0.00/0.01 c SCIP version 1.2.1.3 [precision: 8 byte] [memory: block] [mode: optimized] [LP solver: SoPlex 1.4.2]
0.00/0.01 c Copyright (c) 2002-2010 Konrad-Zuse-Zentrum fuer Informationstechnik Berlin (ZIB)
0.00/0.01 c
0.00/0.01 c user parameter file <scip.set> not found - using default parameters
0.00/0.01 c reading problem <HOME/instance-3739397-1338730355.opb>
0.00/0.09 c original problem has 3906 variables (3906 bin, 0 int, 0 impl, 0 cont) and 12671 constraints
0.00/0.09 c problem read
0.00/0.09 c No objective function, only one solution is needed.
0.00/0.09 c presolving settings loaded
0.08/0.11 c presolving:
0.28/0.32 c (round 1) 1078 del vars, 2661 del conss, 705 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 624316 impls, 0 clqs
0.28/0.39 c (round 2) 2496 del vars, 7640 del conss, 2020 chg bounds, 0 chg sides, 0 chg coeffs, 0 upgd conss, 632508 impls, 0 clqs
0.38/0.40 c (round 3) 2862 del vars, 9640 del conss, 2186 chg bounds, 2 chg sides, 2 chg coeffs, 0 upgd conss, 634342 impls, 0 clqs
0.38/0.40 c (round 4) 2960 del vars, 9966 del conss, 2235 chg bounds, 2 chg sides, 2 chg coeffs, 0 upgd conss, 635502 impls, 0 clqs
0.38/0.41 c (round 5) 3027 del vars, 10178 del conss, 2271 chg bounds, 2 chg sides, 2 chg coeffs, 0 upgd conss, 636126 impls, 0 clqs
0.38/0.41 c (round 6) 3045 del vars, 10274 del conss, 2283 chg bounds, 2 chg sides, 2 chg coeffs, 0 upgd conss, 636256 impls, 0 clqs
0.38/0.41 c (round 7) 3048 del vars, 10286 del conss, 2285 chg bounds, 3 chg sides, 3 chg coeffs, 0 upgd conss, 636266 impls, 0 clqs
0.38/0.41 c (round 8) 3050 del vars, 10291 del conss, 2287 chg bounds, 6 chg sides, 6 chg coeffs, 0 upgd conss, 636266 impls, 0 clqs
0.38/0.41 c (round 9) 3052 del vars, 10295 del conss, 2288 chg bounds, 10 chg sides, 10 chg coeffs, 0 upgd conss, 636266 impls, 0 clqs
0.38/0.41 c (round 10) 3052 del vars, 10295 del conss, 2288 chg bounds, 12 chg sides, 12 chg coeffs, 0 upgd conss, 636266 impls, 0 clqs
0.38/0.42 c (round 11) 3052 del vars, 10295 del conss, 2288 chg bounds, 12 chg sides, 12 chg coeffs, 2376 upgd conss, 636266 impls, 0 clqs
0.38/0.43 c (round 12) 3052 del vars, 10295 del conss, 2288 chg bounds, 34 chg sides, 146 chg coeffs, 2376 upgd conss, 636290 impls, 16 clqs
0.38/0.44 c (round 13) 3052 del vars, 10295 del conss, 2288 chg bounds, 34 chg sides, 202 chg coeffs, 2376 upgd conss, 636290 impls, 16 clqs
0.38/0.44 c (round 14) 3052 del vars, 10295 del conss, 2288 chg bounds, 34 chg sides, 216 chg coeffs, 2376 upgd conss, 636312 impls, 19 clqs
0.38/0.45 c (round 15) 3052 del vars, 10295 del conss, 2288 chg bounds, 34 chg sides, 222 chg coeffs, 2376 upgd conss, 636312 impls, 19 clqs
0.38/0.45 c presolving (16 rounds):
0.38/0.45 c 3052 deleted vars, 10295 deleted constraints, 2288 tightened bounds, 0 added holes, 34 changed sides, 224 changed coefficients
0.38/0.45 c 636312 implications, 20 cliques
0.38/0.45 c presolved problem has 854 variables (854 bin, 0 int, 0 impl, 0 cont) and 2376 constraints
0.38/0.45 c 224 constraints of type <knapsack>
0.38/0.45 c 1808 constraints of type <setppc>
0.38/0.45 c 344 constraints of type <logicor>
0.38/0.45 c transformed objective value is always integral (scale: 1)
0.38/0.45 c Presolving Time: 0.34
0.38/0.45 c - non default parameters ----------------------------------------------------------------------
0.38/0.45 c # SCIP version 1.2.1.3
0.38/0.45 c
0.38/0.45 c # frequency for displaying node information lines
0.38/0.45 c # [type: int, range: [-1,2147483647], default: 100]
0.38/0.45 c display/freq = 10000
0.38/0.45 c
0.38/0.45 c # maximal time in seconds to run
0.38/0.45 c # [type: real, range: [0,1.79769313486232e+308], default: 1e+20]
0.38/0.45 c limits/time = 1789.92
0.38/0.45 c
0.38/0.45 c # maximal memory usage in MB; reported memory usage is lower than real memory usage!
0.38/0.45 c # [type: real, range: [0,1.79769313486232e+308], default: 1e+20]
0.38/0.45 c limits/memory = 13950
0.38/0.45 c
0.38/0.45 c # solving stops, if the given number of solutions were found (-1: no limit)
0.38/0.45 c # [type: int, range: [-1,2147483647], default: -1]
0.38/0.45 c limits/solutions = 1
0.38/0.45 c
0.38/0.45 c # maximal number of separation rounds per node (-1: unlimited)
0.38/0.45 c # [type: int, range: [-1,2147483647], default: 5]
0.38/0.45 c separating/maxrounds = 1
0.38/0.45 c
0.38/0.45 c # maximal number of separation rounds in the root node (-1: unlimited)
0.38/0.45 c # [type: int, range: [-1,2147483647], default: -1]
0.38/0.45 c separating/maxroundsroot = 5
0.38/0.45 c
0.38/0.45 c # default clock type (1: CPU user seconds, 2: wall clock time)
0.38/0.45 c # [type: int, range: [1,2], default: 1]
0.38/0.45 c timing/clocktype = 2
0.38/0.45 c
0.38/0.45 c # should presolving try to simplify inequalities
0.38/0.45 c # [type: bool, range: {TRUE,FALSE}, default: FALSE]
0.38/0.45 c constraints/linear/simplifyinequalities = TRUE
0.38/0.45 c
0.38/0.45 c # add initial coupling inequalities as linear constraints, if 'addCoupling' is true
0.38/0.45 c # [type: bool, range: {TRUE,FALSE}, default: FALSE]
0.38/0.45 c constraints/indicator/addCouplingCons = TRUE
0.38/0.45 c
0.38/0.45 c # should disaggregation of knapsack constraints be allowed in preprocessing?
0.38/0.45 c # [type: bool, range: {TRUE,FALSE}, default: TRUE]
0.38/0.45 c constraints/knapsack/disaggregation = FALSE
0.38/0.45 c
0.38/0.45 c # should presolving try to simplify knapsacks
0.38/0.45 c # [type: bool, range: {TRUE,FALSE}, default: FALSE]
0.38/0.45 c constraints/knapsack/simplifyinequalities = TRUE
0.38/0.45 c
0.38/0.45 c # maximal number of presolving rounds the presolver participates in (-1: no limit)
0.38/0.45 c # [type: int, range: [-1,2147483647], default: -1]
0.38/0.45 c presolving/probing/maxrounds = 0
0.38/0.45 c
0.38/0.45 c # frequency for calling primal heuristic <coefdiving> (-1: never, 0: only at depth freqofs)
0.38/0.45 c # [type: int, range: [-1,2147483647], default: 10]
0.38/0.45 c heuristics/coefdiving/freq = -1
0.38/0.45 c
0.38/0.45 c # maximal fraction of diving LP iterations compared to node LP iterations
0.38/0.45 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.38/0.45 c heuristics/coefdiving/maxlpiterquot = 0.075
0.38/0.45 c
0.38/0.45 c # additional number of allowed LP iterations
