
Combining Multiple Constraint Solvers:
Results on the CPAI’06 Competition Data

Matthew Streeter1 Daniel Golovin1 Stephen F. Smith2

Computer Science Department1 and
The Robotics Institute2

Carnegie Mellon University
Pittsburgh, PA 15213

{matts,dgolovin,sfs}@cs.cmu.edu

Abstract. In a recent paper [5], we presented an algorithm that con-
structs a schedule for interleaving the execution of two or more solvers,
with the goal of obtaining improved average-case running time relative
to the fastest individual solver. In this paper, we evaluate this algorithm
experimentally using data from the CPAI’06 constraint solver competi-
tion.

1 Introduction

Many computational problems that arise in practice are NP-hard and thus are
unlikely to admit algorithms with provably good worst-case performance. These
problems must nevertheless be solved, and in many problem domains heuristics
have been developed that perform much better in practice than a worst-case
analysis would guarantee. Unfortunately, the behavior of a heuristic on a pre-
viously unseen problem instance can be difficult to predict in advance, and the
running times of two different heuristics on the same instance can easily differ
by orders of magnitude. For this reason, if a heuristic has been running unsuc-
cessfully for some time it may be worthwhile to suspend the execution of that
heuristic and start running a different heuristic instead.

Table 1. Behavior of two solvers on three instances from the CPAI’06 competition.

Instance BPrologCSPSolver70a Abscon 109 ESAC

CPU (s) CPU (s)

allIntervalSeries/series-10 0.021 0.72
fisher/FISCHER1-1-fair 0.046 ≥ 1800
pseudoSeries/aim/aim-100-1-6-1 ≥ 1800 1.089

The potential reduction in average-case running time that can be achieved by
interleaving the execution of multiple heuristics is illustrated in Table 1. Here,
although both solvers take > 600 seconds on average, a schedule that simply ran
the two solvers in parallel would take less than one second on average.

In this paper, we seek to improve the average-case performance of con-
straint solvers by interleaving the execution of multiple (currently available)
constraint solvers according to a task-switching schedule. We construct task-
switching schedules using a recently-developed algorithm [5] and evaluate their
performance using data from the CPAI’06 competition.

1.1 Task-switching schedules

Let H = {h1, h2, . . . , hk} be a set of deterministic heuristics, and let X =
{x1, x2, . . . , xn} be a set of instances of some decision problem. Heuristic hj ,
when run on instance xi, runs for τi,j time units before returning a (provably
correct) “yes” or “no” answer. A task-switching schedule S : Z+ → H specifies,
for each integer t ≥ 0, the heuristic S(t) to run from time t to time t + 1. For
example, to execute the task-switching schedule depicted in Figure 1 we would
run h1 for two time units; then run h2 for two time units, then run h1 for four
additional time units, and so on.

h1

h2

time

6 8420

. . .

multi-run single-run

Fig. 1. A task-switching schedule.

A task-switching schedule may either be executed in single-run mode or in
multi-run mode. The two modes differ in what happens to the heuristic (call it
h) that is currently running when the task-switching schedule starts running a
new heuristic h′: in single-run mode, the current run of h is discarded, while in
multi-run mode the execution state of h is saved and will be restored if h is run
again. For any schedule S, let cs

i (S) denote the time S takes to solve xi when
S is executed in single-run mode and let cm

i (S) denote the time it takes when
executed in multi-run mode.1 For example, if heuristics h1 and h2 both require 3
time units to solve instance xi (i.e., τi,1 = τi,2 = 3), the task-switching schedule
S depicted in Figure 1 will require 5 time units to solve x if it is executed in
multi-run mode but will require 7 time units if it is executed in single-run mode
(i.e., cm

i (S) = 5 and cs
i (S) = 7).

We now consider the problem of computing a good task-switching schedule.
That is, given as input the matrix τ , we would like to compute a schedule
1 Formally, cm

i (S) is the smallest integer t such that for some heuristic hj ,
|{t′ < t : S(t′) = hj}| = τi,j . Similarly, cs

i (S) is the smallest integer t such that, for
some heuristic hj , S(t− τi,j) = S(t− τi,j +1) = S(t− τi,j +2) = . . . = S(t−1) = hj .

that minimizes
∑n

i=1 cs
i (S) (or

∑n
i=1 cm

i (S)). Of course, we would not use the
resulting task-switching schedule to solve instances in X (which we must already
have solved in order to fill in the table τ). Rather, we would hope that a task-
switching schedule that performs well on the instances in X would also perform
well on similar problem instances, which we would be able to solve more quickly
via the task-switching schedule.

