0.00/0.00 c SCIP version 2.1.1.4 [precision: 8 byte] [memory: block] [mode: optimized] [LP solver: SoPlex 1.6.0.3] [GitHash: a3bf3a4-dirty]
0.00/0.00 c Copyright (c) 2002-2012 Konrad-Zuse-Zentrum fuer Informationstechnik Berlin (ZIB)
0.00/0.00 c
0.00/0.00 c user parameter file <scip.set> not found - using default parameters
0.00/0.00 c reading problem <HOME/instance-3690546-1338022605.opb>
0.00/0.03 c original problem has 3968 variables (3968 bin, 0 int, 0 impl, 0 cont) and 12910 constraints
0.00/0.03 c problem read in 0.03
0.00/0.03 c No objective function, only one solution is needed.
0.00/0.03 c presolving settings loaded
0.00/0.08 c presolving:
0.29/0.33 c (round 1) 1186 del vars, 2987 del conss, 0 add conss, 837 chg bounds, 28 chg sides, 31 chg coeffs, 0 upgd conss, 618072 impls, 0 clqs
0.39/0.45 c (round 2) 2590 del vars, 8152 del conss, 0 add conss, 2157 chg bounds, 59 chg sides, 56 chg coeffs, 0 upgd conss, 624665 impls, 0 clqs
0.39/0.47 c (round 3) 3045 del vars, 10151 del conss, 0 add conss, 2417 chg bounds, 117 chg sides, 92 chg coeffs, 0 upgd conss, 626021 impls, 0 clqs
0.39/0.49 c (round 4) 3250 del vars, 10810 del conss, 0 add conss, 2568 chg bounds, 136 chg sides, 102 chg coeffs, 0 upgd conss, 628368 impls, 0 clqs
0.39/0.49 c (round 5) 3459 del vars, 11477 del conss, 0 add conss, 2699 chg bounds, 149 chg sides, 114 chg coeffs, 0 upgd conss, 630950 impls, 0 clqs
0.48/0.50 c (round 6) 3555 del vars, 11926 del conss, 0 add conss, 2771 chg bounds, 175 chg sides, 132 chg coeffs, 0 upgd conss, 631439 impls, 0 clqs
0.48/0.50 c (round 7) 3573 del vars, 12022 del conss, 0 add conss, 2773 chg bounds, 188 chg sides, 142 chg coeffs, 0 upgd conss, 631823 impls, 1 clqs
0.48/0.50 c (round 8) 3575 del vars, 12033 del conss, 0 add conss, 2773 chg bounds, 188 chg sides, 142 chg coeffs, 0 upgd conss, 631845 impls, 1 clqs
0.48/0.50 c (round 9) 3576 del vars, 12037 del conss, 0 add conss, 2773 chg bounds, 188 chg sides, 142 chg coeffs, 0 upgd conss, 631845 impls, 1 clqs
0.48/0.50 c (round 10) 3577 del vars, 12039 del conss, 0 add conss, 2773 chg bounds, 188 chg sides, 142 chg coeffs, 0 upgd conss, 631845 impls, 1 clqs
0.48/0.51 c (round 11) 3578 del vars, 12041 del conss, 0 add conss, 2773 chg bounds, 188 chg sides, 142 chg coeffs, 0 upgd conss, 631845 impls, 1 clqs
0.48/0.51 c (round 12) 3579 del vars, 12043 del conss, 0 add conss, 2773 chg bounds, 188 chg sides, 142 chg coeffs, 0 upgd conss, 631845 impls, 1 clqs
0.48/0.51 c (round 13) 3580 del vars, 12045 del conss, 0 add conss, 2773 chg bounds, 188 chg sides, 142 chg coeffs, 0 upgd conss, 631845 impls, 1 clqs
0.48/0.51 c (round 14) 3581 del vars, 12047 del conss, 0 add conss, 2773 chg bounds, 189 chg sides, 142 chg coeffs, 0 upgd conss, 631845 impls, 1 clqs
0.48/0.51 c (round 15) 3582 del vars, 12048 del conss, 0 add conss, 2773 chg bounds, 190 chg sides, 142 chg coeffs, 0 upgd conss, 631845 impls, 1 clqs
0.48/0.53 c (round 16) 3582 del vars, 12050 del conss, 0 add conss, 2773 chg bounds, 191 chg sides, 142 chg coeffs, 860 upgd conss, 631845 impls, 1 clqs
0.48/0.54 c (round 17) 3582 del vars, 12050 del conss, 0 add conss, 2773 chg bounds, 213 chg sides, 204 chg coeffs, 860 upgd conss, 632733 impls, 20 clqs
0.48/0.54 c (round 18) 3582 del vars, 12050 del conss, 0 add conss, 2773 chg bounds, 228 chg sides, 268 chg coeffs, 860 upgd conss, 632733 impls, 30 clqs
0.48/0.54 c (round 19) 3582 del vars, 12050 del conss, 0 add conss, 2773 chg bounds, 228 chg sides, 271 chg coeffs, 860 upgd conss, 632733 impls, 34 clqs
0.48/0.55 c (round 20) 3582 del vars, 12563 del conss, 167 add conss, 2773 chg bounds, 228 chg sides, 271 chg coeffs, 860 upgd conss, 632733 impls, 34 clqs
0.48/0.55 c (round 21) 3582 del vars, 12718 del conss, 322 add conss, 2773 chg bounds, 228 chg sides, 271 chg coeffs, 860 upgd conss, 632733 impls, 45 clqs
0.48/0.55 c presolving (22 rounds):
0.48/0.55 c 3582 deleted vars, 12718 deleted constraints, 322 added constraints, 2773 tightened bounds, 0 added holes, 228 changed sides, 271 changed coefficients
0.48/0.55 c 632733 implications, 200 cliques
0.48/0.55 c presolved problem has 386 variables (386 bin, 0 int, 0 impl, 0 cont) and 514 constraints
0.48/0.55 c 49 constraints of type <knapsack>
0.48/0.55 c 465 constraints of type <setppc>
0.48/0.55 c transformed objective value is always integral (scale: 1)
0.48/0.55 c Presolving Time: 0.50
0.48/0.55 c - non default parameters ----------------------------------------------------------------------
0.48/0.55 c # SCIP version 2.1.1.4
0.48/0.55 c
0.48/0.55 c # maximal time in seconds to run
0.48/0.55 c # [type: real, range: [0,1.79769313486232e+308], default: 1e+20]
0.48/0.55 c limits/time = 1797
0.48/0.55 c
0.48/0.55 c # maximal memory usage in MB; reported memory usage is lower than real memory usage!
0.48/0.55 c # [type: real, range: [0,1.79769313486232e+308], default: 1e+20]
0.48/0.55 c limits/memory = 13950
0.48/0.55 c
0.48/0.55 c # solving stops, if the given number of solutions were found (-1: no limit)
0.48/0.55 c # [type: int, range: [-1,2147483647], default: -1]
0.48/0.55 c limits/solutions = 1
0.48/0.55 c
0.48/0.55 c # maximal number of separation rounds per node (-1: unlimited)
0.48/0.55 c # [type: int, range: [-1,2147483647], default: 5]
0.48/0.55 c separating/maxrounds = 1
0.48/0.55 c
0.48/0.55 c # maximal number of separation rounds in the root node (-1: unlimited)
0.48/0.55 c # [type: int, range: [-1,2147483647], default: -1]
0.48/0.55 c separating/maxroundsroot = 5
0.48/0.55 c
0.48/0.55 c # default clock type (1: CPU user seconds, 2: wall clock time)
0.48/0.55 c # [type: int, range: [1,2], default: 1]
0.48/0.55 c timing/clocktype = 2
0.48/0.55 c
0.48/0.55 c # belongs reading time to solving time?
0.48/0.55 c # [type: bool, range: {TRUE,FALSE}, default: FALSE]
0.48/0.55 c timing/reading = TRUE
0.48/0.55 c
0.48/0.55 c # should disaggregation of knapsack constraints be allowed in preprocessing?