0.38/0.45 c # [type: int, range: [0,2147483647], default: 1000]
0.38/0.45 c heuristics/coefdiving/maxlpiterofs = 1500
0.38/0.45 c
0.38/0.45 c # frequency for calling primal heuristic <crossover> (-1: never, 0: only at depth freqofs)
0.38/0.45 c # [type: int, range: [-1,2147483647], default: 30]
0.38/0.45 c heuristics/crossover/freq = -1
0.38/0.45 c
0.38/0.45 c # number of nodes added to the contingent of the total nodes
0.38/0.45 c # [type: longint, range: [0,9223372036854775807], default: 500]
0.38/0.45 c heuristics/crossover/nodesofs = 750
0.38/0.45 c
0.38/0.45 c # number of nodes without incumbent change that heuristic should wait
0.38/0.45 c # [type: longint, range: [0,9223372036854775807], default: 200]
0.38/0.45 c heuristics/crossover/nwaitingnodes = 100
0.38/0.45 c
0.38/0.45 c # contingent of sub problem nodes in relation to the number of nodes of the original problem
0.38/0.45 c # [type: real, range: [0,1], default: 0.1]
0.38/0.45 c heuristics/crossover/nodesquot = 0.15
0.38/0.45 c
0.38/0.45 c # minimum percentage of integer variables that have to be fixed
0.38/0.45 c # [type: real, range: [0,1], default: 0.666]
0.38/0.45 c heuristics/crossover/minfixingrate = 0.5
0.38/0.45 c
0.38/0.45 c # frequency for calling primal heuristic <feaspump> (-1: never, 0: only at depth freqofs)
0.38/0.45 c # [type: int, range: [-1,2147483647], default: 20]
0.38/0.45 c heuristics/feaspump/freq = -1
0.38/0.45 c
0.38/0.45 c # additional number of allowed LP iterations
0.38/0.45 c # [type: int, range: [0,2147483647], default: 1000]
0.38/0.45 c heuristics/feaspump/maxlpiterofs = 2000
0.38/0.45 c
0.38/0.45 c # frequency for calling primal heuristic <fracdiving> (-1: never, 0: only at depth freqofs)
0.38/0.45 c # [type: int, range: [-1,2147483647], default: 10]
0.38/0.45 c heuristics/fracdiving/freq = -1
0.38/0.45 c
0.38/0.45 c # maximal fraction of diving LP iterations compared to node LP iterations
0.38/0.45 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.38/0.45 c heuristics/fracdiving/maxlpiterquot = 0.075
0.38/0.45 c
0.38/0.45 c # additional number of allowed LP iterations
0.38/0.45 c # [type: int, range: [0,2147483647], default: 1000]
0.38/0.45 c heuristics/fracdiving/maxlpiterofs = 1500
0.38/0.45 c
0.38/0.45 c # frequency for calling primal heuristic <guideddiving> (-1: never, 0: only at depth freqofs)
0.38/0.45 c # [type: int, range: [-1,2147483647], default: 10]
0.38/0.45 c heuristics/guideddiving/freq = -1
0.38/0.45 c
0.38/0.45 c # maximal fraction of diving LP iterations compared to node LP iterations
0.38/0.45 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.38/0.45 c heuristics/guideddiving/maxlpiterquot = 0.075
0.38/0.45 c
0.38/0.45 c # additional number of allowed LP iterations
0.38/0.45 c # [type: int, range: [0,2147483647], default: 1000]
0.38/0.45 c heuristics/guideddiving/maxlpiterofs = 1500
0.38/0.45 c
0.38/0.45 c # maximal fraction of diving LP iterations compared to node LP iterations
0.38/0.45 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.38/0.45 c heuristics/intdiving/maxlpiterquot = 0.075
0.38/0.45 c
0.38/0.45 c # frequency for calling primal heuristic <intshifting> (-1: never, 0: only at depth freqofs)
0.38/0.45 c # [type: int, range: [-1,2147483647], default: 10]
0.38/0.45 c heuristics/intshifting/freq = -1
0.38/0.45 c
0.38/0.45 c # frequency for calling primal heuristic <linesearchdiving> (-1: never, 0: only at depth freqofs)
0.38/0.45 c # [type: int, range: [-1,2147483647], default: 10]
0.38/0.45 c heuristics/linesearchdiving/freq = -1
0.38/0.45 c
0.38/0.45 c # maximal fraction of diving LP iterations compared to node LP iterations
0.38/0.45 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.38/0.45 c heuristics/linesearchdiving/maxlpiterquot = 0.075
0.38/0.45 c
0.38/0.45 c # additional number of allowed LP iterations
0.38/0.45 c # [type: int, range: [0,2147483647], default: 1000]
0.38/0.45 c heuristics/linesearchdiving/maxlpiterofs = 1500
0.38/0.45 c
0.38/0.45 c # frequency for calling primal heuristic <nlp> (-1: never, 0: only at depth freqofs)
0.38/0.45 c # [type: int, range: [-1,2147483647], default: 1]
0.38/0.45 c heuristics/nlp/freq = -1
0.38/0.45 c
0.38/0.45 c # frequency for calling primal heuristic <objpscostdiving> (-1: never, 0: only at depth freqofs)
0.38/0.45 c # [type: int, range: [-1,2147483647], default: 20]
0.38/0.45 c heuristics/objpscostdiving/freq = -1
0.38/0.45 c
0.38/0.45 c # maximal fraction of diving LP iterations compared to total iteration number
0.38/0.45 c # [type: real, range: [0,1], default: 0.01]
0.38/0.45 c heuristics/objpscostdiving/maxlpiterquot = 0.015
0.38/0.45 c
0.38/0.45 c # additional number of allowed LP iterations
0.38/0.45 c # [type: int, range: [0,2147483647], default: 1000]
0.38/0.45 c heuristics/objpscostdiving/maxlpiterofs = 1500
0.38/0.45 c
0.38/0.45 c # frequency for calling primal heuristic <oneopt> (-1: never, 0: only at depth freqofs)
0.38/0.45 c # [type: int, range: [-1,2147483647], default: 1]
0.38/0.45 c heuristics/oneopt/freq = -1
0.38/0.45 c
0.38/0.45 c # frequency for calling primal heuristic <pscostdiving> (-1: never, 0: only at depth freqofs)
0.38/0.45 c # [type: int, range: [-1,2147483647], default: 10]
0.38/0.45 c heuristics/pscostdiving/freq = -1
0.38/0.45 c
0.38/0.45 c # maximal fraction of diving LP iterations compared to node LP iterations
0.38/0.45 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.38/0.45 c heuristics/pscostdiving/maxlpiterquot = 0.075
0.38/0.45 c
0.38/0.45 c # additional number of allowed LP iterations
0.38/0.45 c # [type: int, range: [0,2147483647], default: 1000]
0.38/0.45 c heuristics/pscostdiving/maxlpiterofs = 1500
0.38/0.45 c
0.38/0.45 c # frequency for calling primal heuristic <rens> (-1: never, 0: only at depth freqofs)
0.38/0.45 c # [type: int, range: [-1,2147483647], default: 0]
0.38/0.45 c heuristics/rens/freq = -1
0.38/0.45 c
0.38/0.45 c # minimum percentage of integer variables that have to be fixable
0.38/0.45 c # [type: real, range: [0,1], default: 0.5]
0.38/0.45 c heuristics/rens/minfixingrate = 0.3
0.38/0.45 c
0.38/0.45 c # number of nodes added to the contingent of the total nodes
0.38/0.45 c # [type: longint, range: [0,9223372036854775807], default: 500]
0.38/0.45 c heuristics/rens/nodesofs = 2000
0.38/0.45 c
