x94 x93 x92 x91 x90 x89 x88 x87 x86 x85 x84 x83 x82 x81 x80 x79 x78 x77 x76 x75 -x74 -x73 -x72 -x71 -x70 -x69
0.39/0.43 v -x68 -x67 -x66 -x65 -x64 -x63 -x62 -x61 -x60 x59 x58 x57 x56 x55 x54 x53 x52 x51 x50 x49 x48 x47 x46 x45 x44 x43 x42 x41 x40
0.39/0.43 v x39 x38 x37 x36 x35 x34 x33 x32 x31 x30 x29 x28 x27 x26 x25 -x24 -x23 -x22 -x21 -x20 -x19 -x18 -x17 -x16 -x15 -x14 -x13 -x12
0.39/0.43 v -x11 -x10 -x9 -x8 -x7 -x6 -x5 -x4 -x3 -x2 -x1 x1829
0.39/0.43 c SCIP Status : problem is solved [optimal solution found]
0.39/0.43 c Solving Time : 0.32
0.39/0.43 c Original Problem :
0.39/0.43 c Problem name : HOME/instance-3739496-1338756424.opb
0.39/0.43 c Variables : 3658 (3658 binary, 0 integer, 0 implicit integer, 0 continuous)
0.39/0.43 c Constraints : 11930 initial, 11930 maximal
0.39/0.43 c Presolved Problem :
0.39/0.43 c Problem name : t_HOME/instance-3739496-1338756424.opb
0.39/0.43 c Variables : 499 (499 binary, 0 integer, 0 implicit integer, 0 continuous)
0.39/0.43 c Constraints : 1142 initial, 1142 maximal
0.39/0.43 c Presolvers : Time FixedVars AggrVars ChgTypes ChgBounds AddHoles DelCons ChgSides ChgCoefs
0.39/0.43 c trivial : 0.00 148 0 0 0 0 0 0 0
0.39/0.43 c dualfix : 0.00 3 0 0 0 0 0 0 0
0.39/0.43 c boundshift : 0.00 0 0 0 0 0 0 0 0
0.39/0.43 c inttobinary : 0.00 0 0 0 0 0 0 0 0
0.39/0.43 c implics : 0.00 0 8 0 0 0 0 0 0
0.39/0.43 c probing : 0.00 0 0 0 0 0 0 0 0
0.39/0.43 c knapsack : 0.01 0 0 0 0 0 0 7 114
0.39/0.43 c linear : 0.27 2340 660 0 2488 0 10788 218 230
0.39/0.43 c logicor : 0.01 0 0 0 0 0 0 0 0
0.39/0.43 c root node : - 0 - - 0 - - - -
0.39/0.43 c Constraints : Number #Separate #Propagate #EnfoLP #EnfoPS Cutoffs DomReds Cuts Conss Children
0.39/0.43 c integral : 0 0 0 1 0 0 0 0 0 0
0.39/0.43 c knapsack : 42 2 1 1 0 0 0 3 0 0
0.39/0.43 c logicor : 1100 2 1 1 0 0 0 0 0 0
0.39/0.43 c countsols : 0 0 0 1 0 0 0 0 0 0
0.39/0.43 c Constraint Timings : TotalTime Separate Propagate EnfoLP EnfoPS
0.39/0.43 c integral : 0.00 0.00 0.00 0.00 0.00
0.39/0.43 c knapsack : 0.00 0.00 0.00 0.00 0.00
0.39/0.43 c logicor : 0.00 0.00 0.00 0.00 0.00
0.39/0.43 c countsols : 0.00 0.00 0.00 0.00 0.00
0.39/0.43 c Propagators : Time Calls Cutoffs DomReds
0.39/0.43 c rootredcost : 0.00 0 0 0
0.39/0.43 c pseudoobj : 0.00 3 0 0
0.39/0.43 c Conflict Analysis : Time Calls Success Conflicts Literals Reconvs ReconvLits LP Iters
0.39/0.43 c propagation : 0.00 0 0 0 0.0 0 0.0 -
0.39/0.43 c infeasible LP : 0.00 0 0 0 0.0 0 0.0 0
0.39/0.43 c bound exceed. LP : 0.00 0 0 0 0.0 0 0.0 0
0.39/0.43 c strong branching : 0.00 0 0 0 0.0 0 0.0 0
0.39/0.43 c pseudo solution : 0.00 0 0 0 0.0 0 0.0 -
0.39/0.43 c applied globally : - - - 0 0.0 - - -
0.39/0.43 c applied locally : - - - 0 0.0 - - -
0.39/0.43 c Separators : Time Calls Cutoffs DomReds Cuts Conss
0.39/0.43 c cut pool : 0.00 1 - - 0 - (maximal pool size: 7)
0.39/0.43 c redcost : 0.00 2 0 0 0 0