0.48/0.55 c # [type: bool, range: {TRUE,FALSE}, default: TRUE]
0.48/0.55 c constraints/knapsack/disaggregation = FALSE
0.48/0.55 c
0.48/0.55 c # frequency for calling primal heuristic <coefdiving> (-1: never, 0: only at depth freqofs)
0.48/0.55 c # [type: int, range: [-1,2147483647], default: 10]
0.48/0.55 c heuristics/coefdiving/freq = -1
0.48/0.55 c
0.48/0.55 c # maximal fraction of diving LP iterations compared to node LP iterations
0.48/0.55 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.48/0.55 c heuristics/coefdiving/maxlpiterquot = 0.075
0.48/0.55 c
0.48/0.55 c # additional number of allowed LP iterations
0.48/0.55 c # [type: int, range: [0,2147483647], default: 1000]
0.48/0.55 c heuristics/coefdiving/maxlpiterofs = 1500
0.48/0.55 c
0.48/0.55 c # frequency for calling primal heuristic <crossover> (-1: never, 0: only at depth freqofs)
0.48/0.55 c # [type: int, range: [-1,2147483647], default: 30]
0.48/0.55 c heuristics/crossover/freq = -1
0.48/0.55 c
0.48/0.55 c # number of nodes added to the contingent of the total nodes
0.48/0.55 c # [type: longint, range: [0,9223372036854775807], default: 500]
0.48/0.55 c heuristics/crossover/nodesofs = 750
0.48/0.55 c
0.48/0.55 c # number of nodes without incumbent change that heuristic should wait
0.48/0.55 c # [type: longint, range: [0,9223372036854775807], default: 200]
0.48/0.55 c heuristics/crossover/nwaitingnodes = 100
0.48/0.55 c
0.48/0.55 c # contingent of sub problem nodes in relation to the number of nodes of the original problem
0.48/0.55 c # [type: real, range: [0,1], default: 0.1]
0.48/0.55 c heuristics/crossover/nodesquot = 0.15
0.48/0.55 c
0.48/0.55 c # minimum percentage of integer variables that have to be fixed
0.48/0.55 c # [type: real, range: [0,1], default: 0.666]
0.48/0.55 c heuristics/crossover/minfixingrate = 0.5
0.48/0.55 c
0.48/0.55 c # frequency for calling primal heuristic <feaspump> (-1: never, 0: only at depth freqofs)
0.48/0.55 c # [type: int, range: [-1,2147483647], default: 20]
0.48/0.55 c heuristics/feaspump/freq = -1
0.48/0.55 c
0.48/0.55 c # additional number of allowed LP iterations
0.48/0.55 c # [type: int, range: [0,2147483647], default: 1000]
0.48/0.55 c heuristics/feaspump/maxlpiterofs = 2000
0.48/0.55 c
0.48/0.55 c # frequency for calling primal heuristic <fracdiving> (-1: never, 0: only at depth freqofs)
0.48/0.55 c # [type: int, range: [-1,2147483647], default: 10]
0.48/0.55 c heuristics/fracdiving/freq = -1
0.48/0.55 c
0.48/0.55 c # maximal fraction of diving LP iterations compared to node LP iterations
0.48/0.55 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.48/0.55 c heuristics/fracdiving/maxlpiterquot = 0.075
0.48/0.55 c
0.48/0.55 c # additional number of allowed LP iterations
0.48/0.55 c # [type: int, range: [0,2147483647], default: 1000]
0.48/0.55 c heuristics/fracdiving/maxlpiterofs = 1500
0.48/0.55 c
0.48/0.55 c # frequency for calling primal heuristic <guideddiving> (-1: never, 0: only at depth freqofs)
0.48/0.55 c # [type: int, range: [-1,2147483647], default: 10]
0.48/0.55 c heuristics/guideddiving/freq = -1
0.48/0.55 c
0.48/0.55 c # maximal fraction of diving LP iterations compared to node LP iterations
0.48/0.55 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.48/0.55 c heuristics/guideddiving/maxlpiterquot = 0.075
0.48/0.55 c
0.48/0.55 c # additional number of allowed LP iterations
0.48/0.55 c # [type: int, range: [0,2147483647], default: 1000]
0.48/0.55 c heuristics/guideddiving/maxlpiterofs = 1500
0.48/0.55 c
0.48/0.55 c # maximal fraction of diving LP iterations compared to node LP iterations
0.48/0.55 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.48/0.55 c heuristics/intdiving/maxlpiterquot = 0.075
0.48/0.55 c
0.48/0.55 c # frequency for calling primal heuristic <intshifting> (-1: never, 0: only at depth freqofs)
0.48/0.55 c # [type: int, range: [-1,2147483647], default: 10]
0.48/0.55 c heuristics/intshifting/freq = -1
0.48/0.55 c
0.48/0.55 c # frequency for calling primal heuristic <linesearchdiving> (-1: never, 0: only at depth freqofs)
0.48/0.55 c # [type: int, range: [-1,2147483647], default: 10]
0.48/0.55 c heuristics/linesearchdiving/freq = -1
0.48/0.55 c
0.48/0.55 c # maximal fraction of diving LP iterations compared to node LP iterations
0.48/0.55 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.48/0.55 c heuristics/linesearchdiving/maxlpiterquot = 0.075
0.48/0.55 c
0.48/0.55 c # additional number of allowed LP iterations
0.48/0.55 c # [type: int, range: [0,2147483647], default: 1000]
0.48/0.55 c heuristics/linesearchdiving/maxlpiterofs = 1500
0.48/0.55 c
0.48/0.55 c # frequency for calling primal heuristic <objpscostdiving> (-1: never, 0: only at depth freqofs)
0.48/0.55 c # [type: int, range: [-1,2147483647], default: 20]
0.48/0.55 c heuristics/objpscostdiving/freq = -1
0.48/0.55 c
0.48/0.55 c # maximal fraction of diving LP iterations compared to total iteration number
0.48/0.55 c # [type: real, range: [0,1], default: 0.01]
0.48/0.55 c heuristics/objpscostdiving/maxlpiterquot = 0.015
0.48/0.55 c
0.48/0.55 c # additional number of allowed LP iterations
0.48/0.55 c # [type: int, range: [0,2147483647], default: 1000]
0.48/0.55 c heuristics/objpscostdiving/maxlpiterofs = 1500
0.48/0.55 c
0.48/0.55 c # frequency for calling primal heuristic <oneopt> (-1: never, 0: only at depth freqofs)
0.48/0.55 c # [type: int, range: [-1,2147483647], default: 1]
0.48/0.55 c heuristics/oneopt/freq = -1
0.48/0.55 c
0.48/0.55 c # frequency for calling primal heuristic <pscostdiving> (-1: never, 0: only at depth freqofs)
0.48/0.55 c # [type: int, range: [-1,2147483647], default: 10]
0.48/0.55 c heuristics/pscostdiving/freq = -1
0.48/0.55 c
0.48/0.55 c # maximal fraction of diving LP iterations compared to node LP iterations
0.48/0.55 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.48/0.55 c heuristics/pscostdiving/maxlpiterquot = 0.075
0.48/0.55 c
0.48/0.55 c # additional number of allowed LP iterations
0.48/0.55 c # [type: int, range: [0,2147483647], default: 1000]
0.48/0.55 c heuristics/pscostdiving/maxlpiterofs = 1500
0.48/0.55 c
0.48/0.55 c # frequency for calling primal heuristic <rens> (-1: never, 0: only at depth freqofs)
0.48/0.55 c # [type: int, range: [-1,2147483647], default: 0]
0.48/0.55 c heuristics/rens/freq = -1
0.48/0.55 c
0.48/0.55 c # minimum percentage of integer variables that have to be fixable
0.48/0.55 c # [type: real, range: [0,1], default: 0.5]
0.48/0.55 c heuristics/rens/minfixingrate = 0.3
0.48/0.55 c
0.48/0.55 c # number of nodes added to the contingent of the total nodes
0.48/0.55 c # [type: longint, range: [0,9223372036854775807], default: 500]
0.48/0.55 c heuristics/rens/nodesofs = 2000
0.48/0.55 c
0.48/0.55 c # frequency for calling primal heuristic <rootsoldiving> (-1: never, 0: only at depth freqofs)