0.38/0.45 c # frequency for calling primal heuristic <rootsoldiving> (-1: never, 0: only at depth freqofs)
0.38/0.45 c # [type: int, range: [-1,2147483647], default: 20]
0.38/0.45 c heuristics/rootsoldiving/freq = -1
0.38/0.45 c
0.38/0.45 c # maximal fraction of diving LP iterations compared to node LP iterations
0.38/0.45 c # [type: real, range: [0,1.79769313486232e+308], default: 0.01]
0.38/0.45 c heuristics/rootsoldiving/maxlpiterquot = 0.015
0.38/0.45 c
0.38/0.45 c # additional number of allowed LP iterations
0.38/0.45 c # [type: int, range: [0,2147483647], default: 1000]
0.38/0.45 c heuristics/rootsoldiving/maxlpiterofs = 1500
0.38/0.45 c
0.38/0.45 c # frequency for calling primal heuristic <rounding> (-1: never, 0: only at depth freqofs)
0.38/0.45 c # [type: int, range: [-1,2147483647], default: 1]
0.38/0.45 c heuristics/rounding/freq = -1
0.38/0.45 c
0.38/0.45 c # frequency for calling primal heuristic <shifting> (-1: never, 0: only at depth freqofs)
0.38/0.45 c # [type: int, range: [-1,2147483647], default: 10]
0.38/0.45 c heuristics/shifting/freq = -1
0.38/0.45 c
0.38/0.45 c # frequency for calling primal heuristic <simplerounding> (-1: never, 0: only at depth freqofs)
0.38/0.45 c # [type: int, range: [-1,2147483647], default: 1]
0.38/0.45 c heuristics/simplerounding/freq = -1
0.38/0.45 c
0.38/0.45 c # frequency for calling primal heuristic <trivial> (-1: never, 0: only at depth freqofs)
0.38/0.45 c # [type: int, range: [-1,2147483647], default: 0]
0.38/0.45 c heuristics/trivial/freq = -1
0.38/0.45 c
0.38/0.45 c # frequency for calling primal heuristic <trysol> (-1: never, 0: only at depth freqofs)
0.38/0.45 c # [type: int, range: [-1,2147483647], default: 1]
0.38/0.45 c heuristics/trysol/freq = -1
0.38/0.45 c
0.38/0.45 c # frequency for calling primal heuristic <veclendiving> (-1: never, 0: only at depth freqofs)
0.38/0.45 c # [type: int, range: [-1,2147483647], default: 10]
0.38/0.45 c heuristics/veclendiving/freq = -1
0.38/0.45 c
0.38/0.45 c # maximal fraction of diving LP iterations compared to node LP iterations
0.38/0.45 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.38/0.45 c heuristics/veclendiving/maxlpiterquot = 0.075
0.38/0.45 c
0.38/0.45 c # additional number of allowed LP iterations
0.38/0.45 c # [type: int, range: [0,2147483647], default: 1000]
0.38/0.45 c heuristics/veclendiving/maxlpiterofs = 1500
0.38/0.45 c
0.38/0.45 c # frequency for calling primal heuristic <zirounding> (-1: never, 0: only at depth freqofs)
0.38/0.45 c # [type: int, range: [-1,2147483647], default: 1]
0.38/0.45 c heuristics/zirounding/freq = -1
0.38/0.45 c
0.38/0.45 c # frequency for calling separator <cmir> (-1: never, 0: only in root node)
0.38/0.45 c # [type: int, range: [-1,2147483647], default: 0]
0.38/0.45 c separating/cmir/freq = -1
0.38/0.45 c
0.38/0.45 c # frequency for calling separator <flowcover> (-1: never, 0: only in root node)
0.38/0.45 c # [type: int, range: [-1,2147483647], default: 0]
0.38/0.45 c separating/flowcover/freq = -1
0.38/0.45 c
0.38/0.45 c # frequency for calling separator <rapidlearning> (-1: never, 0: only in root node)
0.38/0.45 c # [type: int, range: [-1,2147483647], default: -1]
0.38/0.45 c separating/rapidlearning/freq = 0
0.38/0.45 c
0.38/0.45 c -----------------------------------------------------------------------------------------------
0.38/0.45 c start solving
0.38/0.45 c
0.58/0.63 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
0.58/0.63 c 0.5s| 1 | 0 | 1475 | - | 17M| 0 | 548 | 854 |2376 | 854 |2376 | 0 | 0 | 0 | 0.000000e+00 | -- | Inf
1.09/1.20 c y 1.1s| 1 | 0 | 1475 | - | 21M| 0 | - | 854 |2376 | 854 |2376 | 0 | 0 | 0 | 0.000000e+00 | 0.000000e+00 | 0.00%
1.18/1.20 c 1.1s| 1 | 0 | 1475 | - | 18M| 0 | - | 854 |2471 | 854 |2376 | 0 | 0 | 0 | 0.000000e+00 | 0.000000e+00 | 0.00%
1.18/1.20 c 1.1s| 1 | 0 | 1475 | - | 18M| 0 | - | 854 |2308 | 854 |2376 | 0 | 0 | 0 | 0.000000e+00 | 0.000000e+00 | 0.00%
1.18/1.20 c
1.18/1.20 c SCIP Status : problem is solved [optimal solution found]
1.18/1.20 c Solving Time (sec) : 1.11
1.18/1.20 c Solving Nodes : 1
1.18/1.20 c Primal Bound : +0.00000000000000e+00 (1 solutions)
1.18/1.20 c Dual Bound : +0.00000000000000e+00
1.18/1.20 c Gap : 0.00 %
1.18/1.21 s SATISFIABLE
1.18/1.21 v x3906 -x3905 -x3904 -x3903 -x3902 -x3901 -x3900 -x3899 -x3898 -x3897 -x3896 -x3895 -x3894 -x3893 -x3892 -x3891 -x3890 -x3889 -x3888
1.18/1.21 v -x3887 -x3886 -x3885 -x3884 -x3883 -x3882 -x3881 -x3880 -x3879 -x3878 -x3877 -x3876 -x3875 -x3874 -x3873 -x3872 -x3871 -x3870
1.18/1.21 v -x3869 -x3868 -x3867 -x3866 -x3865 -x3864 -x3863 -x3862 -x3861 -x3860 -x3859 -x3858 -x3857 -x3856 -x3855 -x3854 -x3853
1.18/1.21 v -x3852 -x3851 -x3850 -x3849 -x3848 -x3847 -x3846 -x3845 -x3844 -x3843 x3842 x3841 x3840 x3839 x3838 -x3837 -x3836 -x3835 -x3834
1.18/1.21 v -x3833 -x3832 -x3831 -x3830 -x3829 -x3828 -x3827 -x3826 -x3825 -x3824 -x3823 -x3822 -x3821 -x3820 -x3819 -x3818 -x3817 -x3816
1.18/1.21 v -x3815 -x3814 -x3813 -x3812 -x3811 -x3810 -x3809 -x3808 -x3807 -x3806 -x3805 -x3804 -x3803 -x3802 -x3801 -x3800 -x3799 -x3798
1.18/1.21 v -x3797 -x3796 -x3795 -x3794 -x3793 -x3792 -x3791 -x3790 -x3789 -x3788 -x3787 -x3786 -x3785 -x3784 -x3783 -x3782 -x3781 -x3780
1.18/1.21 v x3779 x3778 x3777 x3776 x3775 -x3774 -x3773 -x3772 -x3771 -x3770 -x3769 -x3768 -x3767 -x3766 -x3765 -x3764 -x3763 -x3762
1.18/1.21 v -x3761 -x3760 -x3759 -x3758 -x3757 -x3756 -x3755 -x3754 -x3753 -x3752 -x3751 -x3750 -x3749 -x3748 -x3747 -x3746 -x3745 -x3744
1.18/1.21 v -x3743 -x3742 -x3741 -x3740 -x3739 -x3738 -x3737 -x3736 -x3735 -x3734 -x3733 -x3732 -x3731 -x3730 -x3729 -x3728 -x3727 -x3726
1.18/1.21 v -x3725 -x3724 -x3723 -x3722 -x3721 -x3720 -x3719 -x3718 -x3717 x3716 x3715 x3714 x3713 x3712 x3711 -x3710 -x3709 -x3708 -x3707
1.18/1.21 v -x3706 -x3705 -x3704 -x3703 -x3702 -x3701 -x3700 -x3699 -x3698 -x3697 -x3696 -x3695 -x3694 -x3693 -x3692 -x3691 -x3690
1.18/1.21 v -x3689 -x3688 -x3687 -x3686 -x3685 -x3684 -x3683 -x3682 -x3681 -x3680 -x3679 -x3678 -x3677 -x3676 -x3675 -x3674 -x3673 -x3672
1.18/1.21 v -x3671 -x3670 -x3669 -x3668 -x3667 -x3666 -x3665 -x3664 -x3663 -x3662 -x3661 -x3660 -x3659 -x3658 -x3657 -x3656 -x3655 -x3654
1.18/1.21 v -x3653 -x3652 -x3651 -x3650 -x3649 -x3648 -x3647 x3646 x3645 x3644 x3643 x3642 x3641 x3640 x3639 x3638 -x3637 -x3636 -x3635