0.39/0.43 c impliedbounds : 0.00 1 0 0 0 0
0.39/0.43 c intobj : 0.00 0 0 0 0 0
0.39/0.43 c gomory : 0.00 2 0 0 5 0
0.39/0.44 c strongcg : 0.00 2 0 0 5 0
0.39/0.44 c cmir : 0.00 0 0 0 0 0
0.39/0.44 c flowcover : 0.00 0 0 0 0 0
0.39/0.44 c clique : 0.01 2 0 0 1 0
0.39/0.44 c zerohalf : 0.00 0 0 0 0 0
0.39/0.44 c mcf : 0.00 1 0 0 0 0
0.39/0.44 c Pricers : Time Calls Vars
0.39/0.44 c problem variables: 0.00 0 0
0.39/0.44 c Branching Rules : Time Calls Cutoffs DomReds Cuts Conss Children
0.39/0.44 c pscost : 0.00 0 0 0 0 0 0
0.39/0.44 c inference : 0.00 0 0 0 0 0 0
0.39/0.44 c mostinf : 0.00 0 0 0 0 0 0
0.39/0.44 c leastinf : 0.00 0 0 0 0 0 0
0.39/0.44 c fullstrong : 0.00 0 0 0 0 0 0
0.39/0.44 c allfullstrong : 0.00 0 0 0 0 0 0
0.39/0.44 c random : 0.00 0 0 0 0 0 0
0.39/0.44 c relpscost : 0.00 0 0 0 0 0 0
0.39/0.44 c Primal Heuristics : Time Calls Found
0.39/0.44 c LP solutions : 0.00 - 1
0.39/0.44 c pseudo solutions : 0.00 - 0
0.39/0.44 c simplerounding : 0.00 0 0
0.39/0.44 c rounding : 0.00 0 0
0.39/0.44 c shifting : 0.00 0 0
0.39/0.44 c intshifting : 0.00 0 0
0.39/0.44 c oneopt : 0.00 0 0
0.39/0.44 c fixandinfer : 0.00 0 0
0.39/0.44 c feaspump : 0.00 0 0
0.39/0.44 c coefdiving : 0.00 0 0
0.39/0.44 c pscostdiving : 0.00 0 0
0.39/0.44 c fracdiving : 0.00 0 0
0.39/0.44 c veclendiving : 0.00 0 0
0.39/0.44 c intdiving : 0.00 0 0
0.39/0.44 c actconsdiving : 0.00 0 0
0.39/0.44 c objpscostdiving : 0.00 0 0
0.39/0.44 c rootsoldiving : 0.00 0 0
0.39/0.44 c linesearchdiving : 0.00 0 0
0.39/0.44 c guideddiving : 0.00 0 0
0.39/0.44 c octane : 0.00 0 0
0.39/0.44 c rens : 0.00 0 0
0.39/0.44 c rins : 0.00 0 0
0.39/0.44 c localbranching : 0.00 0 0
0.39/0.44 c mutation : 0.00 0 0
0.39/0.44 c crossover : 0.00 0 0
0.39/0.44 c dins : 0.00 0 0
0.39/0.44 c LP : Time Calls Iterations Iter/call Iter/sec
0.39/0.44 c primal LP : 0.00 0 0 0.00 -
0.39/0.44 c dual LP : 0.00 2 11 5.50 -
0.39/0.44 c barrier LP : 0.00 0 0 0.00 -
0.39/0.44 c diving/probing LP: 0.00 0 0 0.00 -
0.39/0.44 c strong branching : 0.00 0 0 0.00 -
0.39/0.44 c (at root node) : - 0 0 0.00 -
0.39/0.44 c conflict analysis: 0.00 0 0 0.00 -
0.39/0.44 c B&B Tree :
0.39/0.44 c number of runs : 1
0.39/0.44 c nodes : 1
0.39/0.44 c nodes (total) : 1
0.39/0.44 c nodes left : 0
0.39/0.44 c max depth : 0
0.39/0.44 c max depth (total): 0
0.39/0.44 c backtracks : 0 (0.0%)
0.39/0.44 c delayed cutoffs : 0
0.39/0.44 c repropagations : 0 (0 domain reductions, 0 cutoffs)
0.39/0.44 c avg switch length: 2.00
0.39/0.44 c switching time : 0.00
0.39/0.44 c Solution :
0.39/0.44 c Solutions found : 1 (1 improvements)
0.39/0.44 c Primal Bound : +1.06900000000000e+03 (in run 1, after 1 nodes, 0.32 seconds, depth 0, found by <relaxation>)
0.39/0.44 c Dual Bound : +1.06900000000000e+03
0.39/0.44 c Gap : 0.00 %
0.39/0.44 c Root Dual Bound : +1.06900000000000e+03
0.39/0.45 c Time complete: 0.44.