0.48/0.55 c # [type: int, range: [-1,2147483647], default: 20]
0.48/0.55 c heuristics/rootsoldiving/freq = -1
0.48/0.55 c
0.48/0.55 c # maximal fraction of diving LP iterations compared to node LP iterations
0.48/0.55 c # [type: real, range: [0,1.79769313486232e+308], default: 0.01]
0.48/0.55 c heuristics/rootsoldiving/maxlpiterquot = 0.015
0.48/0.55 c
0.48/0.55 c # additional number of allowed LP iterations
0.48/0.55 c # [type: int, range: [0,2147483647], default: 1000]
0.48/0.55 c heuristics/rootsoldiving/maxlpiterofs = 1500
0.48/0.55 c
0.48/0.55 c # frequency for calling primal heuristic <rounding> (-1: never, 0: only at depth freqofs)
0.48/0.55 c # [type: int, range: [-1,2147483647], default: 1]
0.48/0.55 c heuristics/rounding/freq = -1
0.48/0.55 c
0.48/0.55 c # frequency for calling primal heuristic <shiftandpropagate> (-1: never, 0: only at depth freqofs)
0.48/0.55 c # [type: int, range: [-1,2147483647], default: 0]
0.48/0.55 c heuristics/shiftandpropagate/freq = -1
0.48/0.55 c
0.48/0.55 c # frequency for calling primal heuristic <shifting> (-1: never, 0: only at depth freqofs)
0.48/0.55 c # [type: int, range: [-1,2147483647], default: 10]
0.48/0.55 c heuristics/shifting/freq = -1
0.48/0.55 c
0.48/0.55 c # frequency for calling primal heuristic <simplerounding> (-1: never, 0: only at depth freqofs)
0.48/0.55 c # [type: int, range: [-1,2147483647], default: 1]
0.48/0.55 c heuristics/simplerounding/freq = -1
0.48/0.55 c
0.48/0.55 c # frequency for calling primal heuristic <subnlp> (-1: never, 0: only at depth freqofs)
0.48/0.55 c # [type: int, range: [-1,2147483647], default: 1]
0.48/0.55 c heuristics/subnlp/freq = -1
0.48/0.55 c
0.48/0.55 c # frequency for calling primal heuristic <trivial> (-1: never, 0: only at depth freqofs)
0.48/0.55 c # [type: int, range: [-1,2147483647], default: 0]
0.48/0.55 c heuristics/trivial/freq = -1
0.48/0.55 c
0.48/0.55 c # frequency for calling primal heuristic <trysol> (-1: never, 0: only at depth freqofs)
0.48/0.55 c # [type: int, range: [-1,2147483647], default: 1]
0.48/0.55 c heuristics/trysol/freq = -1
0.48/0.55 c
0.48/0.55 c # frequency for calling primal heuristic <undercover> (-1: never, 0: only at depth freqofs)
0.48/0.55 c # [type: int, range: [-1,2147483647], default: 0]
0.48/0.55 c heuristics/undercover/freq = -1
0.48/0.55 c
0.48/0.55 c # frequency for calling primal heuristic <veclendiving> (-1: never, 0: only at depth freqofs)
0.48/0.55 c # [type: int, range: [-1,2147483647], default: 10]
0.48/0.55 c heuristics/veclendiving/freq = -1
0.48/0.55 c
0.48/0.55 c # maximal fraction of diving LP iterations compared to node LP iterations
0.48/0.55 c # [type: real, range: [0,1.79769313486232e+308], default: 0.05]
0.48/0.55 c heuristics/veclendiving/maxlpiterquot = 0.075
0.48/0.55 c
0.48/0.55 c # additional number of allowed LP iterations
0.48/0.55 c # [type: int, range: [0,2147483647], default: 1000]
0.48/0.55 c heuristics/veclendiving/maxlpiterofs = 1500
0.48/0.55 c
0.48/0.55 c # frequency for calling primal heuristic <zirounding> (-1: never, 0: only at depth freqofs)
0.48/0.55 c # [type: int, range: [-1,2147483647], default: 1]
0.48/0.55 c heuristics/zirounding/freq = -1
0.48/0.55 c
0.48/0.55 c # maximal number of presolving rounds the propagator participates in (-1: no limit)
0.48/0.55 c # [type: int, range: [-1,2147483647], default: -1]
0.48/0.55 c propagating/probing/maxprerounds = 0
0.48/0.55 c
0.48/0.55 c # frequency for calling separator <cmir> (-1: never, 0: only in root node)
0.48/0.55 c # [type: int, range: [-1,2147483647], default: 0]
0.48/0.55 c separating/cmir/freq = -1
0.48/0.55 c
0.48/0.55 c # frequency for calling separator <flowcover> (-1: never, 0: only in root node)
0.48/0.55 c # [type: int, range: [-1,2147483647], default: 0]
0.48/0.55 c separating/flowcover/freq = -1
0.48/0.55 c
0.48/0.55 c # frequency for calling separator <rapidlearning> (-1: never, 0: only in root node)
0.48/0.55 c # [type: int, range: [-1,2147483647], default: -1]
0.48/0.55 c separating/rapidlearning/freq = 0
0.48/0.55 c
0.48/0.55 c # frequency for calling primal heuristic <indoneopt> (-1: never, 0: only at depth freqofs)
0.48/0.55 c # [type: int, range: [-1,2147483647], default: 1]
0.48/0.55 c heuristics/indoneopt/freq = -1
0.48/0.55 c
0.48/0.55 c -----------------------------------------------------------------------------------------------
0.48/0.55 c start solving
0.48/0.55 c
0.48/0.56 c time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
0.48/0.56 c 0.6s| 1 | 0 | 111 | - | 13M| 0 | 86 | 386 | 514 | 386 | 514 | 0 | 0 | 0 | 0.000000e+00 | -- | Inf
0.59/0.60 c y 0.6s| 1 | 0 | 111 | - | 13M| 0 | - | 386 | 514 | 386 | 514 | 0 | 0 | 0 | 0.000000e+00 | 0.000000e+00 | 0.00%
0.59/0.60 c 0.6s| 1 | 0 | 111 | - | 13M| 0 | - | 386 | 515 | 386 | 514 | 0 | 0 | 0 | 0.000000e+00 | 0.000000e+00 | 0.00%
0.59/0.60 c
0.59/0.60 c SCIP Status : problem is solved [optimal solution found]
0.59/0.60 c Solving Time (sec) : 0.60
0.59/0.60 c Solving Nodes : 1
0.59/0.60 c Primal Bound : +0.00000000000000e+00 (1 solutions)
0.59/0.60 c Dual Bound : +0.00000000000000e+00
0.59/0.60 c Gap : 0.00 %
0.59/0.60 s SATISFIABLE
0.59/0.60 v x3968 -x3967 -x3966 -x3965 -x3964 -x3963 -x3962 -x3961 -x3960 -x3959 -x3958 -x3957 -x3956 -x3955 -x3954 -x3953 -x3952 -x3951 -x3950
0.59/0.60 v -x3949 -x3948 -x3947 -x3946 -x3945 -x3944 -x3943 -x3942 -x3941 -x3940 -x3939 -x3938 -x3937 -x3936 -x3935 -x3934 -x3933 -x3932
0.59/0.60 v -x3931 -x3930 -x3929 -x3928 -x3927 -x3926 -x3925 -x3924 -x3923 -x3922 -x3921 -x3920 -x3919 -x3918 -x3917 -x3916 -x3915
0.59/0.60 v -x3914 -x3913 -x3912 -x3911 -x3910 -x3909 -x3908 -x3907 -x3906 -x3905 -x3904 x3903 x3902 x3901 x3900 x3899 x3898 x3897 x3896
0.59/0.60 v x3895 -x3894 -x3893 -x3892 -x3891 -x3890 -x3889 -x3888 -x3887 -x3886 -x3885 -x3884 -x3883 -x3882 -x3881 -x3880 -x3879 -x3878
0.59/0.60 v -x3877 -x3876 -x3875 -x3874 -x3873 -x3872 -x3871 -x3870 -x3869 -x3868 -x3867 -x3866 -x3865 -x3864 -x3863 -x3862 -x3861 -x3860
0.59/0.60 v -x3859 -x3858 -x3857 -x3856 -x3855 -x3854 -x3853 -x3852 -x3851 -x3850 -x3849 -x3848 -x3847 -x3846 -x3845 -x3844 -x3843 -x3842
0.59/0.60 v -x3841 -x3840 x3839 x3838 x3837 x3836 x3835 x3834 x3833 x3832 x3831 x3830 -x3829 -x3828 -x3827 -x3826 -x3825 -x3824 -x3823
0.59/0.60 v -x3822 -x3821 -x3820 -x3819 -x3818 -x3817 -x3816 -x3815 -x3814 -x3813 -x3812 -x3811 -x3810 -x3809 -x3808 -x3807 -x3806 -x3805
0.59/0.60 v -x3804 -x3803 -x3802 -x3801 -x3800 -x3799 -x3798 -x3797 -x3796 -x3795 -x3794 -x3793 -x3792 -x3791 -x3790 -x3789 -x3788 -x3787
0.59/0.60 v -x3786 -x3785 -x3784 -x3783 -x3782 -x3781 -x3780 -x3779 -x3778 -x3777 -x3776 -x3775 -x3774 -x3773 -x3772 -x3771 -x3770 -x3769
0.59/0.60 v -x3768 -x3767 x3766 -x3765 -x3764 -x3763 -x3762 -x3761 -x3760 -x3759 -x3758 -x3757 -x3756 -x3755 -x3754 -x3753 -x3752 -x3751