1.18/1.21 v -x3634 -x3633 -x3632 -x3631 -x3630 -x3629 -x3628 -x3627 -x3626 -x3625 -x3624 -x3623 -x3622 -x3621 -x3620 -x3619 -x3618 -x3617
1.18/1.21 v -x3616 -x3615 -x3614 -x3613 -x3612 -x3611 -x3610 -x3609 -x3608 -x3607 -x3606 -x3605 -x3604 -x3603 -x3602 -x3601 -x3600 -x3599
1.18/1.21 v -x3598 -x3597 -x3596 -x3595 -x3594 -x3593 -x3592 -x3591 -x3590 -x3589 -x3588 -x3587 -x3586 x3585 x3584 -x3583 -x3582 -x3581
1.18/1.21 v -x3580 -x3579 -x3578 -x3577 -x3576 -x3575 -x3574 -x3573 -x3572 -x3571 -x3570 -x3569 -x3568 -x3567 -x3566 -x3565 -x3564 -x3563
1.18/1.21 v -x3562 -x3561 -x3560 -x3559 -x3558 -x3557 -x3556 -x3555 -x3554 -x3553 -x3552 -x3551 -x3550 -x3549 -x3548 -x3547 -x3546 -x3545
1.18/1.21 v -x3544 -x3543 -x3542 -x3541 -x3540 -x3539 -x3538 -x3537 -x3536 -x3535 -x3534 -x3533 -x3532 -x3531 -x3530 -x3529 -x3528 -x3527
1.18/1.21 v -x3526 -x3525 -x3524 -x3523 -x3522 -x3521 -x3520 -x3519 -x3518 -x3517 -x3516 -x3515 x3514 x3513 x3512 x3511 x3510 x3509
1.18/1.21 v x3508 -x3507 -x3506 -x3505 -x3504 -x3503 -x3502 -x3501 -x3500 -x3499 -x3498 -x3497 -x3496 -x3495 -x3494 -x3493 -x3492 -x3491
1.18/1.21 v -x3490 -x3489 -x3488 -x3487 -x3486 -x3485 -x3484 -x3483 -x3482 -x3481 -x3480 -x3479 -x3478 -x3477 -x3476 -x3475 -x3474 -x3473
1.18/1.21 v -x3472 -x3471 -x3470 -x3469 -x3468 -x3467 -x3466 -x3465 -x3464 -x3463 -x3462 -x3461 -x3460 -x3459 -x3458 -x3457 -x3456 -x3455
1.18/1.21 v -x3454 -x3453 -x3452 -x3451 -x3450 -x3449 x3448 x3447 x3446 x3445 x3444 x3443 x3442 -x3441 -x3440 -x3439 -x3438 -x3437 -x3436
1.18/1.21 v -x3435 -x3434 -x3433 -x3432 -x3431 -x3430 -x3429 -x3428 -x3427 -x3426 -x3425 -x3424 -x3423 -x3422 -x3421 -x3420 -x3419 -x3418
1.18/1.21 v -x3417 -x3416 -x3415 -x3414 -x3413 -x3412 -x3411 -x3410 -x3409 -x3408 -x3407 -x3406 -x3405 -x3404 -x3403 -x3402 -x3401 -x3400
1.18/1.21 v -x3399 -x3398 -x3397 -x3396 -x3395 -x3394 -x3393 -x3392 -x3391 -x3390 -x3389 x3388 x3387 x3386 x3385 x3384 x3383 x3382 x3381
1.18/1.21 v x3380 -x3379 -x3378 -x3377 -x3376 -x3375 -x3374 -x3373 -x3372 -x3371 -x3370 -x3369 -x3368 -x3367 -x3366 -x3365 -x3364 -x3363
1.18/1.21 v -x3362 -x3361 -x3360 -x3359 -x3358 -x3357 -x3356 -x3355 -x3354 -x3353 -x3352 -x3351 -x3350 -x3349 -x3348 -x3347 -x3346 -x3345
1.18/1.21 v -x3344 -x3343 -x3342 -x3341 -x3340 -x3339 -x3338 -x3337 -x3336 -x3335 -x3334 -x3333 -x3332 -x3331 -x3330 -x3329 -x3328
1.18/1.21 v -x3327 -x3326 -x3325 -x3324 -x3323 -x3322 -x3321 -x3320 -x3319 x3318 x3317 x3316 x3315 x3314 x3313 x3312 x3311 -x3310 -x3309
1.18/1.21 v -x3308 -x3307 -x3306 -x3305 -x3304 -x3303 -x3302 -x3301 -x3300 -x3299 -x3298 -x3297 -x3296 -x3295 -x3294 -x3293 -x3292 -x3291
1.18/1.21 v -x3290 -x3289 -x3288 -x3287 -x3286 -x3285 -x3284 -x3283 -x3282 -x3281 -x3280 -x3279 -x3278 -x3277 -x3276 -x3275 -x3274 -x3273
1.18/1.21 v -x3272 -x3271 -x3270 -x3269 -x3268 -x3267 -x3266 -x3265 -x3264 -x3263 -x3262 -x3261 -x3260 -x3259 -x3258 -x3257 -x3256 -x3255
1.18/1.21 v -x3254 -x3253 -x3252 -x3251 -x3250 -x3249 -x3248 x3247 x3246 x3245 -x3244 -x3243 -x3242 -x3241 -x3240 -x3239 -x3238 -x3237
1.18/1.21 v -x3236 -x3235 -x3234 -x3233 -x3232 -x3231 -x3230 -x3229 -x3228 -x3227 -x3226 -x3225 -x3224 -x3223 -x3222 -x3221 -x3220 -x3219
1.18/1.21 v -x3218 -x3217 -x3216 -x3215 -x3214 -x3213 -x3212 -x3211 -x3210 -x3209 -x3208 -x3207 x3206 x3205 x3204 x3203 x3202 x3201 x3200
1.18/1.21 v -x3199 -x3198 -x3197 -x3196 -x3195 -x3194 -x3193 -x3192 -x3191 -x3190 -x3189 -x3188 -x3187 -x3186 -x3185 -x3184 -x3183 -x3182
1.18/1.21 v -x3181 -x3180 -x3179 -x3178 -x3177 -x3176 -x3175 -x3174 -x3173 -x3172 -x3171 -x3170 -x3169 -x3168 -x3167 -x3166 -x3165 -x3164
1.18/1.21 v -x3163 -x3162 -x3161 -x3160 -x3159 -x3158 -x3157 -x3156 -x3155 -x3154 -x3153 -x3152 -x3151 -x3150 -x3149 -x3148 -x3147 -x3146
1.18/1.21 v -x3145 -x3144 -x3143 -x3142 -x3141 -x3140 -x3139 -x3138 -x3137 -x3136 -x3135 -x3134 -x3133 -x3132 -x3131 -x3130 -x3129
1.18/1.21 v -x3128 -x3127 -x3126 -x3125 -x3124 -x3123 x3122 x3121 x3120 x3119 -x3118 -x3117 -x3116 -x3115 -x3114 -x3113 -x3112 -x3111 -x3110
1.18/1.21 v -x3109 -x3108 -x3107 -x3106 -x3105 -x3104 -x3103 -x3102 -x3101 -x3100 -x3099 -x3098 -x3097 -x3096 -x3095 -x3094 -x3093 -x3092
1.18/1.21 v -x3091 -x3090 -x3089 -x3088 -x3087 -x3086 -x3085 -x3084 -x3083 -x3082 -x3081 -x3080 -x3079 -x3078 -x3077 -x3076 -x3075 -x3074
1.18/1.21 v -x3073 -x3072 -x3071 -x3070 -x3069 -x3068 -x3067 -x3066 -x3065 -x3064 x3063 x3062 x3061 x3060 -x3059 -x3058 -x3057 -x3056
1.18/1.21 v -x3055 -x3054 -x3053 -x3052 -x3051 -x3050 -x3049 -x3048 -x3047 -x3046 -x3045 -x3044 -x3043 -x3042 -x3041 -x3040 -x3039 -x3038
1.18/1.21 v -x3037 -x3036 -x3035 -x3034 -x3033 -x3032 -x3031 -x3030 -x3029 -x3028 -x3027 -x3026 -x3025 -x3024 -x3023 -x3022 -x3021 -x3020
1.18/1.21 v -x3019 -x3018 -x3017 -x3016 -x3015 -x3014 -x3013 -x3012 -x3011 -x3010 -x3009 -x3008 -x3007 -x3006 -x3005 -x3004 -x3003 -x3002
1.18/1.21 v -x3001 -x3000 -x2999 -x2998 -x2997 -x2996 -x2995 -x2994 -x2993 -x2992 -x2991 -x2990 -x2989 -x2988 -x2987 -x2986 -x2985
1.18/1.21 v -x2984 -x2983 -x2982 -x2981 -x2980 -x2979 -x2978 -x2977 -x2976 x2975 x2974 -x2973 -x2972 -x2971 -x2970 -x2969 -x2968 -x2967 -x2966
1.18/1.21 v -x2965 -x2964 -x2963 -x2962 -x2961 -x2960 -x2959 -x2958 -x2957 -x2956 -x2955 -x2954 -x2953 -x2952 -x2951 -x2950 -x2949
1.18/1.21 v -x2948 -x2947 -x2946 -x2945 -x2944 -x2943 -x2942 -x2941 -x2940 -x2939 -x2938 -x2937 -x2936 -x2935 -x2934 -x2933 x2932 x2931 x2930
1.18/1.21 v x2929 x2928 x2927 x2926 x2925 x2924 x2923 -x2922 -x2921 -x2920 -x2919 -x2918 -x2917 -x2916 -x2915 -x2914 -x2913 -x2912 -x2911
1.18/1.21 v -x2910 -x2909 -x2908 -x2907 -x2906 -x2905 -x2904 -x2903 -x2902 -x2901 -x2900 -x2899 -x2898 -x2897 -x2896 -x2895 -x2894
1.18/1.21 v -x2893 -x2892 -x2891 -x2890 -x2889 -x2888 -x2887 -x2886 -x2885 -x2884 -x2883 -x2882 -x2881 -x2880 -x2879 -x2878 -x2877 -x2876
1.18/1.21 v x2875 -x2874 -x2873 -x2872 -x2871 -x2870 -x2869 -x2868 -x2867 -x2866 -x2865 -x2864 -x2863 -x2862 -x2861 -x2860 -x2859 -x2858
1.18/1.21 v -x2857 -x2856 -x2855 -x2854 -x2853 -x2852 -x2851 -x2850 -x2849 -x2848 -x2847 -x2846 -x2845 -x2844 -x2843 -x2842 -x2841 -x2840
1.18/1.21 v -x2839 -x2838 -x2837 -x2836 -x2835 -x2834 -x2833 -x2832 -x2831 -x2830 -x2829 -x2828 -x2827 -x2826 -x2825 -x2824 -x2823 -x2822
1.18/1.21 v -x2821 -x2820 -x2819 -x2818 -x2817 -x2816 -x2815 -x2814 -x2813 -x2812 x2811 x2810 x2809 x2808 x2807 -x2806 -x2805 -x2804 -x2803
