
VALCSP solver : a combination of Multi-Level

Dynamic Variable Ordering with Constraint

Weighting

Assef Chmeiss, Lakdar Säıs, Vincent Krawczyk

CRIL - University of Artois - IUT de Lens
Rue Jean Souvraz - SP 18

62307 LENS Cedex 3, France
{chmeiss, sais, krawczyk}@cril.univ-artois.fr

Abstract. The usual way for solving constraint satisfaction problems is
to use a backtracking algorithm. One of the key factors in its efficiency is
the rule it will use to decide on which variable to branch next (namely, the
variable ordering heuristics). In this paper, we propose one binary CSPs
solver: VALCSP. He uses and combines two powerful and complementary
heuristics. The first one [BCS01] is a look-ahead based heuristic called
multi-level variable ordering heuristic, a variable is selected according to
a measure that takes into account the properties of the neighborhood
of the given variable. The second one [BHLS04] is based on constraint
weighting (Wdeg). More precisely, a higher weight is given to constraints
violated at some previous steps of the search process. Such weighted
constraints are used to guide the dynamic variable ordering heuristics of
a backtrack search-like algorithms. Our solver is based on the well known
MAC algorithm. Arc-consistency is maintained using the AC8 algorithm.
In this paper, we give a description of our solver presented to the second
International CSP Solver Competition.

1 Introduction

Constraint satisfaction problems (CSPs) are widely used to solve combinatorial
problems appearing in a variety of application domains. The usual technique
to solve CSPs is the systematic backtracking. It repeatedly chooses a variable,
attempts to assign it one of its values, and then goes to the next variable, or
backtracks in case of failure. This technique is at the basis of almost all the CSP
solving engines. But if we want to tackle highly combinatorial problems, we need
to enhance this basic search procedure with clever improvements.

A crucial improvement to be added is look-ahead value filtering, which con-
sists in removing from future domains values that cannot belong to a solution
extending the current partial instantiation. Many works have studied the differ-
ent levels of filtering that can be applied at each node of the search tree. Two
famous algorithms maintaining different levels of consistency at each node are
forward checking (FC), and maintaining arc consistency (MAC). Several papers

have discussed their performances [SF94,BR96,GS96]. Our solver uses MAC as
a search algorithm with the AC8 [CJ98] arc consistency algorithm.

A second kind of improvement that can be added to a backtrack search pro-
cedure is to use the knowledge obtained from deadends to avoid future failures
coming from the same reason. Backjumping based algorithms [Pro93] are the
most famous of these “look back” techniques. In [BHLS04], a simple and efficient
criterion is used to direct the search on the most hard and probably inconsistent
subpart of the CSP is proposed. It selects the next variable to assign according
to its occurrence in the most violated constraint during search. This heuristic is
originally proposed in [BGS99] for solving the satisfiability problem.

Another improvement that has been shown to be of major importance is the
ordering of the variables (VO), namely, the criterion under which we decide which
variable will be the next to be instantiated. Many variable ordering heuristics for
solving CSPs have been proposed over the years. However, the criteria used in
those heuristics to order the variables are often quite simple, and concentrated
on the characteristics inherent to the variable to be ordered, and not too much
on the influence its neighborhood could have. Those that used more complex
criteria, essentially based on the constrainedness or the solution density of the
remaining subproblem, need to evaluate the tightness of the constraints, and so,
need to perform many constraint checks.

Our VALCSP solver aims to use the influence of the neighborhood in the
criterion of choice of a variable [BCS01], while remaining free of any constraint
check. It, also, combines this heuristic with constraint weight.

2 Definitions and notations

A constraint network is defined by a set of variables X , each taking values in its
finite domain Di ∈ D, and a set of constraints C restricting the possible combi-
nations of values between variables. The set of variables implied in a constraint
c will be denoted by Vars(c).

Any constraint network can be associated with a constraint graph in which
the nodes are the variables of the network, and an edge links nodes if and only
if there is a constraint on the corresponding variables.