0.59/0.60 v -x3750 -x3749 -x3748 -x3747 -x3746 -x3745 -x3744 -x3743 -x3742 -x3741 -x3740 -x3739 -x3738 -x3737 -x3736 -x3735 -x3734 -x3733
0.59/0.60 v -x3732 -x3731 -x3730 -x3729 -x3728 -x3727 -x3726 -x3725 -x3724 -x3723 -x3722 -x3721 -x3720 -x3719 -x3718 -x3717 -x3716 -x3715
0.59/0.60 v -x3714 -x3713 -x3712 -x3711 -x3710 -x3709 -x3708 -x3707 -x3706 -x3705 -x3704 -x3703 -x3702 x3701 x3700 x3699 x3698 x3697
0.59/0.60 v x3696 x3695 x3694 -x3693 -x3692 -x3691 -x3690 -x3689 -x3688 -x3687 -x3686 -x3685 -x3684 -x3683 -x3682 -x3681 -x3680 -x3679 -x3678
0.59/0.60 v -x3677 -x3676 -x3675 -x3674 -x3673 -x3672 -x3671 -x3670 -x3669 -x3668 -x3667 -x3666 -x3665 -x3664 -x3663 -x3662 -x3661
0.59/0.60 v -x3660 -x3659 -x3658 -x3657 -x3656 -x3655 -x3654 -x3653 -x3652 -x3651 -x3650 -x3649 -x3648 -x3647 -x3646 -x3645 -x3644 -x3643
0.59/0.60 v -x3642 -x3641 -x3640 -x3639 -x3638 -x3637 -x3636 -x3635 -x3634 -x3633 -x3632 -x3631 -x3630 x3629 x3628 x3627 x3626 -x3625 -x3624
0.59/0.60 v -x3623 -x3622 -x3621 -x3620 -x3619 -x3618 -x3617 -x3616 -x3615 -x3614 -x3613 -x3612 -x3611 -x3610 -x3609 -x3608 -x3607 -x3606
0.59/0.60 v -x3605 -x3604 -x3603 -x3602 -x3601 -x3600 -x3599 -x3598 -x3597 -x3596 -x3595 -x3594 -x3593 -x3592 -x3591 -x3590 -x3589
0.59/0.60 v -x3588 -x3587 -x3586 -x3585 -x3584 -x3583 -x3582 -x3581 -x3580 -x3579 -x3578 -x3577 -x3576 -x3575 -x3574 -x3573 -x3572 -x3571
0.59/0.60 v -x3570 -x3569 -x3568 -x3567 -x3566 -x3565 -x3564 -x3563 -x3562 x3561 x3560 x3559 x3558 x3557 x3556 x3555 x3554 -x3553 -x3552
0.59/0.60 v -x3551 -x3550 -x3549 -x3548 -x3547 -x3546 -x3545 -x3544 -x3543 -x3542 -x3541 -x3540 -x3539 -x3538 -x3537 -x3536 -x3535 -x3534
0.59/0.60 v -x3533 -x3532 -x3531 -x3530 -x3529 -x3528 -x3527 -x3526 -x3525 -x3524 -x3523 -x3522 -x3521 -x3520 -x3519 -x3518 -x3517 -x3516
0.59/0.60 v -x3515 -x3514 -x3513 -x3512 -x3511 -x3510 x3509 x3508 x3507 x3506 x3505 x3504 x3503 x3502 x3501 x3500 -x3499 -x3498 -x3497
0.59/0.60 v -x3496 -x3495 -x3494 -x3493 -x3492 -x3491 -x3490 -x3489 -x3488 -x3487 -x3486 -x3485 -x3484 -x3483 -x3482 -x3481 -x3480 -x3479
0.59/0.60 v -x3478 -x3477 -x3476 -x3475 -x3474 -x3473 -x3472 -x3471 -x3470 -x3469 -x3468 -x3467 -x3466 -x3465 -x3464 -x3463 -x3462 -x3461
0.59/0.60 v -x3460 -x3459 -x3458 -x3457 -x3456 -x3455 -x3454 -x3453 -x3452 -x3451 -x3450 -x3449 -x3448 -x3447 -x3446 -x3445 -x3444 -x3443
0.59/0.60 v -x3442 -x3441 -x3440 -x3439 -x3438 -x3437 x3436 x3435 x3434 -x3433 -x3432 -x3431 -x3430 -x3429 -x3428 -x3427 -x3426 -x3425
0.59/0.60 v -x3424 -x3423 -x3422 -x3421 -x3420 -x3419 -x3418 -x3417 -x3416 -x3415 -x3414 -x3413 -x3412 -x3411 -x3410 -x3409 -x3408 -x3407
0.59/0.60 v -x3406 -x3405 -x3404 -x3403 -x3402 -x3401 -x3400 -x3399 -x3398 -x3397 -x3396 -x3395 -x3394 -x3393 -x3392 -x3391 -x3390 -x3389
0.59/0.60 v -x3388 -x3387 -x3386 -x3385 -x3384 -x3383 -x3382 -x3381 -x3380 -x3379 -x3378 -x3377 -x3376 -x3375 -x3374 -x3373 -x3372 -x3371
0.59/0.60 v -x3370 x3369 x3368 x3367 x3366 x3365 x3364 x3363 x3362 x3361 -x3360 -x3359 -x3358 -x3357 -x3356 -x3355 -x3354 -x3353 -x3352
0.59/0.60 v -x3351 -x3350 -x3349 -x3348 -x3347 -x3346 -x3345 -x3344 -x3343 -x3342 -x3341 -x3340 -x3339 -x3338 -x3337 -x3336 -x3335 -x3334
0.59/0.60 v -x3333 -x3332 -x3331 -x3330 -x3329 -x3328 -x3327 -x3326 -x3325 -x3324 -x3323 -x3322 -x3321 -x3320 -x3319 -x3318 x3317 x3316
0.59/0.60 v x3315 -x3314 -x3313 -x3312 -x3311 -x3310 -x3309 -x3308 -x3307 -x3306 -x3305 -x3304 -x3303 -x3302 -x3301 -x3300 -x3299 -x3298
0.59/0.60 v -x3297 -x3296 -x3295 -x3294 -x3293 -x3292 -x3291 -x3290 -x3289 -x3288 -x3287 -x3286 -x3285 -x3284 -x3283 -x3282 -x3281 -x3280
0.59/0.60 v -x3279 -x3278 -x3277 -x3276 -x3275 -x3274 -x3273 -x3272 -x3271 -x3270 -x3269 -x3268 -x3267 -x3266 -x3265 -x3264 -x3263 -x3262
0.59/0.60 v -x3261 -x3260 -x3259 -x3258 -x3257 -x3256 -x3255 -x3254 -x3253 -x3252 -x3251 -x3250 -x3249 -x3248 -x3247 -x3246 -x3245
0.59/0.60 v -x3244 -x3243 -x3242 -x3241 -x3240 -x3239 -x3238 -x3237 -x3236 -x3235 -x3234 -x3233 -x3232 -x3231 -x3230 -x3229 -x3228 -x3227
0.59/0.60 v -x3226 -x3225 -x3224 -x3223 -x3222 -x3221 -x3220 -x3219 -x3218 -x3217 -x3216 -x3215 -x3214 -x3213 -x3212 -x3211 -x3210 x3209
0.59/0.60 v x3208 x3207 x3206 -x3205 -x3204 -x3203 -x3202 -x3201 -x3200 -x3199 -x3198 -x3197 -x3196 -x3195 -x3194 -x3193 -x3192 -x3191 -x3190
0.59/0.60 v -x3189 -x3188 -x3187 -x3186 -x3185 -x3184 -x3183 -x3182 -x3181 -x3180 x3179 x3178 x3177 x3176 x3175 x3174 x3173 x3172 x3171
0.59/0.60 v -x3170 -x3169 -x3168 -x3167 -x3166 -x3165 -x3164 -x3163 -x3162 -x3161 -x3160 -x3159 -x3158 -x3157 -x3156 -x3155 -x3154 -x3153
0.59/0.60 v -x3152 -x3151 -x3150 -x3149 -x3148 -x3147 -x3146 -x3145 -x3144 -x3143 -x3142 -x3141 -x3140 -x3139 -x3138 -x3137 -x3136
0.59/0.60 v -x3135 -x3134 -x3133 -x3132 -x3131 -x3130 -x3129 -x3128 -x3127 -x3126 -x3125 -x3124 -x3123 -x3122 -x3121 -x3120 -x3119 -x3118
0.59/0.60 v -x3117 -x3116 -x3115 -x3114 -x3113 -x3112 -x3111 -x3110 -x3109 -x3108 -x3107 -x3106 -x3105 -x3104 -x3103 -x3102 -x3101 x3100
0.59/0.60 v x3099 x3098 x3097 x3096 x3095 x3094 -x3093 -x3092 -x3091 -x3090 -x3089 -x3088 -x3087 -x3086 -x3085 -x3084 -x3083 -x3082 -x3081
0.59/0.60 v -x3080 -x3079 -x3078 -x3077 -x3076 -x3075 -x3074 -x3073 -x3072 -x3071 -x3070 -x3069 -x3068 -x3067 -x3066 -x3065 -x3064 -x3063
0.59/0.60 v -x3062 -x3061 -x3060 -x3059 -x3058 -x3057 -x3056 -x3055 -x3054 -x3053 -x3052 -x3051 -x3050 -x3049 -x3048 -x3047 -x3046 -x3045
0.59/0.60 v x3044 x3043 x3042 -x3041 -x3040 -x3039 -x3038 -x3037 -x3036 -x3035 -x3034 -x3033 -x3032 -x3031 -x3030 -x3029 -x3028 -x3027
0.59/0.60 v -x3026 -x3025 -x3024 -x3023 -x3022 -x3021 -x3020 -x3019 -x3018 -x3017 -x3016 -x3015 -x3014 -x3013 -x3012 -x3011 -x3010 -x3009
0.59/0.60 v -x3008 -x3007 -x3006 -x3005 -x3004 -x3003 -x3002 -x3001 -x3000 -x2999 -x2998 -x2997 -x2996 -x2995 -x2994 -x2993 -x2992 -x2991
0.59/0.60 v -x2990 -x2989 -x2988 -x2987 -x2986 -x2985 -x2984 -x2983 -x2982 -x2981 -x2980 -x2979 -x2978 -x2977 x2976 x2975 x2974 x2973
0.59/0.60 v -x2972 -x2971 -x2970 -x2969 -x2968 -x2967 -x2966 -x2965 -x2964 -x2963 -x2962 -x2961 -x2960 -x2959 -x2958 -x2957 -x2956 -x2955
0.59/0.60 v -x2954 -x2953 -x2952 -x2951 -x2950 -x2949 -x2948 -x2947 -x2946 -x2945 -x2944 -x2943 -x2942 -x2941 -x2940 -x2939 -x2938 -x2937
0.59/0.60 v -x2936 -x2935 -x2934 -x2933 -x2932 -x2931 -x2930 -x2929 -x2928 -x2927 -x2926 -x2925 -x2924 -x2923 -x2922 -x2921 -x2920 -x2919
0.59/0.60 v -x2918 -x2917 -x2916 -x2915 -x2914 x2913 x2912 x2911 x2910 x2909 x2908 x2907 x2906 x2905 x2904 -x2903 -x2902 -x2901 -x2900
0.59/0.60 v -x2899 -x2898 -x2897 -x2896 -x2895 -x2894 -x2893 -x2892 -x2891 -x2890 -x2889 -x2888 -x2887 -x2886 -x2885 -x2884 -x2883 -x2882
0.59/0.60 v -x2881 -x2880 -x2879 -x2878 -x2877 -x2876 -x2875 -x2874 -x2873 -x2872 -x2871 -x2870 -x2869 -x2868 -x2867 -x2866 -x2865 -x2864
0.59/0.60 v -x2863 -x2862 -x2861 -x2860 -x2859 -x2858 -x2857 -x2856 -x2855 -x2854 -x2853 -x2852 -x2851 -x2850 -x2849 -x2848 -x2847 -x2846