1.18/1.21 v -x2802 -x2801 -x2800 -x2799 -x2798 -x2797 -x2796 -x2795 -x2794 -x2793 -x2792 -x2791 -x2790 -x2789 -x2788 -x2787 -x2786
1.18/1.21 v -x2785 -x2784 -x2783 -x2782 -x2781 -x2780 -x2779 -x2778 -x2777 -x2776 -x2775 -x2774 -x2773 -x2772 -x2771 -x2770 -x2769 -x2768
1.18/1.21 v -x2767 -x2766 -x2765 -x2764 -x2763 -x2762 -x2761 -x2760 -x2759 -x2758 -x2757 -x2756 -x2755 -x2754 -x2753 -x2752 -x2751 -x2750
1.18/1.21 v -x2749 -x2748 -x2747 -x2746 -x2745 -x2744 -x2743 -x2742 -x2741 x2740 x2739 x2738 x2737 x2736 x2735 x2734 x2733 x2732 -x2731
1.18/1.21 v -x2730 -x2729 -x2728 -x2727 -x2726 -x2725 -x2724 -x2723 -x2722 -x2721 -x2720 -x2719 -x2718 -x2717 -x2716 -x2715 -x2714 -x2713
1.18/1.21 v -x2712 -x2711 -x2710 -x2709 -x2708 -x2707 -x2706 -x2705 -x2704 -x2703 -x2702 -x2701 -x2700 -x2699 -x2698 -x2697 -x2696 -x2695
1.18/1.21 v -x2694 -x2693 -x2692 -x2691 -x2690 -x2689 -x2688 -x2687 -x2686 -x2685 -x2684 -x2683 -x2682 -x2681 -x2680 -x2679 -x2678 -x2677
1.18/1.21 v -x2676 -x2675 -x2674 -x2673 -x2672 -x2671 x2670 x2669 x2668 x2667 x2666 x2665 x2664 x2663 x2662 x2661 -x2660 -x2659 -x2658
1.18/1.21 v -x2657 -x2656 -x2655 -x2654 -x2653 -x2652 -x2651 -x2650 -x2649 -x2648 -x2647 -x2646 -x2645 -x2644 -x2643 -x2642 -x2641 -x2640
1.18/1.21 v -x2639 -x2638 -x2637 -x2636 -x2635 -x2634 -x2633 -x2632 -x2631 -x2630 -x2629 -x2628 -x2627 -x2626 -x2625 -x2624 -x2623 -x2622
1.18/1.21 v -x2621 -x2620 -x2619 -x2618 -x2617 -x2616 -x2615 -x2614 -x2613 -x2612 -x2611 -x2610 -x2609 -x2608 -x2607 -x2606 -x2605 -x2604
1.18/1.21 v -x2603 x2602 x2601 x2600 x2599 x2598 x2597 -x2596 -x2595 -x2594 -x2593 -x2592 -x2591 -x2590 -x2589 -x2588 -x2587 -x2586
1.18/1.21 v -x2585 -x2584 -x2583 -x2582 -x2581 -x2580 -x2579 -x2578 -x2577 -x2576 -x2575 -x2574 -x2573 -x2572 -x2571 -x2570 -x2569 -x2568
1.18/1.21 v -x2567 -x2566 -x2565 -x2564 -x2563 -x2562 -x2561 -x2560 -x2559 -x2558 -x2557 -x2556 -x2555 -x2554 -x2553 -x2552 x2551 x2550
1.18/1.21 v x2549 x2548 -x2547 -x2546 -x2545 -x2544 -x2543 -x2542 -x2541 -x2540 -x2539 -x2538 -x2537 -x2536 -x2535 -x2534 -x2533 -x2532 -x2531
1.18/1.21 v -x2530 -x2529 -x2528 -x2527 -x2526 -x2525 -x2524 -x2523 -x2522 -x2521 -x2520 -x2519 -x2518 -x2517 -x2516 -x2515 -x2514
1.18/1.21 v -x2513 -x2512 -x2511 -x2510 -x2509 -x2508 -x2507 -x2506 -x2505 -x2504 -x2503 -x2502 -x2501 -x2500 -x2499 -x2498 -x2497 -x2496
1.18/1.21 v -x2495 -x2494 -x2493 -x2492 -x2491 -x2490 -x2489 -x2488 -x2487 -x2486 -x2485 -x2484 -x2483 -x2482 -x2481 -x2480 -x2479 -x2478
1.18/1.21 v -x2477 -x2476 -x2475 -x2474 -x2473 -x2472 -x2471 -x2470 -x2469 x2468 x2467 x2466 x2465 x2464 x2463 x2462 x2461 x2460 x2459
1.18/1.21 v -x2458 -x2457 -x2456 -x2455 -x2454 -x2453 -x2452 -x2451 -x2450 -x2449 -x2448 -x2447 -x2446 -x2445 -x2444 -x2443 -x2442 -x2441
1.18/1.21 v -x2440 -x2439 -x2438 -x2437 -x2436 -x2435 -x2434 -x2433 -x2432 -x2431 -x2430 -x2429 -x2428 -x2427 -x2426 -x2425 -x2424 -x2423
1.18/1.21 v -x2422 -x2421 -x2420 -x2419 -x2418 -x2417 x2416 x2415 x2414 x2413 x2412 x2411 x2410 x2409 -x2408 -x2407 -x2406 -x2405 -x2404
1.18/1.21 v -x2403 -x2402 -x2401 -x2400 -x2399 -x2398 -x2397 -x2396 -x2395 -x2394 -x2393 -x2392 -x2391 -x2390 -x2389 -x2388 -x2387 -x2386
1.18/1.21 v -x2385 -x2384 -x2383 -x2382 -x2381 -x2380 -x2379 -x2378 -x2377 -x2376 -x2375 -x2374 -x2373 -x2372 -x2371 -x2370 -x2369 -x2368
1.18/1.21 v -x2367 -x2366 -x2365 -x2364 -x2363 -x2362 -x2361 -x2360 -x2359 -x2358 -x2357 -x2356 -x2355 -x2354 -x2353 -x2352 -x2351 -x2350
1.18/1.21 v -x2349 -x2348 -x2347 -x2346 -x2345 -x2344 x2343 x2342 x2341 -x2340 -x2339 -x2338 -x2337 -x2336 -x2335 -x2334 -x2333 -x2332
1.18/1.21 v -x2331 -x2330 -x2329 -x2328 -x2327 -x2326 -x2325 -x2324 -x2323 -x2322 -x2321 -x2320 -x2319 -x2318 -x2317 -x2316 -x2315 -x2314
1.18/1.21 v -x2313 -x2312 -x2311 -x2310 -x2309 -x2308 -x2307 -x2306 -x2305 -x2304 -x2303 -x2302 -x2301 -x2300 -x2299 -x2298 -x2297 -x2296
1.18/1.21 v -x2295 -x2294 -x2293 -x2292 -x2291 -x2290 -x2289 -x2288 -x2287 -x2286 -x2285 -x2284 -x2283 -x2282 -x2281 -x2280 -x2279 -x2278
1.18/1.21 v -x2277 -x2276 x2275 x2274 x2273 x2272 x2271 x2270 -x2269 -x2268 -x2267 -x2266 -x2265 -x2264 -x2263 -x2262 -x2261 -x2260
1.18/1.21 v -x2259 -x2258 -x2257 -x2256 -x2255 -x2254 -x2253 -x2252 -x2251 -x2250 -x2249 -x2248 -x2247 -x2246 -x2245 -x2244 -x2243 -x2242
1.18/1.21 v -x2241 -x2240 -x2239 -x2238 -x2237 -x2236 -x2235 -x2234 -x2233 -x2232 -x2231 -x2230 x2229 x2228 x2227 x2226 -x2225 -x2224 -x2223
1.18/1.21 v -x2222 -x2221 -x2220 -x2219 -x2218 -x2217 -x2216 -x2215 -x2214 -x2213 -x2212 -x2211 -x2210 -x2209 -x2208 -x2207 -x2206
1.18/1.21 v -x2205 -x2204 -x2203 -x2202 -x2201 -x2200 -x2199 -x2198 -x2197 -x2196 -x2195 -x2194 -x2193 -x2192 -x2191 -x2190 -x2189 -x2188
1.18/1.21 v -x2187 -x2186 -x2185 -x2184 -x2183 -x2182 -x2181 -x2180 -x2179 -x2178 -x2177 -x2176 -x2175 -x2174 -x2173 -x2172 -x2171 -x2170
1.18/1.21 v -x2169 -x2168 -x2167 -x2166 -x2165 -x2164 -x2163 -x2162 -x2161 -x2160 -x2159 -x2158 -x2157 x2156 x2155 x2154 x2153 x2152 x2151
1.18/1.21 v x2150 x2149 x2148 -x2147 -x2146 -x2145 -x2144 -x2143 -x2142 -x2141 -x2140 -x2139 -x2138 -x2137 -x2136 -x2135 -x2134 -x2133
1.18/1.21 v -x2132 -x2131 -x2130 -x2129 -x2128 -x2127 -x2126 -x2125 -x2124 -x2123 -x2122 -x2121 -x2120 -x2119 -x2118 -x2117 -x2116 -x2115
1.18/1.21 v -x2114 -x2113 -x2112 -x2111 -x2110 -x2109 -x2108 -x2107 -x2106 -x2105 -x2104 -x2103 -x2102 -x2101 -x2100 -x2099 -x2098 -x2097
1.18/1.21 v -x2096 -x2095 -x2094 -x2093 -x2092 -x2091 -x2090 -x2089 -x2088 -x2087 -x2086 -x2085 -x2084 -x2083 -x2082 -x2081 x2080 -x2079
1.18/1.21 v -x2078 -x2077 -x2076 -x2075 -x2074 -x2073 -x2072 -x2071 -x2070 -x2069 -x2068 -x2067 -x2066 -x2065 -x2064 -x2063 -x2062 -x2061
1.18/1.21 v -x2060 -x2059 -x2058 -x2057 -x2056 -x2055 -x2054 -x2053 -x2052 -x2051 -x2050 -x2049 -x2048 -x2047 -x2046 -x2045 -x2044 -x2043
1.18/1.21 v -x2042 -x2041 -x2040 -x2039 -x2038 -x2037 -x2036 -x2035 -x2034 -x2033 -x2032 -x2031 -x2030 -x2029 -x2028 -x2027 -x2026
1.18/1.21 v -x2025 -x2024 -x2023 -x2022 x2021 x2020 x2019 x2018 x2017 -x2016 -x2015 -x2014 -x2013 -x2012 -x2011 -x2010 -x2009 -x2008 -x2007
1.18/1.21 v -x2006 -x2005 -x2004 -x2003 -x2002 -x2001 -x2000 -x1999 -x1998 -x1997 -x1996 -x1995 -x1994 -x1993 -x1992 -x1991 -x1990 -x1989