Γinit(xi) denotes the set of nodes sharing an edge with the node xi (its initial
neighbors). We define the set Γ (xi) as the current neighborhood of xi, namely,
the neighbors remaining uninstantiated once a backtracking search procedure has
instantiated the set Y = {Xi1 , . . . , Xik

} of variables, i.e., Γ (xi) = Γinit(xi)− Y .
The size of Γ (xi) (resp. Γinit(xi)) is called the degree (resp. initial degree) of xi.

3 Search heuristic

In the VALCSP solver, we combine the Multi-Level ordering heuristic and the
Wdeg heuristic. This solver is based on the MAC algorithm which uses the
following skills:

– the AC8 [CJ98] arc consistency algorithm is used to maintain arc consistency
during search.

– The multi-level variable ordering [BCS01] is the basic heuristic used to choose
the next variable to assign (defined in 3.1)

Let us recall the notion of Multi-Level ordering heuristic proposed in [BCS01]
and the Wdeg heuristic proposed in [BHLS04].

3.1 Multi-Level variable ordering heuristics

Let us first define W (Cij) as the weight of the constraint Cij and,

(1) W (xi) =

P

xj∈Γ (xi)
W (Cij)

|Γ (xi)|

as the mean weight of the constraints involving xi. In order to maximize the
number of constraint involving a given variable and to minimize the mean weight
of such constraints, the next variable to branch on should be chosen according
to the minimum value of
(2) H(xi) = W (xi)

|Γ (xi)|

over all uninstantiated variables.
For complexity reasons, the weight we will associate to a constraint must be

something cheap to compute (e.g., free of constraint checks). it can be defined
by W (Cij) = α(xi) ⊚ α(xj), where α(xi) is instantiated to a simple syntactical

property of the variable such as |Di| or |Di|
|Γ (xi)|

, and ⊚ ∈ {+,×}.

We obtain the new formulation of (2):

(3) H⊚
α (xi) =

P

xj∈Γ (xi)
α(xi) ⊚ α(xj)

|Γ (xi)|2

Multi-level generalization In the formulation of the dynamic variable order-
ings (DVOs) presented above, the evaluation function H(xi) considers only the
variables at distance one from xi (first level or neighborhood). however, when
arc consistency is maintained (MAC), the instantiation of a value to a given
variable xi could have an immediate effect not only on the variables of the first
level, but also on those at distance greater than one.

To maximize the effect of such a propagation process on the CSP, and conse-
quently to reduce the difficulty of the subproblems, we propose a generalization
of the DVO H⊚

α such that variables at distance k from xi are taken into account.
This gives what we call a ”multi-level DVO”, H⊚

(k,α). To obtain this multi-level

DVO, we simply replace α(xj) in formula (3) by a recursive call to H⊚

(k−1,α). The

recursion terminates with H⊚

(0,α), equal to α. This is formally stated as follows:

(4) H⊚

(0,α)(xi) = α(xi)

(5) H⊚

(k,α)(xi) =

P

xj∈Γ (xi
α(xi))⊚H

⊚

(k−1,α)
(xi)

|Γ (xi)|2

3.2 Wdeg heuristic

The main goal behind the Wdeg heuristic is to exploit informations about pre-
vious step of the search and to direct the search to the most constrained sub-

problem. More precisely, a counter, called W (Cij), with any constraint Cij of
the problem. These counters will be updated during search whenever a dead-
end (domain wipeout) occurs. As systematic solvers such as FC or MAC involve
successive revisions of variables in order to remove values that are no more con-
sistent with the current state, it suffices to introduce a test at the end of each
revision. If the constraint under test is violated, its counter is increased by one.

Using these counters, it is possible to define a new variable ordering heuristic,
denoted Wdeg, that gives an evaluation Hwdeg(xi), called weighted degree, of any
variable xi as follows:

Hwdeg(xi) =
∑

xj∈Γ (xi)
W (Cij)

3.3 VALCSP solver : combining multi-level DVO with Constraint
weighting

Our VALCSP solver combines both Multi-Level and Constraint weighting heuris-
tics. It defined as following:

Hlw(xi) =
|Di|+

P

xj∈Γ (xi)
|Dj |

W (Cij)
.

