Fifth Pseudo-Boolean Competition PB10

Vasco MANQUINHO and Olivier ROUSSEL

13th International Conference on Theory and Applications of Satisfiability Testing, SAT'10

July 14th, 2010

- Pseudo-Boolean constraints
- PBS, PBO, WBO
- Judges
- Benchmarks and Solvers
- Evaluation Environment
- Results

Linear Pseudo-Boolean Constraints

 A linear pseudo-Boolean (PB) constraint may be defined over Boolean variables by

$$\sum_{i} a_i.l_i \geq d$$
 with $a_i, d \in \mathbb{Z}, l_i \in \{x_i, \bar{x}_i\}, x_i \in \mathbb{B}$

Example: $3x_1 - 3x_2 + 2\bar{x}_3 + \bar{x}_4 + x_5 \ge 5$

- Extends both clauses and cardinality constraints
 - cardinalities: all $a_i = 1$ and d > 1
 - clauses: all $a_i = 1$ and d = 1
- PB constraints are more expressive than clauses (one PB constraint may replace an exponential number of clauses)
- A pseudo-Boolean instance is a conjunction of PB constraints

Non-Linear Pseudo-Boolean Constraints

 A non-linear pseudo-Boolean constraint may be defined over Boolean variables by

$$\sum_i a_i(\prod_j I_{i,j}) \geq d$$
 with $a_i, d \in \mathbb{Z}, I_{i,j} \in \{x_{i,j}, \bar{x}_{i,j}\}, x_{i,j} \in \mathbb{B}$

Example: $3x_1\bar{x_2} - 3x_2x_4 + 2\bar{x}_3 + \bar{x}_4 + x_5x_6x_7 \ge 5$

- A product is a AND
- Compact encoding for several problems (e.g. factoring problem encoded by one constraint)
- Can be easily translated into linear pseudo-Boolean by introducing new variables and constraints such that

$$p \leftrightarrow x_0 \wedge x_1 \wedge \ldots \wedge x_n$$

(requires 2 PB constraints or n+1 clauses)

PBS (Pseudo Boolean Satisfaction)

decide of the satisfiability of a conjunction of PB constraints

PBO (Pseudo Boolean Optimization)

find a model of a conjunction of PB constraints which optimizes one objective function

$$\begin{cases} \text{minimize} \quad f = \sum_i c_i . x_i \text{ with } c_i \in \mathbb{Z}, x_i \in \mathbb{B} \\ \text{subject to} \quad \text{the conjunction of constraints} \end{cases}$$

Different problems: ... and WBO

WBO (Weighted Boolean Optimization)

- new in the competition
- generalization of maximum satisfiability for PB constraints
- hard constraints must be satisfied
- soft constraints may be violated, but this has a cost
- the cost of an interpretation is the sum of the costs of violated soft constraints
- as in WCSP, there is a top cost. Interpretations with a cost greater or equal to the top cost are non admissible.
- the goal is to find an admissible interpretation with the smallest cost
- to avoid any intersection with the Max-SAT competition, at least one constraint must not be a clause.

- 2 judges (the same as last year)
 - Heidi Dixon (pbChaff solver)
 - Peter Barth (opbdp solver)
- decided of the selection of instances
- suggested a comparison with CPLEX
- approved the results

For PBS/PBO, classification based on the objective function

- DEC No objective function to optimize (decision problem). The solver must simply find a solution.
- OPT An objective function is present. The solver must find a solution with the best possible value of the objective function.

For WBO, classification based on the existence of hard clauses SOFT No hard clause at all.

PARTIAL At least one hard clause.

Classification based on the size of coefficients

- SMALLINT small integers: no constraint with a sum of coefficients greater than 2²⁰ (20 bits): expected to be safe for solvers using 32 bits integers and simple techniques (be careful with learning), but strong limit to the encoding of concrete problems.
 - BIGINT big integers: at least one constraint with a sum of coefficients greater than 2²⁰ (20 bits): requires arbitrary precision.