1.18/1.21 v -x1988 -x1987 -x1986 -x1985 -x1984 -x1983 -x1982 -x1981 -x1980 -x1979 -x1978 -x1977 -x1976 -x1975 -x1974 -x1973 -x1972 -x1971
1.18/1.21 v -x1970 -x1969 -x1968 -x1967 -x1966 -x1965 -x1964 -x1963 -x1962 -x1961 -x1960 -x1959 -x1958 -x1957 -x1956 -x1955 x1954 -x1952
1.18/1.21 v -x1951 -x1950 -x1949 -x1948 -x1947 -x1946 -x1945 -x1944 -x1943 -x1942 -x1941 -x1940 -x1939 -x1938 -x1937 -x1936 -x1935 -x1934
1.18/1.21 v -x1933 -x1932 -x1931 -x1930 -x1929 -x1928 -x1927 -x1926 -x1925 -x1924 -x1923 -x1922 -x1921 -x1920 -x1919 -x1918 -x1917
1.18/1.21 v -x1916 -x1915 -x1914 -x1913 -x1912 -x1911 -x1910 -x1909 -x1908 -x1907 -x1906 -x1905 -x1904 -x1903 -x1902 -x1901 -x1900 -x1899
1.18/1.21 v -x1898 -x1897 -x1896 -x1895 -x1894 -x1893 -x1892 -x1891 x1890 x1889 x1888 x1887 x1886 x1885 -x1884 -x1883 -x1882 -x1881 -x1880
1.18/1.21 v -x1879 -x1878 -x1877 -x1876 -x1875 -x1874 -x1873 -x1872 -x1871 -x1870 -x1869 -x1868 -x1867 -x1866 -x1865 -x1864 -x1863 -x1862
1.18/1.21 v -x1861 -x1860 -x1859 -x1858 -x1857 -x1856 -x1855 -x1854 -x1853 -x1852 -x1851 -x1850 -x1849 -x1848 -x1847 -x1846 -x1845 -x1844
1.18/1.21 v -x1843 -x1842 -x1841 -x1840 -x1839 -x1838 -x1837 -x1836 -x1835 -x1834 -x1833 -x1832 -x1831 -x1830 -x1829 -x1828 x1827 x1826
1.18/1.21 v x1825 x1824 x1823 x1822 -x1821 -x1820 -x1819 -x1818 -x1817 -x1816 -x1815 -x1814 -x1813 -x1812 -x1811 -x1810 -x1809 -x1808
1.18/1.21 v -x1807 -x1806 -x1805 -x1804 -x1803 -x1802 -x1801 -x1800 -x1799 -x1798 -x1797 -x1796 -x1795 -x1794 -x1793 -x1792 -x1791 -x1790
1.18/1.21 v -x1789 -x1788 -x1787 -x1786 -x1785 -x1784 -x1783 -x1782 -x1781 -x1780 -x1779 -x1778 -x1777 -x1776 -x1775 -x1774 -x1773 -x1772
1.18/1.21 v -x1771 -x1770 -x1769 -x1768 -x1767 -x1766 -x1765 x1764 x1763 x1762 x1761 x1760 x1759 x1758 -x1757 -x1756 -x1755 -x1754 -x1753
1.18/1.21 v -x1752 -x1751 -x1750 -x1749 -x1748 -x1747 -x1746 -x1745 -x1744 -x1743 -x1742 -x1741 -x1740 -x1739 -x1738 -x1737 -x1736 -x1735
1.18/1.21 v -x1734 -x1733 -x1732 -x1731 -x1730 -x1729 -x1728 -x1727 -x1726 -x1725 -x1724 -x1723 -x1722 -x1721 -x1720 -x1719 -x1718 -x1717
1.18/1.21 v -x1716 -x1715 -x1714 -x1713 -x1712 -x1711 -x1710 -x1709 -x1708 -x1707 -x1706 -x1705 -x1704 -x1703 -x1702 x1701 x1700 x1699
1.18/1.21 v x1698 x1697 x1696 x1695 x1694 x1693 x1692 x1691 x1690 x1689 x1688 x1687 x1686 x1685 -x1684 -x1683 -x1682 -x1681 -x1680 -x1679
1.18/1.21 v -x1678 -x1677 -x1676 -x1675 -x1674 -x1673 -x1672 -x1671 -x1670 -x1669 -x1668 -x1667 -x1666 -x1665 -x1664 -x1663 -x1662 -x1661
1.18/1.21 v -x1660 -x1659 -x1658 -x1657 -x1656 -x1655 -x1654 -x1653 -x1652 -x1651 -x1650 -x1649 -x1648 -x1647 -x1646 -x1645 -x1644
1.18/1.21 v -x1643 -x1642 -x1641 -x1640 -x1639 x1638 x1637 x1636 x1635 x1634 x1633 x1632 x1631 -x1630 -x1629 -x1628 -x1627 -x1626 -x1625
1.18/1.21 v -x1624 -x1623 -x1622 -x1621 -x1620 -x1619 -x1618 -x1617 -x1616 -x1615 -x1614 -x1613 -x1612 -x1611 -x1610 -x1609 -x1608 -x1607
1.18/1.21 v -x1606 -x1605 -x1604 -x1603 -x1602 -x1601 -x1600 -x1599 -x1598 -x1597 -x1596 -x1595 -x1594 -x1593 -x1592 -x1591 -x1590 -x1589
1.18/1.21 v -x1588 -x1587 -x1586 -x1585 -x1584 -x1583 -x1582 -x1581 -x1580 -x1579 -x1578 -x1577 -x1576 x1575 x1574 x1573 x1572 x1571 x1570
1.18/1.21 v x1569 x1568 x1567 x1566 x1565 x1564 x1563 x1562 x1561 x1560 x1559 x1558 x1557 x1556 x1555 -x1554 -x1553 -x1552 -x1551 -x1550
1.18/1.21 v -x1549 -x1548 -x1547 -x1546 -x1545 -x1544 -x1543 -x1542 -x1541 -x1540 -x1539 -x1538 -x1537 -x1536 -x1535 -x1534 -x1533 -x1532
1.18/1.21 v -x1531 -x1530 -x1529 -x1528 -x1527 -x1526 -x1525 -x1524 -x1523 -x1522 -x1521 -x1520 -x1519 -x1518 -x1517 -x1516 -x1515 -x1514
1.18/1.21 v -x1513 x1512 x1511 x1510 x1509 x1508 x1507 x1506 x1505 x1504 x1503 x1502 x1501 x1500 x1499 x1498 x1497 x1496 x1495 x1494
1.18/1.21 v x1493 x1492 x1491 x1490 x1489 -x1488 -x1487 -x1486 -x1485 -x1484 -x1483 -x1482 -x1481 -x1480 -x1479 -x1478 -x1477 -x1476 -x1475
1.18/1.21 v -x1474 -x1473 -x1472 -x1471 -x1470 -x1469 -x1468 -x1467 -x1466 -x1465 -x1464 -x1463 -x1462 -x1461 -x1460 -x1459 -x1458 -x1457
1.18/1.21 v -x1456 -x1455 -x1454 -x1453 -x1452 -x1451 -x1450 x1449 x1448 x1447 x1446 x1445 x1444 x1443 x1442 x1441 x1440 x1439 x1438
1.18/1.21 v x1437 x1436 x1435 x1434 x1433 x1432 x1431 x1430 x1429 x1428 x1427 -x1426 -x1425 -x1424 -x1423 -x1422 -x1421 -x1420 -x1419 -x1418
1.18/1.21 v -x1417 -x1416 -x1415 -x1414 -x1413 -x1412 -x1411 -x1410 -x1409 -x1408 -x1407 -x1406 -x1405 -x1404 -x1403 -x1402 -x1401
1.18/1.21 v -x1400 -x1399 -x1398 -x1397 -x1396 -x1395 -x1394 -x1393 -x1392 -x1391 -x1390 -x1389 -x1388 -x1387 x1386 x1385 x1384 x1383 x1382
1.18/1.21 v x1381 x1380 x1379 x1378 x1377 x1376 x1375 x1374 x1373 x1372 x1371 x1370 x1369 x1368 x1367 x1366 x1365 x1364 x1363 x1362 x1361
1.18/1.21 v x1360 x1359 x1358 -x1357 -x1356 -x1355 -x1354 -x1353 -x1352 -x1351 -x1350 -x1349 -x1348 -x1347 -x1346 -x1345 -x1344 -x1343
1.18/1.21 v -x1342 -x1341 -x1340 -x1339 -x1338 -x1337 -x1336 -x1335 -x1334 -x1333 -x1332 -x1331 -x1330 -x1329 -x1328 -x1327 -x1326 -x1325
1.18/1.21 v -x1324 x1323 x1322 x1321 x1320 x1319 x1318 x1317 x1316 x1315 x1314 x1313 x1312 x1311 x1310 x1309 x1308 x1307 x1306 x1305 x1304
1.18/1.21 v x1303 x1302 x1301 x1300 x1299 x1298 x1297 x1296 x1295 x1294 x1293 x1292 -x1291 -x1290 -x1289 -x1288 -x1287 -x1286 -x1285
1.18/1.21 v -x1284 -x1283 -x1282 -x1281 -x1280 -x1279 -x1278 -x1277 -x1276 -x1275 -x1274 -x1273 -x1272 -x1271 -x1270 -x1269 -x1268 -x1267
1.18/1.21 v -x1266 -x1265 -x1264 -x1263 -x1262 -x1261 x1260 x1259 x1258 x1257 x1256 x1255 x1254 x1253 x1252 x1251 x1250 x1249 x1248 x1247
1.18/1.21 v -x1246 -x1245 -x1244 -x1243 -x1242 -x1241 -x1240 -x1239 -x1238 -x1237 -x1236 -x1235 -x1234 -x1233 -x1232 -x1231 -x1230 -x1229
1.18/1.21 v -x1228 -x1227 -x1226 -x1225 -x1224 -x1223 -x1222 -x1221 -x1220 -x1219 -x1218 -x1217 -x1216 -x1215 -x1214 -x1213 -x1212 -x1211
1.18/1.21 v -x1210 -x1209 -x1208 -x1207 -x1206 -x1205 -x1204 -x1203 -x1202 -x1201 -x1200 -x1199 -x1198 x1197 x1196 x1195 x1194 x1193
1.18/1.21 v x1192 x1191 x1190 x1189 x1188 x1187 x1186 x1185 x1184 x1183 x1182 x1181 x1180 x1179 x1178 x1177 x1176 x1175 x1174 x1173 x1172
1.18/1.21 v x1171 x1170 x1169 x1168 x1167 x1166 -x1165 -x1164 -x1163 -x1162 -x1161 -x1160 -x1159 -x1158 -x1157 -x1156 -x1155 -x1154 -x1153
1.18/1.21 v -x1152 -x1151 -x1150 -x1149 -x1148 -x1147 -x1146 -x1145 -x1144 -x1143 -x1142 -x1141 -x1140 -x1139 -x1138 -x1137 -x1136 -x1135