To compute Hlw(xi), we consider for each constraint Cij , the ratio between
the sum of the domains size of all xj (and xi) and the weight W (Cij). A sum is
calculated on all the constraints involving a given variable xi.

4 Filtering algorithm

A preprocessing step achieves arc consistency on the CSP. We also maintain arc
consistency during search with the MAC algorithm.

The main arc consistency algorithm used in our solvers is AC8. It’s proposed
by Chmeiss and Jegou in [CJ98].
AC8 is based on supports but without recording them. When a value a ∈ Di

is removed from its domain, AC8 records the reference of the variable xi, that
is the number i, in the list of propagation denoted List-AC. Propagations will
be realized with respect to variables in this list. Suppose that a variable xi

is removed from the list. Then, all neighboring variables will be considered,
i.e. for all xj ∈ X such that Cji ∈ C, and for each value b ∈ Dj, AC8 will
ensure that there is a value a ∈ Di such that (a, b) ∈ Rij holds. Unlike AC6,
AC8 has to start again the search from the first value of the domains. If no
support a of b is found in Di, then b must be deleted, and the number of
the variable, namely j must be inserted in List-AC. To ensure that j is not
duplicated in List-AC, we must maintain an array of booleans, denoted Status-

AC, recording the status of variables. So, the data structures used to AC8 are
the List-AC containing variables which have lost some values in their domain
and not propagated yet, and the boolean table Status-AC that always verifies
{i ∈ List-AC <=> Status-AC[i]}.

5 Summary: submitted solver

In this paper, we have given a description of the solver which we submit to the
second International CSP Solver Competition. This solver is slightly different. It
uses the AC8 algorithm to maintain arc-consistency during search. It combines
Multi-Level and constraint weighting heuristics (see sections 4.2 and 4.3)

Finally, we mention that this solver is implemented using the C ANSI pro-
gramming language.

References

[BCS01] C. Bessière, A. Chmeiss, and L. Sais. Neighborhood-based variable ordering
heuristics for the constraint satisfaction problem. In Proceedings of CP’01,
pages 565–569, 2001.

[BGS99] L. Brisoux, E. Gregoire, and L. Sais. Improving backtrack search for sat by
means of redundancy. In Proceedings of ISMIS’99, pages 301–309, 1999.

[BHLS04] F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic
search by weighting constraints. In Proceedings of ECAI’04, pages 146–150,
2004.

[BR96] C. Bessiere and J-C. Regin. MAC and combined heuristics: Two reasons
to forsake FC (and CBJ?) on hard problems. In Principles and Practice of
Constraint Programming, pages 61–75, 1996.

[BvB98] F. Bacchus and P. van Beek. On the conversion between non-binary and
binary constraint satisfaction problems. In Proceedings of the 15th National
Conference on Artificial Intelligence (AAAI-98) and of the 10th Conference
on Innovative Applications of Artificial Intelligence (IAAI-98), pages 311–
318, Menlo Park, 26–30 1998. AAAI Press.

[CJ98] A. Chmeiss and P. Jégou. Efficient path-consistency propagation. Interna-
tional Journal on Artificial Intelligence Tools, 7(2):121–142, 1998.

[Dec90] R. Dechter. On the expressiveness of networks with hidden variables. In
Proceedings of AAAI’90, pages 556–562, Boston MA, 1990.

[GS96] S.A. Grant and B.M. Smith. The phase transition behavior of maintaining
arc consistency. In Proceedings of ECAI’96, pages 175–179, 1996.

[Pie33] C.S. Pierce. Collected Papers, Vol III. Harward University Press, Cambridge,
1933.

[Pro93] P. Prosser. Hybrid algorithms for the constraint satisfaction problems. Com-
putational Intelligence, 9(3):268–299, 1993.

[SF94] D. Sabin and E.C. Freuder. Contradicting Conventional Wisdom in Con-
straint Satisfaction. In Alan Borning, editor, Proceedings of the Second Inter-
national Workshop on Principles and Practice of Constraint Programming,
PPCP’94, Rosario, Orcas Island, Washington, USA, volume 874, pages 10–
20, 1994.