Unfortunately, it is NP-hard to compute even an approximately optimal task-
switching schedule. This follows from the fact that the problem of computing
an optimal task-switching schedule generalizes min-sum set cover. Feige et al.
[1] showed that it is NP-hard to approximate min-sum set cover within a factor
of α for any α < 4, and gave a greedy algorithm that achieves the optimal ap-
proximation ratio of 4. In [5], we showed how to generalize this greedy algorithm
to obtain a 4-approximation to the optimal task-switching schedule. Our results
are summarized in the following theorem.

Theorem 1. Let C∗ = minS

∑n
i=1 cm

i (S). There exists a poly-time greedy ap-
proximation algorithm that returns a schedule Sm such that

∑n
i=1 cm

i (Sm) ≤
4C∗. A different greedy approximation algorithm returns a schedule Ss such that∑n

i=1 cs
i (S

s) ≤ 4C∗.

In [5] we also derived bounds on the number of training instances required in
order to PAC-learn an optimal (or approximately optimal) schedule for instances
drawn independently from a probability distribution. We also developed an on-
line algorithm that receives a sequence 〈x1, x2, . . . , xn〉 of problem instances one
at a time, and solves each instance (via a task-switching schedule) before moving
on to the next.

1.2 Related work

Our work is closely related to previous work on algorithm portfolios [2, 3]. An
algorithm portfolio consists of a set of heuristics that are run in parallel (or in-
terleaved on a single processor) according to some schedule. The schedules con-
sidered in previous work simply run each heuristic in parallel at equal strength
and assign each heuristic a fixed restart threshold. The term “algorithm port-
folio” has also been used to describe algorithms such as SATzilla [6], which use
machine learning to attempt predict which heuristic will solve a given instance
the fastest and then run that heuristic exclusively.

Task-switching schedules were introduced in a recent paper by Sayag et al. [4],
who gave an exact algorithm for computing an optimal task-switching schedule
(as already mentioned, doing so is NP-hard, and the running time of their algo-
rithm is exponential in the number of heuristics). For a more detailed discussion
of related work, see [5].

2 Results

In this section, we use the greedy algorithms alluded to in Theorem 1 to construct
task-switching schedules for interleaving solvers from the CPAI’06 competition.

To do so, we used the data available on the competition web site2 to determine
the running time of each constraint solver on each benchmark instance. If a
solver did not return a solution within the half hour time limit, we artificially
set its running time equal to half an hour. We used this data as input to our
greedy approximation algorithms. Note that in performing these experiments,
we did not actually run any of the constraint solvers.

One might worry that task-switching schedules computed in this way are
highly tuned to the specific benchmark instances that were used in the compe-
tition. To address this concern, we evaluate our task-switching schedules using
leave-one-out cross-validation.

The instances in the CPAI’06 competition were divided into five categories:
2-ARY-EXT, 2-ARY-INT, GLOBAL, N-ARY-EXT, and N-ARY-INT. We per-
formed separate experiments on the instances in each category. We present the
results for the category N-ARY-INT in detail, then summarize the results for
the other four categories.

2.1 Results for category N-ARY-INT

The CPAI’06 competition included 925 instances in the N-ARY-INT category. Of
the 14 solvers that were run on these instances, two produced incorrect answers
for one or more instances and were excluded from the competition. 726 of the
925 instances were solved by at least one of the 12 remaining solvers within the
half hour time limit. We use these 726 instances and these 12 solvers in our
experiments.

Table 2 displays the number of instances solved within the half hour time
limit as well as the average CPU time for each of the 12 solvers as well as
four schedules: Greedym, Greedys, Parallelm, and Parallels. Greedym is the
schedule Sm from Theorem 1 executed in multi-run mode, and similarly Greedys

is the schedule Ss from Theorem 1 executed in single-run mode. Parallelm is a
schedule that runs all 12 heuristics in parallel, each at equal strength. Parallels

is a single-run version of Parallelm which first runs each heuristic for 1 second,
then runs each heuristic for 2 seconds, then runs each heuristic for 4 seconds,
and so on.

As shown in Table 2, the two greedy schedules outperform each of the 12 orig-
inal solvers as well as the two parallel schedules, both in terms of average CPU
time and in terms of the number of instances solved within the half hour time
limit. Note that the results listed for the schedules executed in multi-run mode
are optimistic in that they assume there is no overhead associated with keeping
multiple runs in memory; however there is no such issue with the schedules ex-
ecuted in single-run mode. Also note that because we artificially set a solver’s
CPU time equal to the half hour time limit for instances it did not solve, the
values for the average CPU time of the 12 heuristics are actually lower bounds,
and using the (unknown) actual values could significantly improve our results.
Figure 2 illustrates the task-switching schedule Greedys.

2 http://www.cril.univ-artois.fr/CPAI06/

Table 2. Results for category N-ARY-INT (cross-validation results are parenthesized).