Classification based on the linearity of constraints

- LIN All constraints are linear
- NLC At least one constraint is non linear (contains products of literals)

Categories

- DEC-SMALLINT-LIN (452 instances)
- DEC-SMALLINT-NLC (100 instances)
- DEC-BIGINT-LIN
- DEC-BIGINT-NLC
- OPT-SMALLINT-LIN (699 instances)
- OPT-SMALLINT-NLC (409 instances)
- OPT-BIGINT-LIN (532 instances)
- OPT-BIGINT-NLC
- PARTIAL-SMALLINT-LIN (536 instances)
- PARTIAL-BIGINT-LIN (263 instances)
- SOFT-SMALLINT-LIN (201 instances)
- SOFT-BIGINT-LIN (46 instances)

7 teams, 8 solvers, 30 solver versions

Solvers with only PBS/PBO support

borg-pb Bryan Silverthorn a portfolio solver (In Python. Uses clasp, SAT4J and the PB10 versions of bsolo/wbo)

bsolo Vasco Manquinho and José Santos a SAT-like solver with lower bound estimation techniques

PBPASSolver Amir Aavani written in Pascal

> PB-wave Cédric Piette a local search solver

Solvers with both PBS/PBO and WBO support

PB/CT Anders Franzen, Roberto Bruttomesso based on OpenSMT

SAT4J Pseudo Daniel Le Berre and Anne Parrain

- 3 versions: learn clauses, learn PB constraints, run both in // and exchange intermediate values of the objective function
- SCIP Stefan Heinz, Marc E. Pfetsch, and Michael Winkler 3 versions: with SoPlex as LP solver, with Clp as LP solver, without any LP solver
 - wbo Vasco Manquinho, Jordi Planes and João Marques-Silva an unsatisfiability-based solver; iterates over the identification of unsatisfiable subformulas;

- a direct interface to CPLEX 12.1, a state of the art linear programming solver
- support for PBS/PBO as well as WBO
- written by Vasco Manquinho after a suggestion of the judges

PBS/PBO Instances submitted this year

- resource-constrained project scheduling problem (A. Oliveras) converted from the PSPLib
 6216 submitted instances, (4080 DEC-SMALLINT-LIN, 2040 OPT-SMALLINT-LIN)
 80 instances randomly selected in each category
- dependency of packages in a Linux distribution (D. Le Berre)
 - converted from the Mancoosi project
 - 1 DEC-SMALLINT-LIN, 65 OPT-SMALLINT-LIN, 327 OPT-BIGINT-LIN

at most 80 instances randomly selected in each category

 Tolerant Algebraic Side-Channel Attack (TASCA) on the Keeloq cipher (Y. Oren)
4 OPT-SMALLINT-NLC

- no submission at all !!
- generation of WBO from unsatisfiable PBS/PBO instances by adding a random cost between 1 and 100 to
 - 100% of the constraints (only soft constraints)
 - 66% of the constraints (majority of soft constraints)
 - 33% of the constraints (majority of hard constraints)

No top cost imposed in these instances.

- Conversion of WCSP instances
 - 1 hard equality constraint to encode each variable
 - 1 soft constraint to encode the cost of a tuple

kindly provided by the CRIL, University of Artois, France For PBS/PBO: same hardware as last competitions

- Cluster of bi-Xeon 3 GHz, 2MB cache, 2GB RAM
- Each solver was given a time limit of 30 minutes (1800s) and a memory limit of 1800 MB (to avoid swapping).
- 280 days of CPU time used
- For WBO: new hardware
 - Cluster of bi-Xeon quad-core 2.66 GHz, 8 MB cache, 32 GB RAM
 - Each solver was given a time limit of 30 minutes (1800s) and a memory limit of 3800 MB (to avoid swapping).
 - 2 solvers per node (limited interactions because of the 2 CPU and the memory limit)
 - 90 days of CPU time used

Verification of results

- The environment performs the following, efficient checks:
 - for SATISFIABLE answers, solvers must output a complete instantiation and the system checks that it satisfies all constraints
 - for UNSATISFIABLE answers, the system only checks that no other solver proved satisfiability
 - for OPTIMUM FOUND answers, solvers must output a complete instantiation; the system checks if all constraints are satisfied and that no other solver found a better solution
- UNSATISFIABLE and OPTIMUM FOUND answers cannot be completely checked efficiently and therefore should be taken with caution.
- Solvers giving a wrong answer in a category are disqualified in that category.