1.18/1.21 v x1134 x1133 x1132 x1131 x1130 x1129 x1128 x1127 x1126 x1125 x1124 x1123 x1122 x1121 x1120 x1119 x1118 x1117 x1116 x1115
1.18/1.21 v x1114 x1113 x1112 x1111 x1110 x1109 x1108 x1107 -x1106 -x1105 -x1104 -x1103 -x1102 -x1101 -x1100 -x1099 -x1098 -x1097 -x1096
1.18/1.21 v -x1095 -x1094 -x1093 -x1092 -x1091 -x1090 -x1089 -x1088 -x1087 -x1086 -x1085 -x1084 -x1083 -x1082 -x1081 -x1080 -x1079 -x1078
1.18/1.21 v -x1077 -x1076 -x1075 -x1074 -x1073 -x1072 x1071 x1070 x1069 x1068 x1067 x1066 x1065 x1064 x1063 x1062 x1061 x1060 x1059 x1058
1.18/1.21 v x1057 x1056 x1055 x1054 x1053 x1052 x1051 x1050 x1049 x1048 x1047 x1046 x1045 x1044 x1043 x1042 x1041 x1040 x1039 x1038 x1037
1.18/1.21 v x1036 x1035 x1034 x1033 x1032 x1031 x1030 x1029 x1028 x1027 x1026 x1025 x1024 x1023 x1022 x1021 -x1020 -x1019 -x1018 -x1017
1.18/1.21 v -x1016 -x1015 -x1014 -x1013 -x1012 -x1011 -x1010 -x1009 x1008 x1007 x1006 x1005 x1004 x1003 x1002 x1001 x1000 x999 x998 x997
1.18/1.21 v x996 x995 x994 x993 x992 x991 x990 x989 x988 x987 x986 x985 x984 x983 x982 x981 x980 x979 x978 x977 x976 x975 x974 x973 x972
1.18/1.21 v x971 x970 -x969 -x968 -x967 -x966 -x965 -x964 -x963 -x962 -x961 -x960 -x959 -x958 -x957 -x956 -x955 -x954 -x953 -x952 -x951
1.18/1.21 v -x950 -x949 -x948 -x947 -x946 x945 x944 x943 x942 x941 x940 x939 x938 x937 x936 x935 x934 x933 x932 x931 x930 x929 x928 x927
1.18/1.21 v x926 x925 x924 x923 x922 -x921 -x920 -x919 -x918 -x917 -x916 -x915 -x914 -x913 -x912 -x911 -x910 -x909 -x908 -x907 -x906 -x905
1.18/1.21 v -x904 -x903 -x902 -x901 -x900 -x899 -x898 -x897 -x896 -x895 -x894 -x893 -x892 -x891 -x890 -x889 -x888 -x887 -x886 -x885 -x884
1.18/1.21 v -x883 x882 x881 x880 x879 x878 x877 x876 x875 x874 x873 x872 x871 x870 x869 x868 x867 x866 x865 x864 x863 x862 x861 x860
1.18/1.21 v x859 x858 x857 x856 x855 x854 -x853 -x852 -x851 -x850 -x849 -x848 -x847 -x846 -x845 -x844 -x843 -x842 -x841 -x840 -x839 -x838
1.18/1.21 v -x837 -x836 -x835 -x834 -x833 -x832 -x831 -x830 -x829 -x828 -x827 -x826 -x825 -x824 -x823 -x822 -x821 -x820 x819 x818 x817 x816
1.18/1.21 v x815 x814 x813 x812 x811 x810 x809 x808 x807 x806 x805 x804 x803 x802 x801 x800 x799 x798 x797 x796 x795 x794 x793 x792 x791
1.18/1.21 v x790 x789 x788 x787 x786 x785 x784 x783 x782 x781 x780 x779 -x778 -x777 -x776 -x775 -x774 -x773 -x772 -x771 -x770 -x769 -x768
1.18/1.21 v -x767 -x766 -x765 -x764 -x763 -x762 -x761 -x760 -x759 -x758 -x757 x756 x755 x754 x753 x752 x751 x750 x749 x748 x747 x746
1.18/1.21 v x745 x744 x743 x742 x741 x740 x739 x738 x737 x736 x735 x734 x733 x732 x731 x730 x729 x728 x727 x726 x725 x724 x723 x722 x721
1.18/1.21 v x720 x719 x718 x717 x716 x715 x714 x713 x712 x711 x710 x709 x708 -x707 -x706 -x705 -x704 -x703 -x702 -x701 -x700 -x699 -x698
1.18/1.21 v -x697 -x696 -x695 -x694 x693 x692 x691 x690 x689 x688 x687 x686 x685 x684 x683 x682 x681 x680 x679 x678 x677 x676 x675 x674
1.18/1.21 v x673 x672 x671 x670 x669 x668 x667 x666 x665 x664 x663 x662 x661 x660 x659 x658 x657 x656 x655 x654 x653 x652 x651 x650 x649
1.18/1.21 v x648 x647 x646 x645 x644 -x643 -x642 -x641 -x640 -x639 -x638 -x637 -x636 -x635 -x634 -x633 -x632 -x631 x630 x629 x628 x627 x626
1.18/1.21 v x625 x624 x623 x622 x621 x620 x619 x618 x617 x616 x615 x614 x613 x612 x611 x610 x609 x608 x607 x606 x605 x604 x603 x602 x601
1.18/1.21 v x600 x599 x598 x597 x596 x595 -x594 -x593 -x592 -x591 -x590 -x589 -x588 -x587 -x586 -x585 -x584 -x583 -x582 -x581 -x580 -x579
1.18/1.21 v -x578 -x577 -x576 -x575 -x574 -x573 -x572 -x571 -x570 -x569 -x568 x567 x566 x565 x564 x563 x562 x561 x560 x559 x558 x557
1.18/1.21 v x556 x555 x554 x553 x552 x551 x550 x549 x548 x547 x546 x545 x544 x543 x542 x541 x540 x539 x538 x537 x536 x535 x534 x533 x532
1.18/1.21 v x531 x530 x529 x528 x527 x526 x525 x524 x523 x522 x521 x520 x519 x518 x517 x516 x515 x514 x513 x512 x511 x510 x509 x508 x507
1.18/1.21 v x506 -x505 x504 x503 x502 x501 x500 x499 x498 x497 x496 x495 x494 x493 x492 x491 x490 x489 x488 x487 x486 x485 x484 x483 x482
1.18/1.21 v x481 x480 x479 x478 x477 x476 x475 x474 x473 x472 x471 x470 x469 x468 x467 x466 x465 x464 x463 x462 x461 x460 x459 x458 x457
1.18/1.21 v x456 -x455 -x454 -x453 -x452 -x451 -x450 -x449 -x448 -x447 -x446 -x445 -x444 -x443 -x442 x441 x440 x439 x438 x437 x436 x435
1.18/1.21 v x434 x433 x432 x431 x430 x429 x428 x427 x426 x425 x424 x423 x422 x421 x420 x419 x418 x417 x416 x415 x414 x413 x412 x411 x410
1.18/1.21 v x409 x408 x407 x406 x405 x404 x403 x402 x401 x400 x399 x398 x397 x396 x395 x394 x393 x392 x391 x390 x389 x388 -x387 -x386 -x385
1.18/1.21 v -x384 -x383 -x382 -x381 -x380 -x379 x378 x377 x376 x375 x374 x373 x372 x371 x370 x369 x368 x367 x366 x365 x364 x363 x362 x361
1.18/1.21 v x360 x359 x358 x357 x356 x355 x354 x353 x352 x351 x350 x349 x348 x347 x346 x345 x344 x343 x342 x341 x340 x339 x338 x337 x336
1.18/1.21 v x335 x334 x333 x332 x331 x330 x329 x328 x327 x326 x325 x324 x323 x322 x321 x320 x319 x318 x317 -x316 x315 x314 x313 x312
1.18/1.21 v x311 x310 x309 x308 x307 x306 x305 x304 x303 x302 x301 x300 x299 x298 x297 x296 x295 x294 x293 x292 x291 x290 x289 x288 x287
1.18/1.21 v x286 x285 x284 x283 x282 x281 x280 x279 x278 x277 x276 x275 x274 x273 -x272 -x271 -x270 -x269 -x268 -x267 -x266 -x265 -x264 -x263
1.18/1.21 v -x262 -x261 -x260 -x259 -x258 -x257 -x256 -x255 -x254 -x253 x252 x251 x250 x249 x248 x247 x246 x245 x244 x243 x242 x241
1.18/1.21 v x240 x239 x238 x237 x236 x235 x234 x233 x232 x231 x230 x229 x228 x227 x226 x225 x224 x223 x222 x221 x220 x219 x218 x217 x216
1.18/1.21 v x215 x214 x213 x212 x211 x210 x209 x208 x207 x206 x205 x204 x203 x202 x201 x200 x199 x198 x197 x196 x195 -x194 -x193 -x192 -x191
1.18/1.21 v -x190 x189 x188 x187 x186 x185 x184 x183 x182 x181 x180 x179 x178 x177 x176 x175 x174 x173 x172 x171 x170 x169 x168 x167
1.18/1.21 v x166 x165 x164 x163 x162 x161 x160 x159 x158 x157 x156 x155 x154 x153 x152 x151 x150 x149 x148 x147 x146 x145 x144 x143 x142
1.18/1.21 v x141 x140 x139 x138 x137 x136 x135 x134 x133 x132 x131 x130 x129 x128 x127 x126 x125 x124 x123 x122 x121 x120 x119 x118 x117
1.18/1.21 v x116 x115 x114 x113 x112 x111 x110 x109 x108 x107 x106 x105 x104 x103 x102 x101 x100 x99 x98 x97 x96 x95 x94 x93 x92 x91 x90
1.18/1.21 v x89 x88 x87 x86 x85 x84 x83 x82 x81 x80 x79 x78 x77 x76 x75 x74 x73 x72 x71 x70 x69 x68 x67 x66 x65 x64 x63 x62 x61 x60 x59 x58