0.59/0.60 v -x2845 -x2844 -x2843 -x2842 -x2841 -x2840 -x2839 -x2838 -x2837 -x2836 -x2835 -x2834 x2833 x2832 x2831 x2830 x2829 x2828
0.59/0.60 v -x2827 -x2826 -x2825 -x2824 -x2823 -x2822 -x2821 -x2820 -x2819 -x2818 -x2817 -x2816 -x2815 -x2814 -x2813 -x2812 -x2811 -x2810
0.59/0.60 v -x2809 -x2808 -x2807 -x2806 -x2805 -x2804 -x2803 -x2802 -x2801 -x2800 -x2799 -x2798 -x2797 -x2796 -x2795 -x2794 -x2793 -x2792
0.59/0.60 v -x2791 -x2790 -x2789 -x2788 -x2787 x2786 x2785 x2784 x2783 x2782 -x2781 -x2780 -x2779 -x2778 -x2777 -x2776 -x2775 -x2774 -x2773
0.59/0.60 v -x2772 -x2771 -x2770 -x2769 -x2768 -x2767 -x2766 -x2765 -x2764 -x2763 -x2762 -x2761 -x2760 -x2759 -x2758 -x2757 -x2756
0.59/0.60 v -x2755 -x2754 -x2753 -x2752 -x2751 -x2750 -x2749 -x2748 -x2747 -x2746 -x2745 -x2744 -x2743 -x2742 -x2741 -x2740 -x2739 -x2738
0.59/0.60 v -x2737 -x2736 -x2735 -x2734 -x2733 -x2732 -x2731 -x2730 -x2729 -x2728 -x2727 -x2726 -x2725 -x2724 -x2723 -x2722 -x2721 -x2720
0.59/0.60 v -x2719 -x2718 -x2717 -x2716 -x2715 -x2714 x2713 x2712 x2711 -x2710 -x2709 -x2708 -x2707 -x2706 -x2705 -x2704 -x2703 -x2702
0.59/0.60 v -x2701 -x2700 -x2699 -x2698 -x2697 -x2696 -x2695 -x2694 -x2693 -x2692 -x2691 -x2690 -x2689 -x2688 -x2687 -x2686 -x2685 -x2684
0.59/0.60 v -x2683 -x2682 -x2681 -x2680 -x2679 -x2678 -x2677 -x2676 -x2675 -x2674 -x2673 -x2672 -x2671 -x2670 -x2669 -x2668 -x2667 -x2666
0.59/0.60 v -x2665 -x2664 -x2663 -x2662 -x2661 -x2660 -x2659 -x2658 -x2657 -x2656 -x2655 -x2654 -x2653 -x2652 -x2651 -x2650 -x2649 -x2648
0.59/0.60 v x2647 x2646 -x2645 -x2644 -x2643 -x2642 -x2641 -x2640 -x2639 -x2638 -x2637 -x2636 -x2635 -x2634 -x2633 -x2632 -x2631 -x2630
0.59/0.60 v -x2629 -x2628 -x2627 -x2626 -x2625 -x2624 -x2623 -x2622 -x2621 -x2620 -x2619 -x2618 -x2617 -x2616 -x2615 -x2614 -x2613 -x2612
0.59/0.60 v -x2611 -x2610 -x2609 -x2608 -x2607 -x2606 -x2605 -x2604 -x2603 -x2602 -x2601 -x2600 -x2599 -x2598 -x2597 -x2596 -x2595 -x2594
0.59/0.60 v -x2593 -x2592 -x2591 -x2590 -x2589 -x2588 -x2587 -x2586 -x2585 -x2584 -x2583 -x2582 x2581 x2580 x2579 x2578 x2577 x2576 x2575
0.59/0.60 v -x2574 -x2573 -x2572 -x2571 -x2570 -x2569 -x2568 -x2567 -x2566 -x2565 -x2564 -x2563 -x2562 -x2561 -x2560 -x2559 -x2558 -x2557
0.59/0.60 v -x2556 -x2555 -x2554 -x2553 -x2552 -x2551 -x2550 -x2549 -x2548 -x2547 -x2546 -x2545 -x2544 -x2543 -x2542 -x2541 -x2540
0.59/0.60 v -x2539 -x2538 -x2537 -x2536 -x2535 -x2534 -x2533 -x2532 -x2531 -x2530 -x2529 -x2528 -x2527 -x2526 -x2525 -x2524 -x2523 -x2522
0.59/0.60 v -x2521 -x2520 -x2519 -x2518 -x2517 -x2516 -x2515 -x2514 -x2513 -x2512 -x2511 x2510 x2509 x2508 x2507 -x2506 -x2505 -x2504 -x2503
0.59/0.60 v -x2502 -x2501 -x2500 -x2499 -x2498 -x2497 -x2496 -x2495 -x2494 -x2493 -x2492 -x2491 -x2490 -x2489 -x2488 -x2487 -x2486 -x2485
0.59/0.60 v -x2484 -x2483 -x2482 -x2481 -x2480 -x2479 -x2478 -x2477 -x2476 -x2475 -x2474 -x2473 -x2472 -x2471 -x2470 -x2469 -x2468
0.59/0.60 v -x2467 -x2466 -x2465 -x2464 -x2463 -x2462 x2461 x2460 x2459 x2458 -x2457 -x2456 -x2455 -x2454 -x2453 -x2452 -x2451 -x2450 -x2449
0.59/0.60 v -x2448 -x2447 -x2446 -x2445 -x2444 -x2443 -x2442 -x2441 -x2440 -x2439 -x2438 -x2437 -x2436 -x2435 -x2434 -x2433 -x2432 -x2431
0.59/0.60 v -x2430 -x2429 -x2428 -x2427 -x2426 -x2425 -x2424 -x2423 -x2422 -x2421 -x2420 -x2419 -x2418 -x2417 -x2416 -x2415 -x2414 -x2413
0.59/0.60 v -x2412 -x2411 -x2410 -x2409 -x2408 -x2407 -x2406 -x2405 -x2404 -x2403 -x2402 -x2401 -x2400 -x2399 -x2398 -x2397 -x2396
0.59/0.60 v -x2395 -x2394 -x2393 -x2392 -x2391 -x2390 -x2389 -x2388 -x2387 -x2386 -x2385 -x2384 -x2383 -x2382 -x2381 -x2380 -x2379 x2378
0.59/0.60 v x2377 x2376 x2375 x2374 x2373 -x2372 -x2371 -x2370 -x2369 -x2368 -x2367 -x2366 -x2365 -x2364 -x2363 -x2362 -x2361 -x2360 -x2359
0.59/0.60 v -x2358 -x2357 -x2356 -x2355 -x2354 -x2353 -x2352 -x2351 -x2350 -x2349 -x2348 -x2347 -x2346 -x2345 -x2344 -x2343 -x2342 -x2341
0.59/0.60 v -x2340 -x2339 -x2338 -x2337 -x2336 -x2335 -x2334 -x2333 -x2332 -x2331 -x2330 -x2329 -x2328 -x2327 -x2326 -x2325 -x2324 -x2323
0.59/0.60 v -x2322 -x2321 -x2320 -x2319 x2318 x2317 x2316 x2315 -x2314 -x2313 -x2312 -x2311 -x2310 -x2309 -x2308 -x2307 -x2306 -x2305
0.59/0.60 v -x2304 -x2303 -x2302 -x2301 -x2300 -x2299 -x2298 -x2297 -x2296 -x2295 -x2294 -x2293 -x2292 -x2291 -x2290 -x2289 -x2288 -x2287
0.59/0.60 v -x2286 -x2285 -x2284 -x2283 -x2282 -x2281 -x2280 -x2279 -x2278 -x2277 -x2276 -x2275 -x2274 -x2273 -x2272 -x2271 -x2270 -x2269
0.59/0.60 v x2268 x2267 x2266 x2265 x2264 -x2263 -x2262 -x2261 -x2260 -x2259 -x2258 -x2257 -x2256 -x2255 -x2254 -x2253 -x2252 -x2251
0.59/0.60 v -x2250 -x2249 -x2248 -x2247 -x2246 -x2245 -x2244 -x2243 -x2242 -x2241 -x2240 -x2239 -x2238 -x2237 -x2236 -x2235 -x2234 -x2233
0.59/0.60 v -x2232 -x2231 -x2230 -x2229 -x2228 -x2227 -x2226 -x2225 -x2224 -x2223 -x2222 -x2221 -x2220 -x2219 -x2218 -x2217 -x2216 -x2215
0.59/0.60 v -x2214 -x2213 -x2212 -x2211 -x2210 -x2209 -x2208 -x2207 -x2206 -x2205 -x2204 -x2203 -x2202 -x2201 -x2200 -x2199 -x2198 -x2197
0.59/0.60 v -x2196 -x2195 -x2194 -x2193 -x2192 -x2191 -x2190 -x2189 -x2188 -x2187 -x2186 -x2185 -x2184 -x2183 -x2182 -x2181 x2180 -x2179
0.59/0.60 v -x2178 -x2177 -x2176 -x2175 -x2174 -x2173 -x2172 -x2171 -x2170 -x2169 -x2168 -x2167 -x2166 -x2165 -x2164 -x2163 -x2162 -x2161
0.59/0.60 v -x2160 -x2159 -x2158 -x2157 -x2156 -x2155 -x2154 -x2153 -x2152 -x2151 -x2150 -x2149 -x2148 -x2147 -x2146 -x2145 -x2144 -x2143
0.59/0.60 v -x2142 -x2141 -x2140 -x2139 -x2138 -x2137 -x2136 -x2135 -x2134 -x2133 -x2132 -x2131 -x2130 -x2129 -x2128 -x2127 -x2126 -x2125
0.59/0.60 v -x2124 -x2123 -x2122 -x2121 -x2120 -x2119 -x2118 -x2117 -x2116 x2115 x2114 x2113 -x2112 -x2111 -x2110 -x2109 -x2108 -x2107
0.59/0.60 v -x2106 -x2105 -x2104 -x2103 -x2102 -x2101 -x2100 -x2099 -x2098 -x2097 -x2096 -x2095 -x2094 -x2093 -x2092 -x2091 -x2090 -x2089
0.59/0.60 v -x2088 -x2087 -x2086 -x2085 -x2084 -x2083 -x2082 -x2081 -x2080 -x2079 -x2078 -x2077 -x2076 -x2075 -x2074 -x2073 -x2072 x2071
0.59/0.60 v x2070 x2069 x2068 -x2067 -x2066 -x2065 -x2064 -x2063 -x2062 -x2061 -x2060 -x2059 -x2058 -x2057 -x2056 -x2055 -x2054 -x2053
0.59/0.60 v -x2052 -x2051 -x2050 -x2049 -x2048 -x2047 -x2046 -x2045 -x2044 -x2043 -x2042 -x2041 -x2040 -x2039 -x2038 -x2037 -x2036 -x2035
0.59/0.60 v -x2034 -x2033 -x2032 -x2031 -x2030 -x2029 -x2028 -x2027 -x2026 -x2025 -x2024 -x2023 -x2022 -x2021 -x2020 -x2019 -x2018 -x2017
0.59/0.60 v -x2016 -x2015 -x2014 -x2013 -x2012 -x2011 -x2010 -x2009 -x2008 -x2007 -x2006 -x2005 -x2004 -x2003 -x2002 -x2001 -x2000 -x1999
0.59/0.60 v -x1998 -x1997 -x1996 -x1995 x1994 x1993 x1992 x1991 x1990 x1989 x1988 x1987 x1986 x1985 -x1983 -x1982 -x1981 -x1980 -x1979
0.59/0.60 v -x1978 -x1977 -x1976 -x1975 -x1974 -x1973 -x1972 -x1971 -x1970 -x1969 -x1968 -x1967 -x1966 -x1965 -x1964 -x1963 -x1962 -x1961