Ranking based on two criteria:

- 1. the number of solved instances
- 2. ties are broken by considering the cumulated time on solved instances
- The Virtual Best Solver (VBS)
 - is the virtual solver obtained by combining the best results of all submitted solvers.
 - could be obtained by running in parallel all submitted solvers
 - represents the current state of the art (SOTA)
 - ► is a reference for the evaluation of the other solvers

Rank	Solver	#solved	Detail	%inst.	%VBS		
Total number of instances: 452							
Virtual	Best Solver (VBS)	434	180 S, 254 U	96%	100%		
1	borg-pb	415	179 S, 236 U	92%	96%		
2	SAT4J Res//CP	382	173 S, 209 U	85%	88%		
3	bsolo 3.2 Card	380	172 S, 208 U	84%	88%		
4	wbo <i>1.4a</i>	378	171 S, 207 U	84%	87%		
5	PB/CT bugfix	369	164 S, 205 U	82%	85%		
6	SAT4J Res.	367	174 S, 193 U	81%	85%		
7	bsolo 3.2 Cl	355	170 S, 185 U	79%	82%		
8	SCIPspx <i>bugfix</i>	351	139 S, 212 U	78%	81%		
9	SCIPspx	351	141 S, 210 U	78%	81%		
10	SCIPclp	344	144 S, 200 U	76%	79%		
11	pb_cplex	337	155 S, 182 U	75%	78%		
12	SCIPnone	288	154 S, 134 U	64%	66%		
13	SAT4J CP	228	106 S, 122 U	50%	53%		
14	PB-wave	66	66 S	15%	15%		

DEC-SMALLINT-LIN

Results for DEC-SMALLINT-NLC

Rank	Solver	#solved	Detail	%inst.	%VBS		
Total number of instances: 100							
Virtual	Best Solver (VBS)	70	50 S, 20 U	70%	100%		
1	pb₋cplex	70	50 S, 20 U	70%	100%		
2	SCIPspx <i>bugfix</i>	70	50 S, 20 U	70%	100%		
3	SCIPclp	69	50 S, 19 U	69%	99%		
4	SCIPspx	69	50 S, 19 U	69%	99%		
5	SAT4J Res//CP	65	50 S, 15 U	65%	93%		
6	SAT4J CP	65	50 S, 15 U	65%	93%		
7	PB/CT	65	50 S, 15 U	65%	93%		
8	PB/CT bugfix	63	50 S, 13 U	63%	90%		
9	bsolo 3.2 Card	61	46 S, 15 U	61%	87%		
10	wbo <i>1.4a</i>	57	42 S, 15 U	57%	81%		
11	SCIPnone	49	39 S, 10 U	49%	70%		
12	borg-pb	27	17 S, 10 U	27%	39%		
13	bsolo 3.2 Cl	26	16 S, 10 U	26%	37%		
14	PB-wave	25	25 S	25%	36%		
15	SAT4J Res.	25	10 S, 15 U	25%	36%		

DEC-SMALLINT-NLC

Rank	Solver	#solved	Detail	%inst.	%VBS			
	Total number of instances: 699							
Virtual	Best Solver (VBS)	481	446 O, 35 U	69%	100%			
1	pb₋cplex	417	384 O, 33 U	60%	87%			
2	SCIPspx <i>bugfix</i>	354	321 O, 33 U	51%	74%			
3	bsolo 3.2 Card	333	300 O, 33 U	48%	69%			
4	bsolo 3.2 Cl	328	295 O, 33 U	47%	68%			
5	SCIPclp	319	286 O, 33 U	46%	66%			
6	SCIPspx	317	284 O, 33 U	45%	66%			
7	SAT4J Res//CP	315	282 O, 33 U	45%	65%			
8	SAT4J Res.	303	270 O, 33 U	43%	63%			
9	PB/CT bugfix	283	251 O, 32 U	40%	59%			
10	SAT4J CP	255	226 O, 29 U	36%	53%			
11	SCIPnone	187	158 O, 29 U	27%	39%			