Solver Num. solved Avg. CPU (s)

Greedym 706 (701) 338 (407)
Greedys 631 (625) 395 (498)
Parallelm 630 2460
Parallels 614 4896
BPrologCSPSolver70a 579 636
Abscon 109 ESAC 509 614
Abscon 109 AC 490 659
sugar 431 766
CSPtoSAT+minisat 395 888
CSP4J - MAC 370 963
CSP4J - Combo 364 998
galac 352 990
galacJ 331 1043
Tramontane 313 1075
Mistral 304 1103
sat4jCSP 228 1264

time (s)

1 10 100 10000.01 0.1

BPrologCSPSolver70a

CSPtoSAT+minisat

sugar

Abscon 109 ESAC

CSP4J - MAC

Abscon 109 AC

galac

Fig. 2. The task-switching schedule Greedys.

To address the possibility of overfitting, we evaluated the task-switching
schedules returned by the greedy algorithm using leave-one-out cross-validation.3

The cross-validation results appear in parentheses in Table 2. The number of in-
stances solved by Greedys decreased by about 1% under cross-validation, while
the average CPU time increased by about 26%. The results for Greedym were
similar.

3 Leave-one-out cross-validation is performed as follows: for each instance, we remove
that instance from the matrix τ and run the greedy algorithm on the remaining data
to obtain a schedule to use in solving that instance.

2.2 Summary of results for all categories

We performed similar experiments on the instances in the four remaining cate-
gories: 2-ARY-EXT, 2-ARY-INT, GLOBAL, and N-ARY-EXT. In each exper-
iment, we removed solvers that produced an incorrect answer on one or more
instances, and we removed instances that none of the solvers could solve within
the half hour time limit.

The results for all five instance categories are summarized in Table 3. In
four out of five categories, the two greedy schedules outperform the correspond-
ing parallel schedules and the best individual solver in terms of the number
of instances solved within the time limit. The one exception to this trend is
the GLOBAL category, which contained a small number of relatively easy in-
stances. In this category, both the greedy schedules and the parallel schedules
solve exactly the same number of instances as the best individual solver. In
terms of average CPU time, the greedy schedules consistently outperform the
corresponding parallel schedules, and usually (but not always) outperform the
best individual solver.

Table 3. Summary of results (cross-validation results are parenthesized).

Category Solver Num. solved Avg. CPU (s)

2-ARY-EXT Greedym 1120 (1110) 107 (148)
Greedys 1114 (1104) 150 (237)
VALCSP 1093 126
Parallelm 1068 588
Parallels 1042 1413

2-ARY-INT Greedym 682 (674) 127 (167)
Greedys 675 (667) 187 (262)
Parallelm 649 781
Parallels 619 1894
buggy 2 5 s 627 290

GLOBAL Greedym 127 (127) 0.13 (1.14)
Greedys 127 (127) 0.13 (2.78)
BPrologCSPSolver70a 127 0.31
Parallelm 127 1.48
Parallels 127 3.61

N-ARY-EXT Greedym 298 (296) 298 (425)
Greedys 292 (289) 352 (572)
Abscon 109 AC 277 279
Parallelm 266 1522
Parallels 252 3708

N-ARY-INT Greedym 706 (701) 338 (407)
Greedys 631 (625) 395 (498)
Parallelm 632 2109
Parallels 614 4896
BPrologCSPSolver70a 579 636

3 Discussion

In this paper we have investigated the potential for exploiting the complemen-
tary strengths of multiple constraint solvers through the use of task-switching
schedules. As indicated in Table 3, our results include task-switching schedules
that, if entered in the competition, would have run faster on average than any of
the individual solvers and would have solved more instances within the half hour
time limit. We hope that these results will encourage hybridization of existing
constraint solvers.

A natural way to improve on the results presented here would be to use
machine learning to take advantage of instance-specific features, as is done in
SATzilla [6]. We plan to pursue this approach as future work.

References

1. Uriel Feige, László Lovász, and Prasad Tetali. Approximating min sum set cover.
Algorithmica, 40(4):219–234, 2004.

2. Carla P. Gomes and Bart Selman. Algorithm portfolios. Artificial Intelligence,
126:43–62, 2001.

3. Bernardo A. Huberman, Rajan M. Lukose, and Tad Hogg. An economics approach
to hard computational problems. Science, 275:51–54, 1997.

4. Tzur Sayag, Shai Fine, and Yishay Mansour. Combining multiple heuristics. In Pro-
ceedings of the 23rd International Symposium on Theoretical Aspects of Computer
Science, pages 242–253, 2006.

5. Matthew Streeter, Daniel Golovin, and Stephen F. Smith. Combining multiple
heuristics online. In Proceedings of the Twenty-Second Conference on Artificial
Intelligence (AAAI-07), pages 1197–1203, 2007.

6. Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. SATzilla2007: a
new & improved algorithm portfolio for SAT, 2007.