0.59/0.60 v -x1960 -x1959 -x1958 -x1957 -x1956 -x1955 -x1954 -x1953 -x1952 -x1951 -x1950 -x1949 -x1948 -x1947 -x1946 -x1945 -x1944 -x1943
0.59/0.60 v -x1942 -x1941 -x1940 -x1939 -x1938 -x1937 -x1936 -x1935 -x1934 -x1933 -x1932 -x1931 -x1930 -x1929 -x1928 -x1927 -x1926
0.59/0.60 v -x1925 -x1924 -x1923 -x1922 -x1921 x1920 x1919 x1918 x1917 x1916 x1915 x1914 x1913 x1912 x1911 -x1910 -x1909 -x1908 -x1907 -x1906
0.59/0.60 v -x1905 -x1904 -x1903 -x1902 -x1901 -x1900 -x1899 -x1898 -x1897 -x1896 -x1895 -x1894 -x1893 -x1892 -x1891 -x1890 -x1889 -x1888
0.59/0.60 v -x1887 -x1886 -x1885 -x1884 -x1883 -x1882 -x1881 -x1880 -x1879 -x1878 -x1877 -x1876 -x1875 -x1874 -x1873 -x1872 -x1871
0.59/0.60 v -x1870 -x1869 -x1868 -x1867 -x1866 -x1865 -x1864 -x1863 -x1862 -x1861 -x1860 -x1859 -x1858 -x1857 x1856 x1855 x1854 x1853 x1852
0.59/0.60 v x1851 x1850 x1849 x1848 x1847 x1846 -x1845 -x1844 -x1843 -x1842 -x1841 -x1840 -x1839 -x1838 -x1837 -x1836 -x1835 -x1834 -x1833
0.59/0.60 v -x1832 -x1831 -x1830 -x1829 -x1828 -x1827 -x1826 -x1825 -x1824 -x1823 -x1822 -x1821 -x1820 -x1819 -x1818 -x1817 -x1816 -x1815
0.59/0.60 v -x1814 -x1813 -x1812 -x1811 -x1810 -x1809 -x1808 -x1807 -x1806 -x1805 -x1804 -x1803 -x1802 -x1801 -x1800 -x1799 -x1798
0.59/0.60 v -x1797 -x1796 -x1795 -x1794 -x1793 x1792 x1791 x1790 x1789 x1788 x1787 x1786 x1785 x1784 x1783 x1782 -x1781 -x1780 -x1779 -x1778
0.59/0.60 v -x1777 -x1776 -x1775 -x1774 -x1773 -x1772 -x1771 -x1770 -x1769 -x1768 -x1767 -x1766 -x1765 -x1764 -x1763 -x1762 -x1761 -x1760
0.59/0.60 v -x1759 -x1758 -x1757 -x1756 -x1755 -x1754 -x1753 -x1752 -x1751 -x1750 -x1749 -x1748 -x1747 -x1746 -x1745 -x1744 -x1743 -x1742
0.59/0.60 v -x1741 -x1740 -x1739 -x1738 -x1737 -x1736 -x1735 -x1734 -x1733 -x1732 -x1731 -x1730 -x1729 x1728 x1727 x1726 x1725 x1724
0.59/0.60 v x1723 x1722 x1721 x1720 x1719 x1718 x1717 x1716 x1715 x1714 x1713 x1712 x1711 x1710 -x1709 -x1708 -x1707 -x1706 -x1705 -x1704
0.59/0.60 v -x1703 -x1702 -x1701 -x1700 -x1699 -x1698 -x1697 -x1696 -x1695 -x1694 -x1693 -x1692 -x1691 -x1690 -x1689 -x1688 -x1687 -x1686
0.59/0.60 v -x1685 -x1684 -x1683 -x1682 -x1681 -x1680 -x1679 -x1678 -x1677 -x1676 -x1675 -x1674 -x1673 -x1672 -x1671 -x1670 -x1669 -x1668
0.59/0.60 v -x1667 -x1666 -x1665 x1664 x1663 x1662 x1661 x1660 x1659 x1658 x1657 x1656 x1655 x1654 x1653 x1652 x1651 x1650 x1649 x1648
0.59/0.60 v x1647 x1646 x1645 x1644 x1643 x1642 -x1641 -x1640 -x1639 -x1638 -x1637 -x1636 -x1635 -x1634 -x1633 -x1632 -x1631 -x1630 -x1629
0.59/0.60 v -x1628 -x1627 -x1626 -x1625 -x1624 -x1623 -x1622 -x1621 -x1620 -x1619 -x1618 -x1617 -x1616 -x1615 -x1614 -x1613 -x1612 -x1611
0.59/0.60 v -x1610 -x1609 -x1608 -x1607 -x1606 -x1605 -x1604 -x1603 -x1602 -x1601 x1600 x1599 x1598 x1597 x1596 x1595 x1594 x1593 x1592
0.59/0.60 v x1591 x1590 x1589 x1588 x1587 x1586 x1585 x1584 x1583 x1582 x1581 x1580 x1579 x1578 x1577 x1576 x1575 x1574 x1573 x1572
0.59/0.60 v x1571 x1570 -x1569 -x1568 -x1567 -x1566 -x1565 -x1564 -x1563 -x1562 -x1561 -x1560 -x1559 -x1558 -x1557 -x1556 -x1555 -x1554 -x1553
0.59/0.60 v -x1552 -x1551 -x1550 -x1549 -x1548 -x1547 -x1546 -x1545 -x1544 -x1543 -x1542 -x1541 -x1540 -x1539 -x1538 -x1537 x1536 x1535
0.59/0.60 v x1534 x1533 x1532 x1531 x1530 x1529 x1528 x1527 x1526 x1525 x1524 x1523 x1522 x1521 x1520 x1519 x1518 x1517 x1516 -x1515
0.59/0.60 v -x1514 -x1513 -x1512 -x1511 -x1510 -x1509 -x1508 -x1507 -x1506 -x1505 -x1504 -x1503 -x1502 -x1501 -x1500 -x1499 -x1498 -x1497
0.59/0.60 v -x1496 -x1495 -x1494 -x1493 -x1492 -x1491 -x1490 -x1489 -x1488 -x1487 -x1486 -x1485 -x1484 -x1483 -x1482 -x1481 -x1480 -x1479
0.59/0.60 v -x1478 -x1477 -x1476 -x1475 -x1474 -x1473 x1472 x1471 x1470 x1469 x1468 x1467 x1466 x1465 x1464 x1463 x1462 x1461 x1460 x1459
0.59/0.60 v x1458 x1457 x1456 x1455 x1454 x1453 x1452 x1451 x1450 -x1449 -x1448 -x1447 -x1446 -x1445 -x1444 -x1443 -x1442 -x1441 -x1440
0.59/0.60 v -x1439 -x1438 -x1437 -x1436 -x1435 -x1434 -x1433 -x1432 -x1431 -x1430 -x1429 -x1428 -x1427 -x1426 -x1425 -x1424 -x1423 -x1422
0.59/0.60 v -x1421 -x1420 -x1419 -x1418 -x1417 -x1416 -x1415 -x1414 -x1413 -x1412 -x1411 -x1410 -x1409 x1408 x1407 x1406 x1405 x1404
0.59/0.60 v x1403 x1402 x1401 x1400 x1399 x1398 x1397 x1396 x1395 x1394 x1393 x1392 x1391 x1390 x1389 x1388 x1387 x1386 x1385 x1384 x1383
0.59/0.60 v x1382 x1381 x1380 x1379 x1378 x1377 -x1376 -x1375 -x1374 -x1373 -x1372 -x1371 -x1370 -x1369 -x1368 -x1367 -x1366 -x1365 -x1364
0.59/0.60 v -x1363 -x1362 -x1361 -x1360 -x1359 -x1358 -x1357 -x1356 -x1355 -x1354 -x1353 -x1352 -x1351 -x1350 -x1349 -x1348 -x1347 -x1346
0.59/0.60 v -x1345 x1344 x1343 x1342 x1341 x1340 x1339 x1338 x1337 x1336 x1335 x1334 x1333 x1332 x1331 -x1330 -x1329 -x1328 -x1327 -x1326
0.59/0.60 v -x1325 -x1324 -x1323 -x1322 -x1321 -x1320 -x1319 -x1318 -x1317 -x1316 -x1315 -x1314 -x1313 -x1312 -x1311 -x1310 -x1309 -x1308
0.59/0.60 v -x1307 -x1306 -x1305 -x1304 -x1303 -x1302 -x1301 -x1300 -x1299 -x1298 -x1297 -x1296 -x1295 -x1294 -x1293 -x1292 -x1291
0.59/0.60 v -x1290 -x1289 -x1288 -x1287 -x1286 -x1285 -x1284 -x1283 -x1282 -x1281 x1280 x1279 x1278 x1277 x1276 x1275 x1274 x1273 x1272 x1271
0.59/0.60 v x1270 x1269 x1268 x1267 x1266 x1265 x1264 x1263 x1262 x1261 x1260 x1259 x1258 x1257 x1256 x1255 x1254 x1253 x1252 x1251
0.59/0.60 v x1250 x1249 x1248 x1247 x1246 x1245 x1244 x1243 x1242 x1241 x1240 x1239 x1238 x1237 x1236 x1235 x1234 x1233 x1232 x1231 x1230
0.59/0.60 v x1229 x1228 x1227 x1226 x1225 x1224 x1223 x1222 -x1221 -x1220 -x1219 -x1218 -x1217 x1216 x1215 x1214 x1213 x1212 x1211 x1210
0.59/0.60 v x1209 x1208 x1207 x1206 x1205 x1204 x1203 x1202 x1201 x1200 x1199 x1198 x1197 x1196 x1195 x1194 x1193 x1192 x1191 x1190 x1189
0.59/0.60 v x1188 x1187 -x1186 -x1185 -x1184 -x1183 -x1182 -x1181 -x1180 -x1179 -x1178 -x1177 -x1176 -x1175 -x1174 -x1173 -x1172 -x1171
0.59/0.60 v -x1170 -x1169 -x1168 -x1167 -x1166 -x1165 -x1164 -x1163 -x1162 -x1161 -x1160 -x1159 -x1158 -x1157 -x1156 -x1155 -x1154 -x1153
0.59/0.60 v x1152 x1151 x1150 x1149 x1148 x1147 x1146 x1145 x1144 x1143 x1142 x1141 x1140 x1139 x1138 x1137 x1136 x1135 x1134 x1133 x1132
0.59/0.60 v x1131 x1130 x1129 x1128 x1127 x1126 x1125 x1124 x1123 x1122 x1121 x1120 x1119 x1118 x1117 x1116 x1115 x1114 x1113 x1112 x1111
0.59/0.60 v x1110 -x1109 -x1108 -x1107 -x1106 -x1105 -x1104 -x1103 -x1102 -x1101 -x1100 -x1099 -x1098 -x1097 -x1096 -x1095 -x1094 -x1093
0.59/0.60 v -x1092 -x1091 -x1090 -x1089 x1088 x1087 x1086 x1085 x1084 x1083 x1082 x1081 x1080 x1079 x1078 x1077 x1076 x1075 x1074 x1073
0.59/0.60 v x1072 x1071 x1070 x1069 x1068 x1067 x1066 x1065 x1064 x1063 x1062 x1061 x1060 x1059 x1058 -x1057 -x1056 -x1055 -x1054 -x1053
0.59/0.60 v -x1052 -x1051 -x1050 -x1049 -x1048 -x1047 -x1046 -x1045 -x1044 -x1043 -x1042 -x1041 -x1040 -x1039 -x1038 -x1037 -x1036 -x1035
0.59/0.60 v -x1034 -x1033 -x1032 -x1031 -x1030 -x1029 -x1028 -x1027 -x1026 -x1025 x1024 x1023 x1022 x1021 x1020 x1019 x1018 x1017 x1016