1.18/1.21 v x57 x56 x55 x54 x53 x52 x51 x50 x49 x48 x47 x46 x45 x44 x43 x42 x41 x40 x39 x38 x37 x36 x35 x34 x33 x32 x31 x30 x29 x28 x27
1.18/1.21 v x26 x25 x24 x23 x22 x21 x20 x19 x18 x17 x16 x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x1953
1.18/1.21 c SCIP Status : problem is solved [optimal solution found]
1.18/1.21 c Solving Time : 1.11
1.18/1.21 c Original Problem :
1.18/1.21 c Problem name : HOME/instance-3739397-1338730355.opb
1.18/1.21 c Variables : 3906 (3906 binary, 0 integer, 0 implicit integer, 0 continuous)
1.18/1.21 c Constraints : 12671 initial, 12671 maximal
1.18/1.21 c Presolved Problem :
1.18/1.21 c Problem name : t_HOME/instance-3739397-1338730355.opb
1.18/1.21 c Variables : 854 (854 binary, 0 integer, 0 implicit integer, 0 continuous)
1.18/1.21 c Constraints : 2376 initial, 2471 maximal
1.18/1.21 c Presolvers : Time FixedVars AggrVars ChgTypes ChgBounds AddHoles DelCons ChgSides ChgCoefs
1.18/1.21 c trivial : 0.00 173 0 0 0 0 0 0 0
1.18/1.21 c dualfix : 0.00 28 0 0 0 0 0 0 0
1.18/1.21 c boundshift : 0.00 0 0 0 0 0 0 0 0
1.18/1.21 c inttobinary : 0.00 0 0 0 0 0 0 0 0
1.18/1.21 c implics : 0.00 0 0 0 0 0 0 0 0
1.18/1.21 c probing : 0.00 0 0 0 0 0 0 0 0
1.18/1.21 c knapsack : 0.01 0 0 0 0 0 0 22 212
1.18/1.21 c setppc : 0.01 0 0 0 0 0 0 0 0
1.18/1.21 c linear : 0.30 2115 736 0 2288 0 10295 12 12
1.18/1.21 c logicor : 0.00 0 0 0 0 0 0 0 0
1.18/1.21 c root node : - 49 - - 49 - - - -
1.18/1.21 c Constraints : Number #Separate #Propagate #EnfoLP #EnfoPS Cutoffs DomReds Cuts Conss Children
1.18/1.21 c integral : 0 0 0 0 0 0 0 0 0 0
1.18/1.21 c knapsack : 224 1 2 0 0 0 0 146 0 0
1.18/1.21 c setppc : 1808 1 2 0 0 0 0 0 0 0
1.18/1.21 c linear : 0+ 0 1 0 0 0 0 0 0 0
1.18/1.21 c logicor : 344 1 2 0 0 0 0 0 0 0
1.18/1.21 c countsols : 0 0 0 0 0 0 0 0 0 0
1.18/1.21 c Constraint Timings : TotalTime Separate Propagate EnfoLP EnfoPS
1.18/1.21 c integral : 0.00 0.00 0.00 0.00 0.00
1.18/1.21 c knapsack : 0.00 0.00 0.00 0.00 0.00
1.18/1.21 c setppc : 0.00 0.00 0.00 0.00 0.00
1.18/1.21 c linear : 0.00 0.00 0.00 0.00 0.00
1.18/1.21 c logicor : 0.00 0.00 0.00 0.00 0.00
1.18/1.21 c countsols : 0.00 0.00 0.00 0.00 0.00
1.18/1.21 c Propagators : Time Calls Cutoffs DomReds
1.18/1.21 c vbounds : 0.00 1 0 0
1.18/1.21 c rootredcost : 0.00 0 0 0
1.18/1.21 c pseudoobj : 0.00 0 0 0
1.18/1.21 c Conflict Analysis : Time Calls Success Conflicts Literals Reconvs ReconvLits LP Iters
1.18/1.21 c propagation : 0.00 0 0 0 0.0 0 0.0 -
1.18/1.21 c infeasible LP : 0.00 0 0 0 0.0 0 0.0 0
1.18/1.21 c bound exceed. LP : 0.00 0 0 0 0.0 0 0.0 0
1.18/1.21 c strong branching : 0.00 0 0 0 0.0 0 0.0 0
1.18/1.21 c pseudo solution : 0.00 1 0 0 0.0 0 0.0 -
1.18/1.21 c applied globally : - - - 0 0.0 - - -
1.18/1.21 c applied locally : - - - 0 0.0 - - -
1.18/1.21 c Separators : Time Calls Cutoffs DomReds Cuts Conss
1.18/1.21 c cut pool : 0.00 0 - - 0 - (maximal pool size: 114)
1.18/1.21 c redcost : 0.00 1 0 0 0 0
1.18/1.21 c impliedbounds : 0.00 1 0 0 0 0
1.18/1.21 c intobj : 0.00 0 0 0 0 0
1.18/1.21 c cgmip : 0.00 0 0 0 0 0
1.18/1.21 c gomory : 0.20 1 0 0 0 0
1.18/1.21 c strongcg : 0.19 1 0 0 438 0
1.18/1.21 c cmir : 0.00 0 0 0 0 0
1.18/1.21 c flowcover : 0.00 0 0 0 0 0
1.18/1.21 c clique : 0.01 1 0 0 6 0
1.18/1.21 c zerohalf : 0.00 0 0 0 0 0
1.18/1.21 c mcf : 0.00 1 0 0 0 0
1.18/1.21 c rapidlearning : 0.16 1 0 49 0 95
1.18/1.21 c Pricers : Time Calls Vars
1.18/1.21 c problem variables: 0.00 0 0
1.18/1.21 c Branching Rules : Time Calls Cutoffs DomReds Cuts Conss Children
1.18/1.21 c pscost : 0.00 0 0 0 0 0 0
1.18/1.21 c inference : 0.00 0 0 0 0 0 0
1.18/1.21 c mostinf : 0.00 0 0 0 0 0 0
1.18/1.21 c leastinf : 0.00 0 0 0 0 0 0
1.18/1.21 c fullstrong : 0.00 0 0 0 0 0 0
1.18/1.21 c allfullstrong : 0.00 0 0 0 0 0 0
1.18/1.21 c random : 0.00 0 0 0 0 0 0
1.18/1.21 c relpscost : 0.00 0 0 0 0 0 0
1.18/1.21 c Primal Heuristics : Time Calls Found
1.18/1.21 c LP solutions : 0.00 - 0
1.18/1.21 c pseudo solutions : 0.00 - 0
1.18/1.21 c trivial : 0.00 1 0
1.18/1.21 c simplerounding : 0.00 0 0
1.18/1.21 c zirounding : 0.00 0 0
1.18/1.21 c rounding : 0.00 0 0
1.18/1.21 c shifting : 0.00 0 0
1.18/1.21 c intshifting : 0.00 0 0
1.18/1.21 c oneopt : 0.00 0 0
1.18/1.21 c twoopt : 0.00 0 0
1.18/1.21 c fixandinfer : 0.00 0 0
1.18/1.21 c feaspump : 0.00 0 0
1.18/1.21 c coefdiving : 0.00 0 0
1.18/1.21 c pscostdiving : 0.00 0 0
1.18/1.21 c fracdiving : 0.00 0 0
1.18/1.21 c veclendiving : 0.00 0 0
1.18/1.21 c intdiving : 0.00 0 0
1.18/1.21 c actconsdiving : 0.00 0 0
1.18/1.21 c objpscostdiving : 0.00 0 0
1.18/1.21 c rootsoldiving : 0.00 0 0
1.18/1.21 c linesearchdiving : 0.00 0 0
1.18/1.21 c guideddiving : 0.00 0 0
1.18/1.21 c octane : 0.00 0 0
1.18/1.21 c rens : 0.00 0 0
1.18/1.21 c rins : 0.00 0 0
1.18/1.21 c localbranching : 0.00 0 0
1.18/1.21 c mutation : 0.00 0 0
1.18/1.21 c crossover : 0.00 0 0
1.18/1.21 c dins : 0.00 0 0
1.18/1.21 c undercover : 0.00 0 0
1.18/1.21 c nlp : 0.00 0 0
1.18/1.21 c trysol : 0.00 0 0
1.18/1.21 c LP : Time Calls Iterations Iter/call Iter/sec
1.18/1.21 c primal LP : 0.00 0 0 0.00 -
1.18/1.21 c dual LP : 0.17 1 1475 1475.00 8708.18
1.18/1.21 c lex dual LP : 0.00 0 0 0.00 -
1.18/1.21 c barrier LP : 0.00 0 0 0.00 -
1.18/1.21 c diving/probing LP: 0.00 0 0 0.00 -
1.18/1.21 c strong branching : 0.00 0 0 0.00 -
1.18/1.21 c (at root node) : - 0 0 0.00 -
1.18/1.21 c conflict analysis: 0.00 0 0 0.00 -
1.18/1.21 c B&B Tree :
1.18/1.21 c number of runs : 1
1.18/1.21 c nodes : 1
1.18/1.21 c nodes (total) : 1
1.18/1.21 c nodes left : 0
1.18/1.21 c max depth : 0
1.18/1.21 c max depth (total): 0
1.18/1.21 c backtracks : 0 (0.0%)
1.18/1.21 c delayed cutoffs : 0
1.18/1.21 c repropagations : 0 (0 domain reductions, 0 cutoffs)
1.18/1.21 c avg switch length: 2.00
1.18/1.21 c switching time : 0.00
1.18/1.21 c Solution :
1.18/1.21 c Solutions found : 1 (1 improvements)
1.18/1.21 c First Solution : +0.00000000000000e+00 (in run 1, after 1 nodes, 1.10 seconds, depth 0, found by <trysol>)
1.18/1.21 c Primal Bound : +0.00000000000000e+00 (in run 1, after 1 nodes, 1.10 seconds, depth 0, found by <trysol>)
1.18/1.21 c Dual Bound : +0.00000000000000e+00
1.18/1.21 c Gap : 0.00 %
1.18/1.21 c Root Dual Bound : +0.00000000000000e+00
1.18/1.21 c Root Iterations : 1475
1.18/1.22 c Time complete: 1.22.