OPT-SMALLINT-LIN

beolo 3 2 Card	
03010 0.2 Ouru	1.1
bsolo 3.2 Cl	×
pb cplex 2010-06-29	···· * ···
PB/CT 0.1 fixed	
SAT4J PB CuttingPlan	
SAT4J PB RES // CP 2	····@···
SAT4J PB Resolution	
SCIPclp SCIP 1.2.1.2	···· <u>A</u> ··· ·
SCIPnone SCIP 1.2.1.	-
SCIPspx SCIP 1.2.1.2	
SCIPspx SCIP 1.2.1.3	···· v ····

Rank	Solver	#solved	Detail	%inst.	%VBS			
	Total number of instances: 409							
Virtual	Best Solver (VBS)	289	289 O	71%	100%			
1	SCIPspx bugfix	288	288 O	70%	100%			
2	SAT4J Res	271	271 O	66%	94%			
3	SCIPnone	260	260 O	64%	90%			
4	SAT4J Res//CP	250	250 O	61%	87%			
5	bsolo 3.2 Cl	230	230 O	56%	80%			
6	bsolo 3.2 Card	217	217 O	53%	75%			
7	PB/CT	194	194 O	47%	67%			
8	PB/CT bugfix	186	186 O	45%	64%			
9	SAT4J CP	117	117 O	29%	40%			

OPT-SMALLINT-NLC

Rank	Solver	#solved	Detail	%inst.	%VBS			
	Total number of instances: 532							
Virtual	Best Solver (VBS)	211	152 O, 59 U	40%	100%			
1	SAT4J Res//CP	205	146 O, 59 U	39%	97%			
2	SAT4J Res	198	141 O, 57 U	37%	94%			
3	SAT4J CP	168	110 O, 58 U	32%	80%			
4	PB/CT bugfix	87	53 O, 34 U	16%	41%			

OPT-BIGINT-LIN

Rank	Solver	#solved	Detail	%inst.	%VBS			
	Total number of instances: 536							
Virtua	l Best Solver (VBS)	532	531 O, 1 U	99%	100%			
1	SAT4J Res. bugfix	446	445 O, 1 U	83%	84%			
2	pb₋cplex	428	428 O	80%	80%			
3	PB/CT bugfix	375	374 O, 1 U	70%	70%			
4	wbo 1.4a	373	372 O, 1 U	70%	70%			
5	SCIPclp	297	296 O, 1 U	55%	56%			
6	SCIPclp	282	281 O, 1 U	53%	53%			
7	SCIPspx	269	268 O, 1 U	50%	51%			
8	SCIPnone	146	145 O, 1 U	27%	27%			

Rank	Solver	#solved	Detail	%inst.	%VBS			
	Total number of instances: 201							
Virtua	l Best Solver (VBS)	201	201 O	100%	100%			
1	wbo <i>1.4a</i>	161	161 O	80%	80%			
2	pb₋cplex	160	160 O	80%	80%			
3	SAT4J Res. bugfix	160	160 O	80%	80%			
4	PB/CT bugfix	138	138 O	69%	69%			
5	SCIPclp	113	113 O	56%	56%			
6	SCIPspx	113	113 O	56%	56%			
7	SCIPclp	113	113 O	56%	56%			
8	SCIPnone	22	22 O	11%	11%			

SOFT-SMALLINT-LIN

Rank	Solver	#solved	Detail	%inst.	%VBS		
Total number of instances: 263							
Virtua	l Best Solver (VBS)	135	117 O, 18 U	51%	100%		
1	SAT4J Res. bugfix	113	113 O	43%	84%		
2	PB/CT bugfix	78	78 O	30%	58%		

PARTIAL-BIGINT-LIN

- Keep in mind that the competition only takes a snapshot from a given angle.
- The rankings represent a user point of view, on a specific set of instances. This is only one small part of the picture.
- There are more points of view which are also relevant: innovation, robustness...

- A portfolio approach is valuable
- CPLEX outperforms all other solvers in OPT-SMALLINT-LIN and DEC-SMALLINT-NLC but is not so strong in other categories
- Linear programming techniques can help
- Learning PB constraints has a cost. Alternative approaches are valuable.

- All details are on the web site http://www.cril.univ-artois.fr/PB10
- Get your solvers ready for PB11!
- Thanks to all participants!