0.59/0.60 v x1015 x1014 x1013 x1012 x1011 x1010 x1009 x1008 x1007 x1006 x1005 x1004 x1003 x1002 x1001 x1000 x999 x998 x997 x996 x995 x994
0.59/0.60 v x993 x992 x991 x990 x989 -x988 -x987 -x986 -x985 -x984 -x983 -x982 -x981 -x980 -x979 -x978 -x977 -x976 -x975 -x974 -x973
0.59/0.60 v -x972 -x971 -x970 -x969 -x968 -x967 -x966 -x965 -x964 -x963 -x962 -x961 x960 x959 x958 x957 x956 x955 x954 x953 x952 x951 x950
0.59/0.60 v x949 x948 x947 x946 x945 x944 x943 x942 x941 x940 x939 x938 x937 x936 x935 x934 x933 x932 x931 x930 x929 x928 x927 x926 x925
0.59/0.60 v x924 x923 x922 x921 x920 -x919 -x918 -x917 -x916 -x915 -x914 -x913 -x912 -x911 -x910 -x909 -x908 -x907 -x906 -x905 -x904 -x903
0.59/0.60 v -x902 -x901 -x900 -x899 -x898 -x897 x896 x895 x894 x893 x892 x891 x890 x889 x888 x887 x886 x885 x884 x883 x882 x881 x880
0.59/0.60 v x879 x878 x877 x876 x875 x874 x873 x872 x871 x870 x869 x868 x867 x866 x865 x864 x863 x862 x861 x860 x859 x858 x857 x856 x855
0.59/0.60 v x854 x853 x852 x851 x850 x849 x848 x847 x846 x845 x844 -x843 -x842 -x841 -x840 -x839 -x838 -x837 -x836 -x835 -x834 -x833 x832
0.59/0.60 v x831 x830 x829 x828 x827 x826 x825 x824 x823 x822 x821 x820 x819 x818 x817 x816 x815 x814 x813 x812 x811 x810 x809 x808 x807
0.59/0.60 v x806 x805 x804 x803 x802 x801 x800 x799 x798 -x797 -x796 -x795 -x794 -x793 -x792 -x791 -x790 -x789 -x788 -x787 -x786 -x785 -x784
0.59/0.60 v -x783 -x782 -x781 -x780 -x779 -x778 -x777 -x776 -x775 -x774 -x773 -x772 -x771 -x770 -x769 x768 x767 x766 x765 x764 x763
0.59/0.60 v x762 x761 x760 x759 x758 x757 x756 x755 x754 x753 x752 x751 x750 x749 x748 x747 x746 x745 x744 x743 x742 x741 x740 x739 x738
0.59/0.60 v x737 x736 x735 x734 x733 x732 x731 x730 x729 x728 x727 -x726 -x725 -x724 -x723 -x722 -x721 -x720 -x719 -x718 -x717 -x716 -x715
0.59/0.60 v -x714 -x713 -x712 -x711 -x710 -x709 -x708 -x707 -x706 -x705 x704 x703 x702 x701 x700 x699 x698 x697 x696 x695 x694 x693 x692
0.59/0.60 v x691 x690 x689 x688 x687 x686 x685 x684 x683 x682 x681 x680 x679 x678 x677 x676 x675 x674 x673 x672 x671 x670 x669 x668 x667
0.59/0.60 v x666 x665 x664 x663 x662 -x661 -x660 -x659 -x658 -x657 -x656 -x655 -x654 -x653 -x652 -x651 -x650 -x649 -x648 -x647 -x646 -x645
0.59/0.60 v -x644 -x643 -x642 -x641 x640 x639 x638 x637 x636 x635 x634 x633 x632 x631 x630 x629 x628 x627 x626 x625 x624 x623 x622 x621
0.59/0.60 v x620 x619 x618 x617 x616 x615 x614 x613 x612 x611 x610 x609 x608 x607 x606 x605 x604 x603 x602 x601 x600 x599 x598 x597 x596
0.59/0.60 v x595 x594 x593 x592 x591 -x590 -x589 -x588 -x587 -x586 -x585 -x584 -x583 -x582 -x581 -x580 -x579 -x578 -x577 x576 x575 x574
0.59/0.60 v x573 x572 x571 x570 x569 x568 x567 x566 x565 x564 x563 x562 x561 x560 x559 x558 x557 x556 x555 x554 x553 x552 x551 x550 x549
0.59/0.60 v x548 x547 x546 x545 x544 x543 x542 x541 x540 x539 x538 x537 x536 x535 x534 x533 x532 x531 x530 x529 x528 x527 x526 x525 x524
0.59/0.60 v x523 -x522 -x521 -x520 -x519 -x518 -x517 -x516 -x515 -x514 -x513 x512 x511 x510 x509 x508 x507 x506 x505 x504 x503 x502 x501
0.59/0.60 v x500 x499 x498 x497 x496 x495 x494 x493 x492 x491 x490 x489 x488 x487 x486 x485 x484 x483 x482 x481 x480 x479 x478 x477 x476
0.59/0.60 v x475 x474 -x473 -x472 -x471 -x470 -x469 -x468 -x467 -x466 -x465 -x464 -x463 -x462 -x461 -x460 -x459 -x458 -x457 -x456 -x455
0.59/0.60 v -x454 -x453 -x452 -x451 -x450 -x449 x448 x447 x446 x445 x444 x443 x442 x441 x440 x439 x438 x437 x436 x435 x434 x433 x432 x431
0.59/0.60 v x430 x429 x428 x427 x426 x425 x424 x423 x422 x421 x420 x419 x418 x417 x416 x415 x414 x413 x412 x411 x410 x409 x408 x407 x406
0.59/0.60 v x405 x404 x403 x402 x401 x400 x399 x398 x397 x396 x395 x394 x393 x392 x391 x390 x389 -x388 -x387 -x386 -x385 x384 x383 x382
0.59/0.60 v x381 x380 x379 x378 x377 x376 x375 x374 x373 x372 x371 x370 x369 x368 x367 x366 x365 x364 x363 x362 x361 x360 x359 x358 x357
0.59/0.60 v x356 x355 x354 x353 x352 x351 x350 x349 x348 x347 x346 x345 x344 x343 x342 x341 x340 x339 x338 x337 x336 x335 x334 x333 x332
0.59/0.60 v x331 -x330 -x329 -x328 -x327 -x326 -x325 -x324 -x323 -x322 -x321 x320 x319 x318 x317 x316 x315 x314 x313 x312 x311 x310 x309
0.59/0.60 v x308 x307 x306 x305 x304 x303 x302 x301 x300 x299 x298 x297 x296 x295 x294 x293 x292 x291 x290 x289 x288 x287 x286 x285 x284
0.59/0.60 v x283 x282 x281 x280 -x279 -x278 -x277 -x276 -x275 -x274 -x273 -x272 -x271 -x270 -x269 -x268 -x267 -x266 -x265 -x264 -x263 -x262
0.59/0.60 v -x261 -x260 -x259 -x258 -x257 x256 x255 x254 x253 x252 x251 x250 x249 x248 x247 x246 x245 x244 x243 x242 x241 x240 x239 x238
0.59/0.60 v x237 x236 x235 x234 x233 x232 x231 x230 x229 x228 x227 x226 x225 x224 x223 x222 x221 x220 x219 x218 x217 x216 x215 x214 x213
0.59/0.60 v x212 x211 x210 x209 x208 x207 x206 x205 x204 x203 x202 x201 x200 x199 x198 x197 x196 -x195 -x194 -x193 x192 x191 x190 x189
0.59/0.60 v x188 x187 x186 x185 x184 x183 x182 x181 x180 x179 x178 x177 x176 x175 x174 x173 x172 x171 x170 x169 x168 x167 x166 x165 x164
0.59/0.60 v x163 x162 x161 x160 x159 x158 x157 x156 x155 x154 x153 x152 x151 x150 x149 x148 x147 x146 x145 x144 x143 x142 x141 x140 x139
0.59/0.60 v x138 x137 x136 x135 x134 x133 x132 x131 x130 x129 x128 x127 x126 x125 x124 x123 x122 x121 x120 x119 x118 x117 x116 x115 x114
0.59/0.60 v x113 x112 x111 x110 x109 x108 x107 x106 x105 x104 x103 x102 x101 x100 x99 x98 x97 x96 x95 x94 x93 x92 x91 x90 x89 x88 x87 x86
0.59/0.60 v x85 x84 -x83 -x82 -x81 -x80 -x79 -x78 -x77 -x76 -x75 -x74 -x73 -x72 -x71 -x70 -x69 -x68 -x67 -x66 -x65 x64 x63 x62 x61 x60
0.59/0.60 v x59 x58 x57 x56 x55 x54 x53 x52 x51 x50 x49 x48 x47 x46 x45 x44 x43 x42 x41 x40 x39 x38 x37 x36 x35 x34 x33 x32 x31 x30 x29
0.59/0.60 v x28 x27 x26 x25 x24 x23 x22 x21 x20 x19 x18 x17 x16 x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x1984
0.59/0.60 c SCIP Status : problem is solved [optimal solution found]
0.59/0.60 c Total Time : 0.60
0.59/0.60 c solving : 0.60
0.59/0.60 c presolving : 0.50 (included in solving)
0.59/0.60 c reading : 0.03 (included in solving)
0.59/0.60 c copying : 0.01 (1 #copies) (minimal 0.01, maximal 0.01, average 0.01)
0.59/0.60 c Original Problem :
0.59/0.60 c Problem name : HOME/instance-3690546-1338022605.opb
0.59/0.60 c Variables : 3968 (3968 binary, 0 integer, 0 implicit integer, 0 continuous)
0.59/0.60 c Constraints : 12910 initial, 12910 maximal
0.59/0.60 c Objective sense : minimize
0.59/0.60 c Presolved Problem :
0.59/0.60 c Problem name : t_HOME/instance-3690546-1338022605.opb
0.59/0.60 c Variables : 386 (386 binary, 0 integer, 0 implicit integer, 0 continuous)
0.59/0.60 c Constraints : 514 initial, 515 maximal
0.59/0.60 c Presolvers : ExecTime SetupTime FixedVars AggrVars ChgTypes ChgBounds AddHoles DelCons AddCons ChgSides ChgCoefs
0.59/0.60 c domcol : 0.00 0.00 0 0 0 0 0 0 0 0 0
0.59/0.60 c trivial : 0.00 0.00 148 0 0 0 0 0 0 0 0
0.59/0.60 c dualfix : 0.00 0.00 41 0 0 0 0 0 0 0 0
0.59/0.60 c boundshift : 0.00 0.00 0 0 0 0 0 0 0 0 0
0.59/0.60 c inttobinary : 0.00 0.00 0 0 0 0 0 0 0 0 0
0.59/0.60 c convertinttobin : 0.00 0.00 0 0 0 0 0 0 0 0 0
0.59/0.60 c gateextraction : 0.00 0.00 0 0 0 0 0 513 167 0 0
0.59/0.60 c implics : 0.00 0.00 0 57 0 0 0 0 0 0 0
0.59/0.60 c components : 0.00 0.00 0 0 0 0 0 0 0 0 0
0.59/0.60 c pseudoobj : 0.00 0.00 0 0 0 0 0 0 0 0 0
0.59/0.60 c probing : 0.00 0.00 0 0 0 0 0 0 0 0 0
0.59/0.60 c knapsack : 0.01 0.00 0 0 0 0 0 0 0 37 129
0.59/0.60 c setppc : 0.01 0.00 0 0 0 0 0 0 0 0 0
0.59/0.60 c and : 0.00 0.00 0 0 0 0 0 155 155 0 0
0.59/0.60 c linear : 0.43 0.00 2626 710 0 2773 0 12050 0 191 142
0.59/0.60 c root node : - - 0 - - 0 - - - - -
0.59/0.60 c Constraints : Number MaxNumber #Separate #Propagate #EnfoLP #EnfoPS #Check #ResProp Cutoffs DomReds Cuts Conss Children
0.59/0.60 c integral : 0 0 0 0 0 0 4 0 0 0 0 0 0
0.59/0.60 c knapsack : 49 49 1 1 0 0 1 0 0 0 20 0 0
0.59/0.60 c setppc : 465 465 1 1 0 0 1 0 0 0 0 0 0
0.59/0.60 c linear : 0+ 1 0 0 0 0 0 0 0 0 0 0 0
0.59/0.60 c countsols : 0 0 0 0 0 0 3 0 0 0 0 0 0
0.59/0.60 c Constraint Timings : TotalTime SetupTime Separate Propagate EnfoLP EnfoPS Check ResProp
0.59/0.60 c integral : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.59/0.60 c knapsack : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.59/0.60 c setppc : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.59/0.60 c linear : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.59/0.60 c countsols : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.59/0.60 c Propagators : #Propagate #ResProp Cutoffs DomReds
0.59/0.60 c rootredcost : 0 0 0 0
0.59/0.60 c pseudoobj : 0 0 0 0
0.59/0.60 c vbounds : 0 0 0 0
0.59/0.60 c redcost : 1 0 0 0
0.59/0.60 c probing : 0 0 0 0
0.59/0.60 c Propagator Timings : TotalTime SetupTime Presolve Propagate ResProp
0.59/0.60 c rootredcost : 0.00 0.00 0.00 0.00 0.00
0.59/0.60 c pseudoobj : 0.00 0.00 0.00 0.00 0.00
0.59/0.60 c vbounds : 0.00 0.00 0.00 0.00 0.00
0.59/0.60 c redcost : 0.00 0.00 0.00 0.00 0.00
0.59/0.60 c probing : 0.00 0.00 0.00 0.00 0.00
0.59/0.60 c Conflict Analysis : Time Calls Success Conflicts Literals Reconvs ReconvLits LP Iters
0.59/0.60 c propagation : 0.00 0 0 0 0.0 0 0.0 -
0.59/0.60 c infeasible LP : 0.00 0 0 0 0.0 0 0.0 0
0.59/0.60 c bound exceed. LP : 0.00 0 0 0 0.0 0 0.0 0
0.59/0.60 c strong branching : 0.00 0 0 0 0.0 0 0.0 0
0.59/0.60 c pseudo solution : 0.00 0 0 0 0.0 0 0.0 -
0.59/0.60 c applied globally : - - - 0 0.0 - - -
0.59/0.60 c applied locally : - - - 0 0.0 - - -
0.59/0.60 c Separators : ExecTime SetupTime Calls Cutoffs DomReds Cuts Conss
0.59/0.60 c cut pool : 0.00 0 - - 0 - (maximal pool size: 132)
0.59/0.60 c closecuts : 0.00 0.00 0 0 0 0 0
0.59/0.60 c impliedbounds : 0.00 0.00 1 0 0 168 0
0.59/0.60 c intobj : 0.00 0.00 0 0 0 0 0
0.59/0.60 c gomory : 0.00 0.00 1 0 0 50 0
0.59/0.60 c cgmip : 0.00 0.00 0 0 0 0 0
0.59/0.60 c strongcg : 0.00 0.00 1 0 0 150 0
0.59/0.60 c cmir : 0.00 0.00 0 0 0 0 0
0.59/0.60 c flowcover : 0.00 0.00 0 0 0 0 0
0.59/0.60 c clique : 0.01 0.00 1 0 0 4 0
0.59/0.60 c zerohalf : 0.00 0.00 0 0 0 0 0
0.59/0.60 c mcf : 0.00 0.00 1 0 0 0 0
0.59/0.60 c oddcycle : 0.00 0.00 0 0 0 0 0
0.59/0.60 c rapidlearning : 0.03 0.00 1 0 0 0 1
0.59/0.60 c Pricers : ExecTime SetupTime Calls Vars
0.59/0.60 c problem variables: 0.00 - 0 0
0.59/0.60 c Branching Rules : ExecTime SetupTime Calls Cutoffs DomReds Cuts Conss Children
0.59/0.60 c pscost : 0.00 0.00 0 0 0 0 0 0
0.59/0.60 c inference : 0.00 0.00 0 0 0 0 0 0
0.59/0.60 c mostinf : 0.00 0.00 0 0 0 0 0 0
0.59/0.60 c leastinf : 0.00 0.00 0 0 0 0 0 0
0.59/0.60 c fullstrong : 0.00 0.00 0 0 0 0 0 0
0.59/0.60 c allfullstrong : 0.00 0.00 0 0 0 0 0 0
0.59/0.60 c random : 0.00 0.00 0 0 0 0 0 0
0.59/0.60 c relpscost : 0.00 0.00 0 0 0 0 0 0
0.59/0.60 c Primal Heuristics : ExecTime SetupTime Calls Found
0.59/0.60 c LP solutions : 0.00 - - 0
0.59/0.60 c pseudo solutions : 0.00 - - 0
0.59/0.60 c smallcard : 0.00 0.00 0 0
0.59/0.60 c trivial : 0.00 0.00 1 0
0.59/0.60 c shiftandpropagate: 0.00 0.00 0 0
0.59/0.60 c simplerounding : 0.00 0.00 0 0
0.59/0.60 c zirounding : 0.00 0.00 0 0
0.59/0.60 c rounding : 0.00 0.00 0 0
0.59/0.60 c shifting : 0.00 0.00 0 0
0.59/0.60 c intshifting : 0.00 0.00 0 0
0.59/0.60 c oneopt : 0.00 0.00 0 0
0.59/0.60 c twoopt : 0.00 0.00 0 0
0.59/0.60 c indtwoopt : 0.00 0.00 0 0
0.59/0.60 c indoneopt : 0.00 0.00 0 0
0.59/0.60 c fixandinfer : 0.00 0.00 0 0
0.59/0.60 c feaspump : 0.00 0.00 0 0
0.59/0.60 c clique : 0.00 0.00 0 0
0.59/0.60 c indrounding : 0.00 0.00 0 0
0.59/0.60 c indcoefdiving : 0.00 0.00 0 0
0.59/0.60 c coefdiving : 0.00 0.00 0 0
0.59/0.60 c pscostdiving : 0.00 0.00 0 0
0.59/0.60 c nlpdiving : 0.00 0.00 0 0
0.59/0.60 c fracdiving : 0.00 0.00 0 0
0.59/0.60 c veclendiving : 0.00 0.00 0 0
0.59/0.60 c intdiving : 0.00 0.00 0 0
0.59/0.60 c actconsdiving : 0.00 0.00 0 0
0.59/0.60 c objpscostdiving : 0.00 0.00 0 0
0.59/0.60 c rootsoldiving : 0.00 0.00 0 0
0.59/0.60 c linesearchdiving : 0.00 0.00 0 0
0.59/0.60 c guideddiving : 0.00 0.00 0 0
0.59/0.60 c octane : 0.00 0.00 0 0
0.59/0.60 c rens : 0.00 0.00 0 0
0.59/0.60 c rins : 0.00 0.00 0 0
0.59/0.60 c localbranching : 0.00 0.00 0 0
0.59/0.60 c mutation : 0.00 0.00 0 0
0.59/0.60 c crossover : 0.00 0.00 0 0
0.59/0.60 c dins : 0.00 0.00 0 0
0.59/0.60 c vbounds : 0.00 0.00 0 0
0.59/0.60 c undercover : 0.00 0.00 0 0
0.59/0.60 c subnlp : 0.00 0.00 0 0
0.59/0.60 c trysol : 0.00 0.00 0 0
0.59/0.60 c LP : Time Calls Iterations Iter/call Iter/sec Time-0-It Calls-0-It
0.59/0.60 c primal LP : 0.00 0 0 0.00 - 0.00 0
0.59/0.60 c dual LP : 0.01 1 111 111.00 - 0.00 0
0.59/0.60 c lex dual LP : 0.00 0 0 0.00 -
0.59/0.60 c barrier LP : 0.00 0 0 0.00 - 0.00 0
0.59/0.60 c diving/probing LP: 0.00 0 0 0.00 -
0.59/0.60 c strong branching : 0.00 0 0 0.00 -
0.59/0.60 c (at root node) : - 0 0 0.00 -
0.59/0.60 c conflict analysis: 0.00 0 0 0.00 -
0.59/0.60 c B&B Tree :
0.59/0.60 c number of runs : 1
0.59/0.60 c nodes : 1
0.59/0.60 c nodes (total) : 1
0.59/0.60 c nodes left : 0
0.59/0.60 c max depth : 0
0.59/0.60 c max depth (total): 0
0.59/0.60 c backtracks : 0 (0.0%)
0.59/0.60 c delayed cutoffs : 0
0.59/0.60 c repropagations : 0 (0 domain reductions, 0 cutoffs)
0.59/0.60 c avg switch length: 2.00
0.59/0.60 c switching time : 0.00
0.59/0.60 c Solution :
0.59/0.60 c Solutions found : 1 (1 improvements)
0.59/0.60 c First Solution : +0.00000000000000e+00 (in run 1, after 1 nodes, 0.60 seconds, depth 0, found by <trysol>)
0.59/0.60 c Primal Bound : +0.00000000000000e+00 (in run 1, after 1 nodes, 0.60 seconds, depth 0, found by <trysol>)
0.59/0.60 c Dual Bound : +0.00000000000000e+00
0.59/0.60 c Gap : 0.00 %
0.59/0.60 c Root Dual Bound : +0.00000000000000e+00
0.59/0.60 c Root Iterations : 111
0.59/0.63 c Time complete: 0.62.